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Abstract The ability to control both the minimum size
of holes and the minimum size of structural members
are essential requirements in the topology optimization
design process for manufacturing. This paper addresses
both requirements by means of a unified approach
involving mesh-independent projection techniques. An
inverse projection is developed to control the minimum
hole size while a standard direct projection scheme
is used to control the minimum length of structural
members. In addition, a heuristic scheme combining
both contrasting requirements simultaneously is dis-
cussed. Two topology optimization implementations
are contributed: one in which the projection (either
inverse or direct) is used at each iteration; and the
other in which a two-phase scheme is explored. In
the first phase, the compliance minimization is carried
out without any projection until convergence. In the
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second phase, the chosen projection scheme is applied
iteratively until a solution is obtained while satisfying
either the minimum member size or minimum hole
size. Examples demonstrate the various features of the
projection-based techniques presented.
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1 Introduction

Engineers aim at improving the structural optimization
process in order to find an efficient answer to the
problem of automatic design of structural components.
Although optimization techniques can play a role in
several stages of the design process, the state-of-the-
art does not allow a complete automation yet. Some
techniques, such as parameter optimization, are more
suited to the final stages of the design process because
they can easily incorporate limit state constraints (e.g.
Nitsopoulos and Lauber 2007). On the other hand,
topology optimization including material distribution
fits better in the initial stages of the design process.
Topology optimization is of considerable practical im-
portance because it can lead to savings and design im-
provements (Rozvany 2001a). Since the development
of the SIMP (Solid Isotropic Material with Penaliza-
tion) method (e.g. Zhou and Rozvany 1991), which
was previously developed under different terminology,
such as the “direct approach” or “artificial density ap-
proach” by Bendsøe (1989), the range of applications of
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topology optimization has increased steadily (Rozvany
2001b).

Achieving control of manufacturing design and con-
sidering limit state constraints are some of the most
important issues to move topology optimization be-
yond a preliminary design tool. Control of structural
member sizes and minimum sizes of holes are just two
of several manufacturing requirements that must be
observed in the design process. Features such as axial
and radial symmetry, extrusion (see Ishii and Aomura
2004), casting and machining (see Chang and Tang
2001 and Zuo et al. 2006) are relevant to topology
optimization and contribute to extend the role played
by these techniques in the design process.

Techniques to avoid numerical instabilities in the
topology optimization process also provide an indirect
control over the resulting structural member sizes. For
instance, the weighted average over element densities
adopted in most density filters (Bourdin 2001; Guo
and Gu 2004; Wang and Wang 2005) and the weighted
average over sensitivities adopted in the sensitivity fil-
ters (Sigmund 1997, 2001 and Borrvall and Petersson
2001) augment the structural member size as the char-
acteristic dimension of the filter is increased. A mesh-
independent projection scheme to achieve minimum
length scale on structural members obtained by means
of topology optimization using compliance minimiza-
tion has been presented by Guest et al. (2004). This
scheme has been extended beyond compliance mini-
mization by Carbonari et al. (2007, 2009) in a multi-
physics setting.

This paper addresses the problem of imposing min-
imum size of holes as well as minimum length scale
to structural members (Fig. 1). We propose an in-
verse projection scheme to enforce the minimum size
of holes. We also propose a heuristic combination of
this scheme with a direct projection scheme to achieve

a

b

Fig. 1 Length scale associated to a solid member and b hole sizes

minimum member size control. The schemes are
combined without any additional constraints, filters
or penalty functions. Notice that all the projection
schemes (direct, inverse and combined) only encourage
limitation of minimum feature size but do not impose
constraints in a strict sense.

Recently, Sigmund (2007) introduced the use of
morphology-based operators to control the size of
members and holes. The inverse scheme approach
has some similarities with the morphology operators
“erode” and “open”. Both methods aim to control the
size of the holes. However, the control provided by
those morphology operators does not offer a direct
relation between the operator parameter and the size of
the holes as it is done in the present inverse scheme, and
does not suggest any scheme to combine the operators
as well.

The remainder of this paper is organized as fol-
lows. Section 2 presents the direct projection scheme,
Section 3 introduces the inverse projection scheme,
and Section 4 presents a possible alternative to com-
bine both schemes. Section 5 provides information on
the topology optimization formulation, together with
some details of the implementation including evalua-
tion of sensitivities. Section 6 contributes an alternative
computational implementation involving a two-phase
topology optimization scheme, which is explored in
two sequential phases. Several examples and numerical
results are provided in Section 7. The conclusions are
given in Section 8.

2 Direct projection

Projection schemes are used in topology optimization
to project nodal values onto an element space (to be
used in the finite element analysis). Some of these func-
tions such as the shape functions used in the continuous
approximation of material distribution (CAMD) tech-
nique (Matsui and Terada 2004) are mesh-dependent.
Because each function influences only the elements
connected to the related node, the region of the domain
under its influence becomes smaller as the mesh is
refined. Mesh-independent schemes can be achieved
with mesh-independent projection regions, as discussed
below. In general, techniques used to achieve mesh in-
dependent solutions also tend to alleviate the checker-
board problem (Zhou et al. 2001).

Guest et al. (2004) proposed a mesh-independent
projection scheme to achieve minimum length scale on
structural members generated by topology optimiza-
tion. The nodes inside a circular region �e

w in the
neighborhood of the element of reference are included
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Fig. 2 Direct projection
scheme: a domain �e

w, b
linear weight function, c
parabolic weight function
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in the evaluation of the element density ρe used in the
finite element analysis (Fig. 2a). The set of nodes Se

w to
be projected are defined by

x j ∈ Se
w if re

j = ∣
∣x j − xe

∣
∣ ≤ rmin (1)

where x j are the coordinates of the node j, xe are
the coordinates of the center of the element, and re

j
is the distance between the center of the element e and
the node j. The projection consists essentially of a cone
of base 2 rmin and unit height centered at the center of
the element such that

ρe =

∑

j∈Se
w

y j w
(

x j − xe
)

∑

j∈Se
w

w
(

x j − xe
) (2)

w
(

x j − xe) =
⎧

⎨

⎩

rmin − re
j

rmin
if x j ∈ �e

w

0 if x j /∈ �e
w

(3)

The nodal variables y j are weighted to evaluate the
element volume fraction ρe of element e, as shown
in (2), using the linear weight function defined in (3)
and shown in Fig. 2b. Other functions can be used
as well.

The weight function (3) is mesh-independent be-
cause rmin is an invariant length scale, however, the
number of nodes evaluated in the weight function in-
creases as the mesh is refined. The radius rmin is a
physical length scale, which imposes that the minimum
allowable member size corresponds to 2 rmin, the basis
of the projection cone.

Regarding projection schemes, a multiple choice ap-
proach may be advantageous in some instances, e.g.
to reduce regions with intermediate densities at the

borders of the structural elements. Thus, an alternative
parabolic weight function is proposed according to

w
(

x j − xe) =
⎧

⎨

⎩

(rmin − re
j

rmin

)2

if x j ∈ �e
w

0 if x j /∈ �e
w

(4)

as illustrated in Fig. 2c.

3 Inverse projection scheme

A unified approach involving mesh independent pro-
jection techniques is employed to enforce the minimum
size of holes in topology optimization by means of
inverse projections. The inverse projection scheme is
defined in a circular region �e

inv in the neighborhood
of the element (Fig. 3a). The set nodes Se

inv in the �e
inv

region are defined by

x j ∈ Se
inv if re

j = ∣
∣x j − xe

∣
∣ ≤ rinv (5)

The inverse projection scheme consists essentially of an
inverse cone of base 2 rinv and unit height centered on
the circle of radius rinv. Moreover,

ρe =

∑

j∈Se
inv

y j winv
(

x j − xe
)

∑

j∈Se
inv

winv
(

x j − xe
) (6)

Below we present the development for the inverse
projections which are linear and parabolic, respectively.
Other projection functions can be developed as well.
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Fig. 3 Inverse projection
scheme: a domain �e
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3.1 Inverse linear projection

The weight for the inverse linear projection is given by

winv
(

x j − xe) =
⎧

⎨

⎩

re
j

rinv
if x j ∈ �e

inv

0 if x j /∈ �e
inv

(7)

The nodes in the region �e
inv are weighted propor-

tionally to the distance between the node and the center
of the element, as shown in (7) and in Fig. 3b, and the
element volume fraction ρe of element e is evaluated
using the nodal variables y j as shown in (6). The radius
rinv indicates that the minimum allowable length scale
for any hole corresponds to 2 rinv, the basis of the
inverse projection cone.

3.2 Inverse quadratic projection

The alternative parabolic inverse weight function is
given by:

winv
(

x j − xe) =
⎧

⎨

⎩

( re
j

rinv

)2

if x j ∈ �e
inv

0 if x j /∈ �e
inv

(8)

as illustrated by Fig. 3c. This projection, as well as the
projections given above (both inverse and direct), are
investigated further by means of numerical examples.

4 Discussion on a combined projection scheme

An important feature concerning topology optimiza-
tion design consists of imposing a minimum length scale
to structural elements, while at the same time ensur-
ing that the optimization process does not generate

very small holes which are difficult to manufacture.
The projection function (2) solves the minimum length
scale problem and the projection function (6) solves
the minimum hole size problem. Both of them can
be easily implemented. Imposing the two conditions
together requires additional considerations because the
two functions are conflicting.

We propose an empirical approach, which consists
of choosing between the direct and the inverse scheme
“on the fly” based on the actual volume of voids sur-
rounding the element. An element placed in a region
of high element density (Fig. 4a) is considered to be
part of a structural member and, therefore, the direct
projection scheme is applied to guarantee the minimum
member size. If, on the other hand, the element is
placed on a low element density region (Fig. 4b), it is
considered to be predominantly part of a hole region
and, therefore, the inverse projection scheme is applied
to enforce a minimum size for the hole.

The combined scheme follows the unified approach
predominant in the paper. The projection assessment is

a b

Fig. 4 Use of a direct projection and b inverse projection
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carried out in a circular region �c of radius rc centered
at the center of element e. The set of nodes Se

c in the �e
c

region are defined by

x j ∈ Se
c if re

j = ∣
∣x j − xe

∣
∣ ≤ rc (9)

The volume of voids Ve
v in �e

c is computed as,

Ve
v

(

y
) =

∑

j∈�e
c

v j
(

1 − ρe (

yj
) + ymin

)η (10)

where v j is the volume of the element j, and y is the
vector of the nodal densities in �e

c. The power index
η was introduced (Guest 2009) in order to penalize
the contribution of the intermediate volume fraction
(adopting η ≥ 1). For large values of η only elements
whose volume fractions achieve the lower bound ymin

are counted towards the total volume of voids. The
actual percentage of voids surrounding element e is
then obtained by normalizing the actual volume of
voids (10), i.e.

ce
v

(

y
) = Ve

v

(

y
)

∑

i∈�e
c

vi
(11)

The actual percentage of voids ce
v (11) is employed to

select the projection scheme to be applied to evaluate
the element volume fraction ρe used in the finite ele-
ment analysis. The choice depends on an empirical limit
change factor cc defined by the designer. The inequality
ce
v < cc indicates that the element is in a solid structural

member region (Fig. 4a), and, therefore, the projection
scheme (2), together with either the weight function (3)
or (4), shall be applied; while ce

v ≥ cc indicates that the
element is in a hole region (Fig. 4b) and, therefore, the
projection scheme (6), together with either the weight
function (7) or (8), shall be applied.

Some remarks concerning the combined projection
scheme follow. The scheme identifies three regions:
(1) region �e

c, where the actual percentage of voids
is computed in order to select the proper projection
scheme; (2) region �e

inv, related to the minimum size of
the holes; and (3) region �e

w, related to the minimum
length scale of structural members. The first two are
related to the volume of voids surrounding an element
and, for simplicity, we assume that both are the same
region. Thus, we employ the radius rc (which defines
the region �e

c where the actual percentage of voids is
computed) to be equal to rinv (which defines the region
�e

inv associated to the minimum size of the holes).
The regions (�e

w, �e
inv and �e

c) do not change during
the optimization process and, thus, are determined
at the beginning of the computations.

We also call attention to the fact that elements
placed very close to the structural members, but still

Fig. 5 Elements in which the use of the direct projection scheme
is suitable

in the “hole region”, as the elements neighboring the
stair-type region in Fig. 5, have intermediate values
of ce

v . Although these are low density elements, they
must be gathered to the structural member region (by
increasing their densities to enforce the minimum mem-
ber size) and not gathered to the void region. Thus,
the limit change factor cc must be carefully chosen.
In general, we recommend cc to be taken between 0.6
and 0.8.

Initialize

Projection mapping

Element densities using projection function

FEA

Compliance

Update the design variables

| yn
new – yn

old | / | yn
old |  tol ?

Sensitivities w.r.t. design variables

End

Y

N
Sensitivities w.r.t. element densities

KE for solid material

Select appropriate element-wise projection scheme

<

Fig. 6 Topology optimization scheme for the single phase (stan-
dard) algorithm
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a

b

c

<

<

� Fig. 7 Two-phase topology optimization: a main algorithm,
b Phase I algorithm, c Phase II algorithm

5 Basic formulation and implementation

Topology design optimization is traditionally formu-
lated as a material distribution problem in which solid
material and void regions are represented by discrete
density values 1 and 0, respectively. The SIMP model
(e.g. Bendsøe 1989; Zhou and Rozvany 1991) relaxes
the formulation considering a continuous variation of
density in the interval [ρmin, 1] and makes material
properties continuously dependent on the local amount
of material. A power-law relation is used to penal-
ize intermediate densities and recover the discrete na-
ture of the final solution. At any point of the design
domain �:

EH (x) = Es ρ (x)p , p > 1 (12)

where x denotes the coordinates of the point; EH(x)
the Young’s modulus at coordinates x; ρ(x) the pseudo
densities at coordinates x; Es the Young’s modulus of
the solid material; and p the penalization factor.

The performance of the proposed projection
schemes (inverse, direct and combined) is assessed
through computational implementation of the mini-
mum compliance using the SIMP model (12). It can be
solved using, for example, the optimality criteria:

min C
(

y, U
) = UT K U

s.t : V
(

y
) = ∑

y j ≤ f V0

ymin ≤ y j ≤ 1
(13)

The objective function is the compliance of the struc-
ture C (y, U); U is the global displacement vector,
which depends on the design variables y; K is the global

Fig. 8 Cantilever beam
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Fig. 9 Topology of the
cantilever beam obtained
using linear projection
and mesh discretization
100 × 50: a rmin = 2 elements
b rinv = 2 elements. Note: the
white bar at the top right
illustrates the length-scale
of the projection (d = 2 r)

Direct scheme with linear weight function Inverse scheme with linear weight function 

a b

Fig. 10 Topology of the
cantilever beam obtained
using parabolic projection
and mesh discretization 100 ×
50: a rmin = 2 elements,
b rinv = 2 elements, c rmin = 3
elements, d rinv = 3 elements,
e rmin = 4 elements, f rinv = 4
elements. Note: The white bar
at the top right illustrates the
length-scale of the projection
(d = 2 r)

Direct scheme with parabolic weight function Inverse scheme with parabolic weight function 

ba

dc

fe

ba

Fig. 11 Topology of the cantilever beam obtained by the inverse
parabolic projection: a mesh discretization 100 × 50 and rinv = 2
elements, b mesh discretization 200 × 100 and rinv = 4 elements.

Note: the white bar at the top right illustrates the length-scale of
the projection (d = 2 rinv), which spans eight elements
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6

1

1

Fig. 12 MBB beam

stiffness matrix (also dependent on the design variables
y); f is the specified maximum volume fraction of
the extended design (domain consisting of structural
material); and V0 is the volume of the design domain.

Continuation is applied to the penalization factor p
of (12) using the relative change of compliance to guide
the continuation criterion (e.g. if relative change in
compliance between consecutive iterations is less than
2% then increment p by unity). Moreover, convergence
of the topology optimization is considered satisfactory
when the relative change of the norm of the design
variable vector between consecutive iterations is less
than a specified value (e.g. 1%).

The sensitivities with respect to the densities used in
the FE analysis are evaluated using the standard adjoint
method (see Bendsøe and Sigmund 2003):

∂C
∂ρe

= −UT ∂K
∂ρe

U = −p
(

ρe)p−1 UT
e

∂Ke
s

∂ρe
Ue (14)

Here Ue is the displacement vector of element e; and
Ke

s is the stiffness matrix of element e considering solid
material. The design parameters adopted are the nodal
densities y, which are projected. The sensitivity with
respect to the design variable yk is, therefore, evaluated
using the chain rule:

∂C
∂yk

=
∑

e∈Sk

∂C
∂ρe

∂ρe

∂yk
(15)

The set Sk denotes the elements whose projection re-
gion �e

w or �e
inv include node k. For instance, by means

of the direct projection (see (2)):

∂ρe

∂yk
= w (xk − xe)

∑

j∈Se
w

w
(

x j − xe
) (16)

and by means of the inverse projection function
(see (6)):

∂ρe

∂yk
= winv (xk − xe)

∑

j∈Se
inv

winv
(

x j − xe
) (17)

An important feature regarding the implementation
is the procedure to identify the nodes that influence
the volume fraction of element e in the direct and in
the inverse schemes. Search procedures are expensive,
especially for fine meshes and large values of either
rmin or rinv. As the set of nodes lying in the regions �e

w

and �e
inv are the same for all the steps of the optimiza-

tion process, these search procedures are performed
only once at the beginning of the algorithm. Figure 6
shows a flowchart of the single phase computational
procedure.

The present numerical implementation employs uni-
form meshes, which avoid favoring parts of the de-
sign domain. This procedure is suitable for topology
optimization modeling because it is not known, at the
beginning of the procedure, where the solution is going
to lie. Moreover, uniform meshes also reduce computa-
tional cost as repetition of the computation of various
local stiffness matrices is eliminated by computing the
element matrix for solid material at the beginning of the
algorithm.

6 Projection-based two-phase topology optimization

In the flowchart presented in Fig. 6, the projection
is implemented after each iteration. Another strategy
is explored, which can be divided into two sequential
phases (see Fig. 7):

Phase I: In the first phase, the compliance minimiza-
tion is carried out without any projection
until convergence.

Phase II: In the second phase, the chosen projection
scheme is applied iteratively until a material
void solution is obtained while satisfying the
minimum member/size condition.

Features of the two-phase algorithm include is its
effectiveness (in relation to the quality of results) and
the modularity of the projection-based topology op-
timization scheme, which can be explored in other
problems such as manufacturing constraints. In order to
obtain higher efficiency of the two-phase algorithm, the
convergence criterion (e.g. in terms of the change of the
design variables) could be loser in Phase I and tighter
in Phase II. This and other aspects associated to the
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Direct scheme with linear weight function Inverse scheme with linear weight function 

Number of iterations: 409   Obj func: 100.34  Number of iterations: 409   Obj func: 100.34  

Number of iterations: 294   Obj func: 111.97   Number of iterations: 455   Obj func: 117.01 

Number of iterations: 281   Obj func: 120.81 Number of iterations: 358   Obj func: 138.33  

Number of iterations: 295   Obj func: 136.68  Number of iterations: 325   Obj func: 167.88  

a

b

c

d

e

f

g

h

Fig. 13 Topology of the MBB beam obtained using the inverse
projection scheme with linear weight function and mesh dis-
cretization 240 × 40 elements: a rmin = 1 element, b rmin = 3
elements, c rmin = 5 elements, d rmin = 7 elements, e rinv = 1

element, f rinv = 3 elements, g rinv = 5 elements, h rinv = 7
elements. Note: the white bar at the top right illustrates the length-
scale of the projection (d = 2 r)

computational performance of the two-phase algorithm
are topics of future research.

7 Results

This section explores the projection schemes and
presents numerical results for the direct, inverse, and
combined schemes. The results are verified using a can-
tilever beam and a MBB-beam. Recall that the length
scale of the direct projection scheme is dmin = 2 rmin

(see Fig. 2b and c), and the length scale of the inverse
projection scheme is dinv = 2 rinv (see Fig. 3b and c). For
the sake of simplicity of notation, hereafter the length
scale of either projection is referred as d.

All the problems are solved using four-node quadri-
lateral elements, and the prescribed volume of the
structure is 50% of the domain volume �. Continuation
is applied to the penalization factor of the SIMP model
varying p from 1.0 to 5.0 stepping 1.0. Convergence
of the topology optimization is considered satisfactory
when the relative change of the norm of the design

variable vector between consecutive iterations is less
than 1%). The Poisson’s ratio is ν = 0.25 and the
Young’s modulus E = 1. Consistent units are employed.

7.1 Inverse and direct projections

The cantilever beam problem shown in Fig. 8 is solved
using both projection schemes, i.e. direct and inverse.
The extended domain � is fixed along the left edge with
aspect ratio of 2/1 and unit width. A point load P = −1
is applied to the lower left free corner of the beam.

Figure 9 shows the results obtained with both the
direct and the inverse projection schemes using the lin-
ear weight functions (3) and (7), respectively. The mesh
is discretized with 100 × 50 elements. For comparison
purposes, the radius of both projections (direct and
inverse) is equal to 2.0. Comparing Fig. 9a and b,
one verifies the tendency of the inverse projection to
coalesce the holes.

Figure 10 explores the parabolic projection and il-
lustrates the influence of the projection area in the
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4

1 1

Fig. 14 Second cantilever beam

solution. Thus, the weight functions (4) and (8) are em-
ployed with varying projection radius for each scheme
(direct and inverse, respectively). The mesh is dis-
cretized with 100 × 50 elements, and the projection
radii are selected to be equal to 2, 3 and 4 elements.
As expected, Fig. 10b, d and f illustrate the tendency of
the inverse projection to coalesce the holes (consistent
with the previous example of Fig. 9). The white bar
represents 2 rmin in Fig. 10a, c and e or 2 rinv in Fig. 10b,
d and f. The white circles in Fig. 10b and d illustrate the

regions whose sizes are closer to the minimum specified
hole size (d = 2 r).

A comparison among the linear projection results of
Fig. 9a and b with those of the parabolic projection
presented in Fig. 10a and b reveal some interesting
results. While the direct project leads to similar topolo-
gies (Figs. 9a and 10a), the inverse projection leads to
slightly different topologies (Figs. 9b and 10b). Thus
while the direct projection seems to indicate nearly the
same local minimum, the inverse projection does not.
These results seem to indicate that the inverse projec-
tion results are more sensitive to the actual projection
function adopted (linear, quadratic, etc) than the direct
projection.

To address the issue of mesh dependency for the in-
verse projection scheme, a mesh discretized with 200×
100 elements and rinv = 4.0 elements was employed. As
expected, the results displayed in Fig. 11a and b are
qualitatively similar.

The MBB-beam problem of Fig. 12 (aspect ratio 6:1)
is solved using the linear projection with both direct and
inverse schemes. Due to the symmetry of the problem,
only half of the beam is considered. The extended

Fig. 15 Topology of the
cantilever beam obtained
using the inverse projection
scheme with linear weight
function and mesh
discretization 200 × 50
elements: a inverse projection
scheme, cv = 0.0 b combined
scheme, cv = 0.6 c direct
projection scheme, cv = 1.0.
Note: the white bar at the top
right illustrates the
length-scale of the projection
(d = 2 r). The combined
scheme employs both length
scales

Number of iterations: 547   Objective function: 449.45 

Number of iterations: 835   Objective function: 393.34 

Number of iterations: 842   Objective function: 397.04 

a

b

c
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a

b

c

Fig. 16 Two-phase topology optimization using mesh discretiza-
tion of 100 × 50 elements: a layout at the end of Phase I
(no projection scheme), b final layout using the direct projection
scheme in Phase II (rmin = 2.0), c final layout using the inverse
projection scheme in Phase II (rinv = 3.0)

domain � is fixed along the left edge and has a length
of 120 elements, height of 40 elements, and unit width.
A point load P = −1 is applied midpoint on the top of
the beam.

Figure 13 shows the results for both direct and in-
verse schemes with linear weight function, assuming
values of rmin and of rinv from 1.0 to 7.0. The white bar
represents 2 rmin in Fig. 13a through d, and 2 rinv in
Fig. 13e through h. In both schemes, a “degeneration”
of the solution can be observed as rmin or rinv increases,
which occurs due to the weighted average procedure.
Here the word “degeneration” refers to loss of def-
inition of the actual structural topology. The earlier
degeneration of the solution in the inverse scheme is
caused by the nature of the weighted average, which
benefits the densities of more distant nodes when eval-
uating element densities. As expected, results obtained
with the parabolic weight factors are similar to the ones
presented in Fig. 13, and thus are not shown here.

Moreover, when one plots the densities directly from
the design variables, y j, a picture with nearly sharp
interfaces is obtained, even for higher values of the
projection radius. Meanwhile, pictures displaying pro-
jected densities, ρe, show regions with intermediate
densities for relatively high values of the projection
radius. In this paper, only the projected densities are
plotted.

7.2 Combined scheme

The cantilever beam problem of Fig. 14 is solved using
both projection schemes, i.e. direct and inverse, and
parabolic weight function, together with the formula-
tion presented in Section 4. The parabolic weight func-
tions are applied. The extended domain � is fixed along
the left edge and has length of 200 elements, height of
50 elements, and unit width. A point load P = −1 is
applied midway down the free right end of the beam.
The penalization factor η of (10) is constant and equal
to 5.0.

For the combination of the schemes, the radius of the
direct projection rmin is 2.0 and the radius of the inverse
projection rinv is 3.0. Figure 15 shows the results of
the combination of the projection schemes for different
change factors cc. The projection was carried out after
each iteration. The testing limit cc = 0.0 (Fig. 15a)
implies that ce

v ≥ cc always and, therefore, only the

Table 1 Compliance results
for the one-phase algorithm
and for the two-phase
algorithm

Projection scheme One-phase algorithm Two-phase algorithm

Direct projection 78.13 End of Phase I 75.95
First iteration of Phase II 79.04
End of Phase II 78.86

Inverse projection 93.04 End of Phase I 75.95
First iteration of Phase II 132.35
End of Phase II 100.04
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inverse projection scheme is used. The testing limit
cc = 1.0 (Fig. 15c) implies that ce

v ≥ cc for all elements
and, therefore, only the direct projection scheme is
used. Intermediate values of cc establish a competition
between the two schemes, as shown in Fig. 15b. The bar
line represents 2 rmin in Fig. 15a and 2 rinv in Fig. 15c. In
Fig. 15b the upper white line represents 2 rmin and the
lower 2 rinv.

7.3 Two-phase topology optimization

In all the previous examples, the projection was imple-
mented after each iteration of the optimization process
(according to Section 5). However, in the present ex-
ample, associated to Fig. 8 and with results given in
Fig. 16, the two-phase strategy of Section 6 is explored
according to the flowchart of Fig. 7. Figure 16a shows
the layout at the end of the Phase I, which was car-
ried out without any projection scheme. In this figure,
thin structural members and small holes can be iden-
tified. The Phase II is carried out for two different
instances using the linear weight function iteratively
until final convergence. For the first instance, Fig. 16b
presents the final layout satisfying the minimum mem-
ber size condition (direct projection). For the second
instance, Fig. 16c presents the final layout satisfying
the minimum hole size condition (inverse projection).
Table 1 presents compliance results at the end of the
first phase, and at the beginning and at the end of
the second phase. Results of the correspondent single
phase procedures are also presented. This example
illustrates the flexibility of the two-phase solution.

8 Conclusions

The inverse projection scheme developed in this paper
is a simple and effective technique for void distribution
control in topology optimization. Several numerical ex-
amples demonstrate the features and feasibility of the
projection-based techniques presented.

The computational implementation is based on a
unified approach involving mesh-independent projec-
tion techniques. Within this approach, two topology
optimization implementations have been developed:
one in which the projection (either inverse or direct)
is employed at each iteration; and the other in which
a two-phase scheme is explored. In the first phase,
compliance minimization is carried out without any
projection until convergence. In the second phase, the
selected projection scheme (either direct or inverse) is
applied iteratively until a solution is achieved.

This work offers room for further extensions. For
instance, the inverse projection has been combined
with a direct projection to control two distinct man-
ufacturing features: minimum member size and min-
imum hole size. However, an improved and robust
strategy to combine both the direct and the inverse
schemes is still needed. Moreover, the present work can
be extended naturally to three-dimensional problems
involving three-dimensional projections. The work is
also promising to be used in conjunction with manu-
facturing constraints such as symmetry, extrusion and
machining.

Acknowledgements SRMA acknowledges the Brazilian agency
CAPES for the support provided during her Sabbatical at the
University of Illinois at Urbana-Champaign (UIUC) through
project number 3516/06-7. GHP acknowledges FAPESP for
awarding him a Visiting Scientist position during his Sabbatical
at the University of São Paulo (USP) through project num-
ber 2008/5070-0. ECNS thanks the Brazilian agencies FAPESP
(project number 06/57805-7) and CNPq, and the UIUC for
inviting him as a Visiting Professor during the Summer/2007.
We gratefully acknowledge the USA NSF through the project
CMS#0303492 (Inter-Americas Collaboration in Materials Re-
search and Education, PI Prof. W. Soboyejo, Princeton Uni-
versity). Finally, we acknowledge the anonymous reviewers for
insightful comments which contributed to improve this paper
substantially.

References

Bendsøe MP (1989) Optimal shape design as a material distribu-
tion problem. Struct Optim 1(4):193–202

Bendsøe MP, Sigmund O (2003) Topology optimization: theory,
methods and applications. Springer, New York

Borrvall T, Petersson J (2001) Topology optimization using regu-
larized intermediate density control. Comput Methods Appl
Mech Eng 190(37):4911–4928

Bourdin B (2001) Filters in topology optimization. Int J Numer
Methods Eng 50(9):2143–2158

Carbonari RC, Silva ECN, Paulino GH (2007) Topology
optimization design of functionally graded bimorph-type
piezoeletric actuators. Smart Mater Struc 16(6):2605–2620

Carbonari RC, Silva ECN, Paulino GH (2009) Multi-actuated
functionally graded piezoelectric micro-tools design: a multi-
physics topology optimization approach. Int J Numer Meth-
ods Eng. doi:10.1002/nme.2403

Chang K-H, Tang P-S (2001) Integration of design and manu-
facturing for structural shape optimization. Adv Eng Softw
32(7):555–567

Guest JK (2009) Imposing maximum length scale in topol-
ogy optimization. Struct Multidisc Optim. doi:10.1007/
s00158-008-0250-7

Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum
length scale in topology optimization using nodal design
variables and projection functions. Int J Numer Methods
Eng 61(2):238–254

Guo X, Gu YX (2004) A new density-stiffness interpolation
scheme for topology optimization of continuum structures.
Eng Comput 21(1):9–22

http://dx.doi.org/10.1002/nme.2403
http://dx.doi.org/10.1007/s00158-008-0250-7
http://dx.doi.org/10.1007/s00158-008-0250-7


Inverse projection scheme for void distribution control 371

Ishii K, Aomura S (2004) Topology optimization for the ex-
truded three dimensional structure with constant cross sec-
tion. JSME Int J, Series A, 47(2):198–206

Matsui K, Terada K (2004) Continuous approximation for ma-
terial distribution for topology optimization. Int J Numer
Methods Eng 59(14):1925–1944

Nitsopoulos I, Lauber B (2007) Overview on optimization
methods, FE-DESIGN GmbH, TOSCA Structure. ANSA
and META International Congress, June 14–15,2002.
http://www.fe-design.com

Rozvany GIN (2001a) Topology optimization in structural me-
chanics. Editorial. Struct Multidisc Optim 21(2):89

Rozvany GIN (2001b) Aims, scope, methods, history and uni-
fied terminology of computer-aided topology optimization in
structural mechanics. Struct Multidisc Optim 21(2):90–108

Sigmund O (1997) On the design of compliant mechanisms
using topology optimization. Mechan Struct Mach 25(4):
493–524

Sigmund O (2001) Design of multiphysics actuators using topol-
ogy optimization—part II: two-material structures. Comput
Methods Appl Mech Eng 190(49–50):6605–6627

Sigmund O (2007) Morphology-based black and white filters for
topology optimization. Struct Multidisc Optim 33(4–5):401–
424

Wang MY, Wang S (2005) Bilateral filtering for structural
topology optimization. Int J Numer Methods Eng 63(13):
1911–1938

Zhou M, Rozvany GIN (1991) The COC algorithm, part II:
topological, geometry and generalized shape optimization.
Comput Methods Appl Mech Eng 89(1):197–224

Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and min-
imum member size control in topology optimization. Struct
Multidisc Optim 21(2):152–158

Zuo K-T, Chen L-P, Zhang Y-Q, Yang J (2006) Manufacturing-
and machining-based topology optimization. Int J Adv
Manuf Technol 27(5–6):531–536

http://www.fe-design.com

	A simple and effective inverse projection scheme for void distribution control in topology optimization
	Abstract
	Introduction
	Direct projection
	Inverse projection scheme
	Inverse linear projection
	Inverse quadratic projection

	Discussion on a combined projection scheme
	Basic formulation and implementation
	Projection-based two-phase topology optimization
	Results
	Inverse and direct projections
	Combined scheme
	Two-phase topology optimization

	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


