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Single-Loop System
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Optimization Using Matrix-Based
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Theory and Applications
This paper proposes a single-loop system reliability-based design optimization (SRBDO)
approach using the recently developed matrix-based system reliability (MSR) method. A
single-loop method was employed to eliminate the inner-loop of SRBDO that evaluates
probabilistic constraints. The MSR method enables us to compute the system failure
probability and its parameter sensitivities efficiently and accurately through convenient
matrix calculations. The SRBDO/MSR approach proposed in this paper is applicable to
general systems including series, parallel, cut-set, and link-set system events. After a
brief overview on SRBDO algorithms and the MSR method, the SRBDO/MSR approach is
introduced and demonstrated by three numerical examples. The first example deals with
the optimal design of a combustion engine, in which the failure is described as a series
system event. In the second example, the cross-sectional areas of the members of a
statically indeterminate truss structure are determined for minimum total weight with a
constraint on the probability of collapse. In the third example, the redistribution of the
loads caused by member failures is considered for the truss system in the second example.
The results based on different optimization approaches are compared for further investi-
gation. Monte Carlo simulation is performed in each example to confirm the accuracy of
the system failure probability computed by the MSR method.
�DOI: 10.1115/1.4000483�

Keywords: computer-aided design, design optimization, reliability in design, risk-based
design, systems engineering, uncertainty analysis
Introduction
The main objective of design optimization is to obtain the val-

es of design variables that minimize or maximize the objective
unction�s� of interest while satisfying given design constraints. If
esign optimization is performed in a deterministic manner, that
s, uncertainties are not taken into account during the optimiza-
ion, the resultant optimal design may have unquantified risk of
iolating the given constraints. Various reliability-based design
ptimization �RBDO� methods have been developed to achieve
ptimal designs with acceptable failure probabilities �see Refs
1,2� for a state-of-the-art review of RBDO methods and recent
pplications to civil and aerospace structural systems�. During
BDO, the probability of violating given constraint�s�, namely,

he failure probability, is often computed by reliability analysis
ethods such as first-order reliability method �FORM�, second-

rder reliability method �SORM�, or response surface method.
Traditionally, RBDO has been performed by use of a nested or

double-loop” approach, in which each step of the iterations for
esign optimization involves another loop of iterations for reli-
bility analysis. For example, the reliability index approach �RIA�
3� and performance measure approach �PMA� �4,5� employ
ORM to perform the reliability analysis, which requires nonlin-
ar constrained optimization �for a review on FORM, see Ref.
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�6��. If the constraints are active, the two approaches yield the
same results. However, it is known that PMA is generally more
efficient and stable than RIA �4,5�. The double-loop computation
can be prohibitive if the function evaluation cost is expensive
because the inner-loop often involves iterative reliability analysis
to search for the most probable point �MPP� �7–9�. As an effort to
reduce the computational burden of RBDO, many approximate
RBDO approaches have been developed to decouple the double-
loop problem �9–21�. For example, a single-loop approach �21�
was proposed by using the Karush–Kuhn–Tucker �KKT� optimal-
ity condition to approximate the solution of the inner-loop optimi-
zation. As a result, the inner-loop is replaced by a deterministic
constraint, which transforms a double-loop RBDO problem into
an equivalent single-loop optimization problem.

When multiple failure modes need to be considered as the con-
straints of a design optimization, RBDO is often formulated such
that the optimal structure satisfies each failure mode with prede-
termined probabilities. This approach is termed as “component
reliability-based design optimization �CRBDO�” in this paper. In
some cases, however, the failure event is better described by a
system event, i.e., a logical �or Boolean� function of multiple fail-
ure modes. In this case, the probabilistic constraint should be
given for the system event, not on individual component failure
modes. This approach is called “system reliability-based design
optimization �SRBDO�.” The SRBDO requires system reliability
analysis, which is not trivial, especially for systems with statisti-
cally dependent component events, or for events that are not series
or parallel systems. Theoretical bounding formulas are applicable
to parallel and series systems only �see Ref. �22� for a review�,

and it is inconvenient to deal with probability bounds during
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BDO. Various sampling methods are available, but they may
ender SRBDO inefficient in practice. Song and Kang �23� re-
ently developed a matrix-based system reliability �MSR� method
hat computes the system reliability by convenient matrix-based
ramework. The MSR method is applicable to general system
vents including series, parallel, cut-set, and link-set systems, and
an account for statistical dependence between component events.
t also provides parameter sensitivities of the failure probability
or general system events, which facilitates efficient RBDO.

This paper aims to overcome aforementioned challenges in
RBDO by integrating a single-loop SRBDO approach with the
SR method �SRBDO/MSR�. After an overview of existing
BDO formulations and the MSR method, the proposed SRBDO/
SR procedure is explained. The MSR method is further devel-

ped for integration with a single-loop SRBDO approach. The
roposed SRBDO/MSR approach is demonstrated by three nu-
erical examples.

System Reliability-Based Design Optimization

2.1 Component Reliability-Based Design Optimization. In
eneral, RBDO problems are formulated as follows:

min
d,�X

f�d,�X�

s.t. P�gi�d,X� � 0� � Pi
t, i = 1, . . . ,n �1�

dL � d � dU, �X
L � �X � �X

U

here d�Rk is the vector of deterministic design variables; X
Rm is the vector of random variables; �X is the vector of the
eans of X; f� · � is the objective function; gi� · �, i=1, . . . ,n is the

th limit-state function indicating the occurrence of the failure by

i� · ��0; Pi
t is the constraint on the probability of the ith limit-

tate; dL and dU are the lower/upper bounds on d; �X
L and �X

U are
he lower/upper bounds on �X �for simplicity, these boundary
alues will be omitted in the following RBDO formulations in the
aper�; and n, k, and m are the numbers of constraints, determin-
stic design variables, and random variables, respectively. The
robabilistic constraint in Eq. �1� can be given alternatively by use
f the cumulative distribution function �CDF� of the limit-state
unction, that is,

P�gi�d,X� � 0� = Fgi
�0� � ��− �i

t� �2�

here Fgi
� · � denotes the CDF of gi� · �; �� · � is the CDF of the

tandard normal distribution; and �i
t is the target reliability index.

irst-order reliability method �6� is widely employed to compute
ailure probability in Eq. �2�. In all the numerical examples of this
aper, FORM is used for component-level reliability analysis.

This RBDO problem has two nested optimization loops: the
uter-loop for design optimization and the inner-loop for reliabil-
ty analysis. One of the double-loop approaches commonly used
or RBDO is the reliability index approach �RIA� �3�, which uses
he formulation

min
d,�X

f�d,�X�

�3�
s.t. �i = − �−1�Fgi

�0�� � �i
t, i = 1, . . . ,n

here �i is the distance from the origin of the space of standard
ormal random variables U=U�X� to the nearest point on the
imit-state surface Gi�d ,U�=0, in which Gi� · � is the limit-state
unction gi� · � determined in terms of U, that is, gi�d ,X�
Gi�d ,U�X��. This distance �i is termed as the “reliability in-
ex.” The nearest point on the limit-state surface, often termed as
design point” or “most probable failure point �MPP�” is identi-

ed by solving a nonlinear constrained optimization �6�

11005-2 / Vol. 132, JANUARY 2010
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Ui
� = arg min

U
�U�

�4�
s.t. Gi�d,U� = 0

where Ui
� is the MPP of the ith limit-state function, and “arg min”

denotes the argument of the minimum of a function.
The RIA formulation in Eq. �3� can be inefficient if the con-

straints are inactive. Moreover, the algorithm may not provide an
optimal design solution if the failure events Gi�d ,U��0 never
occur in the given feasible domain. To overcome these issues, Tu
et al. �4� proposed the performance measure approach �PMA�, in
which the probabilistic constraint is described in terms of “perfor-
mance function,” which is defined as the quantile of the limit-state
function gi� · � at the target failure probability ��−�i

t�. It is thus
formulated as

min
d,�X

f�d,�X�

�5�
s.t. gpi

= Fgi

−1���− �i
t�� � 0, i = 1, . . . ,n

where gpi
is the performance function. The constraint in Eq. �5�

implies that Fgi
�gpi

�=��−�i
t� is greater than Fgi

�0�=��−�i�, so it
is equivalent to the constraint in Eq. �3�, �i��i

t. The performance
function can be obtained by solving a constrained optimization
problem �4,5,24�

gpi
= min

U
Gi�d,U�

�6�
s.t. �U� = �i

t

To improve efficiency of these double-loop RBDOs, several
single-loop RBDO approaches have been developed �9–21�. For
example, a sequential optimization and reliability assessment
�SORA� method was recently proposed �11�. Its main idea is to
decouple the outer-loop optimization from reliability analysis. Us-
ing the information from previous design iteration, the boundaries
of the constraints are shifted to the feasible direction and the de-
sign point is updated accordingly. Additionally, the safety-factor
approach �13,14�, one of the single-loop approaches, was devel-
oped by using the approximate equivalent deterministic constraint
to convert the double-loop into single-loop problem. The effi-
ciency of double-loop approach can be enhanced by some effi-
ciency strategies such as the enriched performance measure ap-
proach �PMA+� �7�. It was reported that with such efficiency
strategies, double-loop approach can be more efficient than single-
loop approach �7,8�.

Recently, Liang et al. �21� proposed a single-loop RBDO by
approximating the result of the nonlinear constrained optimization
in Eq. �6� by solving the system equations that describe the KKT
condition

�UGi�d,U� + � · �U��U� − �i
t� = 0

�7�
�U� − �i

t = 0

in which � denotes a Lagrange multiplier. Next, the “negative
normalized gradient vector” �6� of the limit-state function at the
solution of Eq. �6� is approximately obtained by evaluating it at

the solution of Eq. �7�, U= Ũi, that is

�̂i
t � �−

�Xgi�d,X�U��
��Xgi�d,X�U���

JX,U�
U=Ũi

�8�

where JX,U is the Jacobian of the X=X�U� transformation. The
solution of Eq. �6� is then approximated by scaling this unit vector

by the target reliability index, i.e.,
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Ui
t � �i

t�̂i
t �9�

he performance function is then approximated by evaluating the
imit-state function at Ui

t. As a result, the RBDO is formulated as

min
d,�X

f�d,�X�

�10�
s.t. gpi

� gi�d,X�Ui
t�� � 0, i = 1, . . . ,n

n summary, the inner-loop of the PMA RBDO is replaced by the
pproximate noniterative procedures shown in Eqs. �7�–�9�. This
ingle-loop approach was reported to have the accuracy compa-
able with the double-loop approach and the efficiency almost
quivalent to deterministic optimization �21�. This study aims to
mprove this single-loop RBDO approach when system reliability
nalysis is needed for failure probability calculations.

2.2 System Reliability-Based Design Optimization. In the
ase when the failure event in the design constraint is better de-
cribed by a system event, i.e., a logical �Boolean� function of
ultiple component events, the RBDO requires a system reliabil-

ty analysis. This system reliability-based design optimization
SRBDO� can be formulated as

min
d,�X

f�d,�X�

�11�
s.t. Psys = P�Esys� = P��

k
�

i�Ck

gi�d,X� � 0� � Psys
t

here Psys is the system failure probability; Esys is the system
ailure event; Ck is the index set of the components in the kth cut
et; and Psys

t is the target system failure probability. Any type of
ystem event may be used during SRBDO but, for illustration
urposes, Eq. �11� shows a cut-set system formulation that can
epresent series, parallel, and cut-set systems. Royset et al. �12�
roposed a decouple procedure for RBDO of series systems. The
arget system reliability is achieved by adjusting the target com-
onent reliabilities heuristically.

An SRBDO approach was proposed for series system problems
n Ref. �25�. In this approach, the failure probability of a series
ystem is approximated as the sum of the component failure prob-
bilities, i.e.,

Psys = P	�
i=1

n

gi�d,X� � 0
 � min�1,�
i=1

n

Pi� �12�

hen, SRBDO problems are formulated as

min
d,�X,P1

t ,. . .,Pn
t

f�d,�X�

s.t. P�gi�d,X� � 0� � Pi
t, i = 1, . . . ,n �13�

Psys � min�1,�
i=1

n

Pi
t� � Psys

t

ote that the constraints on the component probabilities, Pi
ts are

sed as design variables. This approach can significantly overes-
imate the system risk because the approximation in Eq. �12� pro-
ides a fairly conservative upper bound �see Ref. �22� for a review
n system reliability bounding formulas�. Moreover, this approach
annot account for the effect of the statistical dependence between
omponent events, which is caused by common random variables
r statistical correlation between random variables.

A single-loop SRBDO approach was recently proposed for se-
ies systems by Liang et al. �26�. This approach also uses Pi

ts as

esign variables. The inner-loop is eliminated by approximating

ournal of Mechanical Design

aded 17 Dec 2009 to 130.126.242.3. Redistribution subject to ASME
the design points by KKT conditions as explained above. The
system failure probability is approximated as the upper bound by
the bi-component theoretical bounding formula �27�. As a result,
the single-loop SRBDO is formulated as

min
d,�X,P1

t ,. . .,Pn
t

f�d,�X�

s.t. gi�d,X�Ui
t�� � 0, i = 1, . . . ,n �14�

Psys � �
i=1

n

Pi
t − �

i=2

n

max
j�i

Pij
t � Psys

t

in which Ui
t is obtained by Eqs. �7�–�9�; and Pij

t is the joint failure
probability of the ith and jth constraints, computed by a numerical
integration based on Pi

t, Pj
t, and the inner-product of approximated

negative normalized gradient vectors �26�. Despite its improved
accuracy in estimating the system failure probability by using a
higher-order bounding formula, it still overestimates the system
failure probability and is not applicable to nonseries system events
for which general theoretical bounding formulas are not available.

In this paper, we propose to use the recently developed matrix-
based system reliability method to compute Psys in the single-loop
SRBDO shown in Eq. �14�. The method enables us to compute
Psys of general system events including series, parallel, cut-set,
and link-set systems efficiently and accurately during SRBDO.
The sensitivity of Psys with respect to design variables further
facilitates the use of gradient-based optimization algorithms.

3 System Reliability-Based Design Optimization Using
MSR Method

3.1 Matrix-Based System Reliability Method. Although
system reliability analysis is a well established research area, it is
still challenging to compute the probability of a general system
event and its parameter sensitivity, especially when component
events are statistically dependent. Song and Der Kiureghian �22�
introduced a method to compute the bounds on the probability of
a general system event by linear programming �LP�. This “LP
bounds” method subdivides the sample space of component
events into the mutually exclusive and collectively exhaustive
events �termed as basic MECE events�, and the probability of any
event is described by use of vectors representing the probabilities
of basic MECE events. Then, its upper and lower bounds are
obtained by solving the LP problems subjected to the constraints
derived from given information such as component probabilities
and statistical dependence. This matrix-based framework of sys-
tem reliability analysis enables obtaining the narrowest possible
bounds on the probability of any general system and the parameter
sensitivities of the bounds �28� as well.

Song and Kang �23� recently proposed the MSR method to
compute the probability of general system events by use of simple
matrix calculations instead of solving LP. Consider a system event
with n components each of which has two distinct states, e.g.,
“failure” and “safe.” Then, the sample space can be subdivided
into N=2n basic MECE events denoted by ej, j=1, . . . ,N. Then
any system event can be presented by an “event” vector c whose
jth element is 1 if ej belongs to the system event and 0 otherwise.
Let pi= P�ej�, j=1, . . . ,N, denote the probability of ej. Because ejs
are mutually exclusive to each other, the probability of system
event, Psys is simply the sum of the probability of ejs that belong
to the system event Esys. Therefore, the system probability is com-
puted by the inner-product of the two vectors

Psys = �
j:e �E

pj = cTp �15�

j sys
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here p is the “probability” vector that contains pjs, j=1, . . . ,N.
oth c and p are column vectors in this paper and can be con-

tructed efficiently using matrix-based procedures proposed in
ef. �23�.
When component events are statistically dependent, the con-

truction of p requires system reliability analysis for each ele-
ent. This challenge can be overcome by achieving conditional

ndependence between component events given outcomes of a few
andom variables representing the sources of “environment depen-
ence” or “common source effects.” For example, during a risk
nalysis of a transportation network based on bridge failure prob-
bilities, the uncertain magnitude of earthquake was considered as
random variable representing the common source effect �29�.

et S denote the vector of such random variables, named “com-
on source random variables” �CSRV�. By the total probability

heorem, the system failure probability can be then computed as

Psys =�
s

P�Esyss�fS�s�ds =�
s

cTp�s�fS�s�ds �16�

here P�Esys s� is the conditional probability of the system event
iven an outcome of CSRV, S=s; fS�s� is the joint probability
ensity function �PDF� of S; and p�s� is the conditional probabil-
ty vector given S=s, which can be constructed efficiently by the
roposed matrix-based procedure employing conditional prob-
bilities of component events given S=s, i.e., Pi�s�= P�Ei S=s�
nstead of the marginal probabilities Pi= P�Ei�.

The approach in Eq. �16� can be used even in the case when the
SRVs are not explicitly identified. One way to identify such

mplicit common source effect as CSRVs is to fit the correlation
oefficient matrix of random variables representing component
vents such as safety margin �or factor� with a special correlation
atrix model that allows such an identification. For example,
ong and Kang �23� generalized Dunnett–Sobel �DS� class corre-

ation matrix �30� to identify CSRVs. Consider correlated standard
ormal random variables Zi, i=1, . . . ,n. Their correlation matrix
an be fit with the following generalized DS model through an
ptimization:

Zi = �1 − �
k=1

m

rik
2�0.5

Yi + �
k=1

m

rikSk for i = 1, . . . ,n �17�

n which Yi, i=1, . . . ,n and Sk, k=1, . . . ,m are uncorrelated stan-
ard normal random variables; and riks are the coefficients of the
eneralized DS model that determine the correlation coefficient
etween Zi and Zj as �ij =�k=1

m �rik .rjk� for i� j. Note that Zi and Zj
re conditionally independent of each other given the outcome of
SRVs Sk, k=1, . . . ,m. The MSR method is demonstrated by an

llustrative example in the Appendix of this paper.

3.2 Parameter Sensitivity of System Failure Probability.
he MSR method enables us to compute the parameter sensitivity
f the probability of a general system event. First, when the com-
onent events are statistically independent, the sensitivity of the
ystem failure probability with respect to a parameter � is com-
uted as

�Psys

��
= cT�p

��
�18�

he separation of the system event description �c� and the prob-
bilities �p� in the MSR framework allows us to compute the
arameter sensitivity for general system events in a uniform man-
er. The sensitivity of p in Eq. �18� can be computed by the

ollowing matrix-based procedure �23�:

11005-4 / Vol. 132, JANUARY 2010
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�p

��
= �p�1�p�2� . . . p�n��

�P

��
= P̂

�P

��
�19�

where P= �P1P2¯Pn�T in which Pi is the probability of the ith
component event; and p�j�, j=1, . . . ,n is the probability vector
constructed by the matrix-based procedure developed for p except
that the probabilities of the jth component event and its comple-
mentary event are replaced by 1 and −1, respectively, during the
construction. In summary, the MSR framework allows us to com-
pute the system-level parameter sensitivities by use of component
probabilities and their parameter sensitivities.

When the components are statistically dependent, the parameter
sensitivity is computed as

�Psys

��
=�

s

cT�p�s�
��

fS�s�ds �20�

in which the sensitivity in the integral is constructed by the pro-
cedure in Eq. �19� except that the conditional probability of the
component events given S=s, i.e.,

Pi�s� = P��i − Zi � 0S = s�, i = 1, . . . ,n �21�

is used instead of Pi. Substituting Eq. �17� into Eq. �21�, the
conditional probability is computed as

Pi�s� = ��−

�i − �
k=1

m

riksk

�1 − �
k=1

m

rik
2 �0.5� �22�

3.3 SRBDO/MSR. The proposed SRBDO/MSR �Fig. 1�
adopts the same single-loop SRBDO approach in Eq. �14� except
that Psys is computed by the MSR method. It is thus formulated as

min
d,�X,P1

t ,. . .,Pn
t

f�d,�X�

s.t. gi�d,X�Ut�� � 0, i = 1, . . . ,n �23�

Equivalent SRBDO/PMA

Find MPPs of components by PMA

Converged?

Result

Find Psys and its sensitivities by MSR

Update d, Pit by an optimization algorithm

Initial Design

Yes

No

Fig. 1 Flowchart of the proposed SRBDO/MSR algorithm
i
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Psys = ��s

cTp�s�fS�s�ds � Psys
t dependent

cTp � Psys
t independent

�
f the sensitivities of Psys with respect to d and Pi

ts, i=1, . . . ,n are
vailable, one can use a gradient-based optimization algorithm for
he SRBDO. As shown in Sec. 3.2, the MSR method provides the
ensitivity of Psys with respect to general parameters if the param-
ter sensitivities of component probabilities are available. For ex-
mple, one can obtain such sensitivities using FORM �31�. Herein
t is explained how the sensitivity with respect to Pis can be com-
uted by the MSR method. First, the sensitivity of Pi�s� with
espect to the reliability index �i is derived as

�Pi�s�
��i

= −

		− ��i − �
k=1

m

riksk�/�1 − �
k=1

m

rik
2 �0.5


�1 − �
k=1

m

rik
2 �0.5 �24�

n which 	� · � denotes the PDF of the standard normal distribu-
ion. Then, the sensitivity with respect to the ith component prob-
bility is derived as

�Pi�s�
�Pi

=
�Pi�s�

��i
·

��i

�Pi
= −

�Pi�s�
��i

·
1

	�− �i�
�25�

his sensitivity is used for computing the sensitivity vector in Eq.
18� or Eq. �20�.

Numerical Examples
In this section, three numerical examples are presented to dem-

nstrate the capability and accuracy of the proposed SRBDO/
SR approach. In the first example, the optimal design of a com-

ustion engine is obtained, in which the failure is described as a
eries system event. In the second example, the cross-sectional
reas of the members of a statically indeterminate truss structure
re determined for minimum total weight. A constraint is given on
he probability of the system failure described by a cut-set system
vent. In the third example, the redistribution of the member
orces caused by member failures is considered for the truss sys-
em in the second example. The results based on different RBDO
pproaches are compared for further investigations. Monte Carlo
imulations are also performed to confirm the accuracy of the
ystem failure probability computed by the MSR method.

4.1 Example 1: Design of an Internal Combustion Engine.
his example adopted from Liang et al. �26� deals with the opti-
al design of the flat head of an internal combustion engine �32�.
he objective is to find the mean values of the random design
ariables that maximize the “specific power” �or minimize the
egative specific power�. A constraint is given on the probability
hat the design will violate at least one of the requirements—a
eries system event. This SRBDO problem is formulated using the
egative specific power as follows:

min
�X

f��X� = −

�

120
�3688 · �t�
cr

,
b,
�� · ��
�,
dI
�

− FMEP�
cr
,
b,
���

here

FMEP = 4.826 · �
cr
− 9.2� + 7.97 + 0.253 · �8V/��Nc��
��
b�−2

+ �9.7 � 10−6� · ��8V/��Nc��
��
b�−2�2

�t = 0.8595 · �1 − �
cr
�−0.33� − S · �1.5/
��0.5

S = 0.83 · �8 + 4
c + 1.5 · �
c − 1�
b
3�Nc/V�/��2 + 
c �
b�
r r r
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� = �b · �1 + 5.96 � 10−3
�
2 �/�1 + ��9.428 � 10−5�4V/��NcCs�

� �
�/
dI

2 ��2�

�b = �1.067 − 0.038e�
�−5.25� 
� � 5.25

0.637 + 0.13
� − 0.014
�
2 + 0.00066
�

3 
� � 5.25
�

s.t. Psys = P	�
i=1

9

gi�X� � 0
 � Psys
t

g1 = 400 − 1.2Ncb �min. bore wall thickness�

g2 = b − �8V/�200�Nc��0.5 �max. engine height� �26�

g3 = 0.82b − dI − dE �valve geometry and structure�

g4 = dE − 0.83dI �min. valve diameter ratio�

g5 = 0.89dI − dE �max. valve diameter ratio�

g6 = 0.6Cs − �9.428 � 10−5��4V/�Nc���/dI
2� �max. mech/index�

g7 = − 0.045b − cr + 13.2 �knock-limit compression ratio�

g8 = 6.5 − � �max. torque converter rpm�

g9 = 230.5Q�0.8595 · �1 − cr
−0.33� − 0.83 · �8 + 4cr + 1.5

� �cr − 1�b3�Nc/V�/��2 + cr�b�� − 3.6 � 106

�max. fuel economy�

where V=1.859�106 mm3, Q=43,958 kJ /kg, Cs=0.44, Nc=4,
and 
�·� denotes the mean of the corresponding random variable in
the subscript. The following five random variables are considered:
the cylinder bore b, compression ratio cr, exhaust valve diameter
dE, intake valve diameter dI, and the revolution per minute at peak
power �divided by 1000� denoted by �. These are assumed to
follow normal distributions. Table 1 shows the standard deviations
of the random variables and the lower and upper bound values for
their means, i.e., �X

L and �X
U.

Liang et al. �26� first performed a PMA-based CRBDO �shown
in Eq. �10�� for the given problem. For each of the nine require-
ments, the constraint on the component failure probability Pi

t

=0.00135 �equivalent to target reliability index �i=3.0� was as-
signed. The second column of Table 2 shows the optimal mean
values and the corresponding maximum specific power 50.9713.
The system failure probability was estimated as 0.006539 by
Monte Carlo simulation �MCS� �26�. For the purpose of compari-
son, this MCS estimate was used as the constraint on Psys during
the single-loop SRBDO in Ref. �26� and SRBDO/MSR in this
study. During SRBDO in Ref. �26�, the “active set” strategy was
introduced to deal with a convergence issue caused by small fail-
ure probabilities. They assigned “1” to active components whose
failure probabilities Pi

t are greater than 10−7, and “0” to the inac-
tive components with smaller probabilities. The “inactive” com-
ponents �those with “N/A” in Table 2� were excluded from the
system failure probability calculations. The SRBDO/MSR in this

Table 1 Standard deviations of the random variables and
bounds given on their means

Random variables Std dev Lower bounds Upper bounds

Cylinder bore b �mm� 0.40 70 90
Intake valve diameter dI �mm� 0.15 25 50
Exhaust valve diameter dE �mm� 0.15 25 50
Compression ratio cr 0.05 6 12
�rpm at peal power�/1000 � 0.25 5 12
JANUARY 2010, Vol. 132 / 011005-5
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tudy used a different optimizer �33� and did not experience the
onvergence issue, so the active set strategy was not used, but the
ower bounds 10−7 were assigned on component probabilities Pi

t,
=1 , . . . ,9 to facilitate the convergence. The component events
hose probabilities are lower than the lower bound were not con-

idered during the MSR analysis.
For the given problem, the optimal mean values and the maxi-
um specific power by CRBDO are similar to those by SRBDOs.
owever, it should be noted that for a given SRBDO problem, the
RBDO approach may require repeated optimizations to find the

evel of constraints on the component failure probabilities that
ead to the desired system-level reliability. It is also noted that the

aximum specific power by CRBDO is smaller than those by
RBDOs even if the system failure probability is the same. This is
ecause CRBDO approach �assigning fixed constraints on indi-
idual components� is generally more constrained than SRBDOs
assigning a constraint on system event, not on the individual
omponents� at the same level of system reliability.

The comparison in Table 2 confirms that the two SRBDO ap-
roaches provide fairly close results for the series system prob-
em. The small difference is caused by the upper bound approxi-

ation in SRBDO in Ref. �26�. According to the component
ailure probabilities of the optimal designs, the contribution of
omponents 2, 5, 8, and 9 to system reliability is insignificant. The
mportance ranking of the other significant components is as fol-
ows: 6→3→1→4→7. This ranking of component contribu-
ions is an important by-product of the SRBDO approaches. The
fth column of Table 2 shows the results of MCS �107 times;
oefficient of variation �cov�=0.004� performed using the optimal
esign variables from SRBDO/MSR. The results confirm that the
ptimal design by SRBDO/MSR leads to the component/system
ailure probabilities that are compatible with the component fail-
re probabilities found during optimization and with the assigned
onstraint on the system failure probability.

4.2 Example 2: SRBDO of an Indeterminate Truss
tructure. The uniform applicability of SRBDO/MSR to general
ystem problems is demonstrated by an SRBDO example of a
tatically indeterminate truss system by MacDonald and Mahade-
an �34�. Figure 2 shows the geometry and the applied load of
he truss system. The yielding failures of the six members are

Table 2 Results of CRBDO †26‡, single-loop
engine

CRBDO by
Liang et al. �26�

SR
Lian


b 82.1333 8

dI

35.8430 3

dE

30.3345 3

cr

9.3446

� 5.3141
P1

t 0.00135a 0
P2

t 0.00135a

P3
t 0.00135a 0

P4
t 0.00135a 0

P5
t 0.00135a

P6
t 0.00135a 0

P7
t 0.00135a 0

P8
t 0.00135a

P9
t 0.00135a

Psys
t N/A 0

Psys 0.006539 �MCS�
Max. power: −f��X� 50.9713 5

aPredetermined constraints.
onsidered as component failure events. When the buckling fail-
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ure modes, the dynamic effect of member damages, and the influ-
ence of the load redistribution during progressive failures �35�
are neglected, the system fails when at least two members
fail. The system failure event is described by the union of 15
minimal cut-sets: �Ck�= ��1,2� , �1,3� , �1,4� , �1,5� , �1,6� , �2,3� ,
�2,4� , �2,5� , �2,6� , �3,4� , �3,5� , �3,6� , �4,5� , �4,6� , �5,6��, each
of which represents the joint failure of the corresponding mem-
bers �see Fig. 2 for the member numbering choice�.

In order to minimize the total weight of the structure, the ob-
jective function is defined such that it is proportional to the total
weight of the members. The design variables are the cross-
sectional areas of the members, Ai, i=1, . . . ,6, which are consid-
ered deterministic in this problem. The applied load FA is assumed
to follow a normal distribution with the mean of 4450 kN and a
standard deviation of 445 kN, while the yield strengths of the
members �in stress�, Fi, i=1, . . . ,6, are assumed to be a normal
distribution with the mean 745 MPa and the standard deviation 62
MPa. All random variables, F1 , . . . ,F6 and FA, are assumed to be
statistically independent of each other. The member forces are
derived in terms of the applied load assuming that the two diag-

BDO †26‡, and SRBDO/MSR for combustion

SRBDO

O by
al. �26� SRBDO/MSR MCS for design by

SRBDO/MSR

419 82.1434 82.1434
456 35.8394 35.8394
641 30.3639 30.3639
74 9.3194 9.3194
98 5.3621 5.3621
448 0.001467 0.0014686
A 10−7 0
665 0.001558 0.0015627

0811 0.000778 0.0007713
A 10−7 0
370 0.002502 0.002503
232 0.000266 0.0002573
A 0.000003 0.0000023
A 10−7 0
539a 0.006539a

0.006546
023 51.1014 51.1014

FA

L

L

4

1 2

6

53
SR

BD
g et

2.1
5.8
0.3

9.31
5.35
.001

N/
.001
.00
N/

.002

.000
N/
N/

.006

1.1
Fig. 2 A six-member indeterminate truss example

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



o
P
l

I
S
s
p
u
e
n
m
r

t
w
i
w
c
c
m
p
s
m
t
t
o
b
t
d
i
r
d
a
m
p
p
S
0
c

o
i
i

J

Downlo
nal bars carry equal forces. The target system failure probability

sys
t is given as 0.001. As a result, the SRBDO problem is formu-

ated as

min
d=�A1,. . .,A6�

f�d� = �2�A1 + A2� + A3 + A4 + A5 + A6

s.t. Psys = P	�
k=1

15

�
i�Ck

gi�d,X� � 0
 � Psys
t = 0.001

gi�d,X� = AiFi − 0.707FA, i = 1,2 �27�

AiFi − 0.500FA i = 3, . . . ,6

A1,A2,A3,A4,A5,A6 � 0

n the study by MacDonald and Mahadevan �34�, a single-loop
RBDO approach shown in Eq. �14� was used except that the
ystem failure probability was computed as follows. First, the
robability of each cut-set was calculated as a parallel system
sing the product of conditional marginals method �36�. Consid-
ring the entire system event as a series system whose compo-
ents are the cut-sets, the system failure probability was approxi-
ated by the first-order bounding formula in Eq. �12� with Pis

eplaced by the probabilities of the cut-sets.
The proposed SRBDO/MSR approach in Eq. �23� is applied to

his example. The system failure probability and its sensitivities
ith respect to Pi

t are computed by the MSR method as explained
n Sec. 3. The system failure probability is accurately estimated
ithout using a bounding formula. The computed sensitivities fa-

ilitate the use of a gradient-based optimization algorithm. Table 3
ompares the results by the two approaches. Except a slightly
ore conservative design in member 6, the SRBDO/MSR ap-

roach finds less conservative designs in all members while the
ame requirement on the system-level reliability is achieved. The
inimum objective function value �i.e., minimum total weight� of

he proposed approach is 103.36�103, which is less than that by
he approximation method �34�, 105.24�103. This is due to the
verestimation of the system failure probability by the first-order
ounding method, which results in a more conservative design
han required. This is also evidenced by the lower reliability in-
exes of the component events by the proposed approach shown
n Table 3. It is also noteworthy that due to the accurate system
eliability estimates during the SRBDO/MSR, the symmetric con-
itions between diagonal members �1 and 2� and between nondi-
gonal members �3–6� give rise to symmetric results in the opti-
al design �i.e., cross-sectional areas� and the component failure

robabilities �i.e., reliability indexes� as well. The system failure
robability Psys of the optimal cross-sectional areas found by
RBDO/MSR is evaluated as 0.001 by the MSR analysis and as
.00107 by MCS �106 times, cov=0.03�. Both estimates are fairly
lose to the given constraint 0.001.

According to the magnitude of component failure probabilities
f the optimal design, the importance of the components is ranked
n the order of �1,2�→ �3,4 ,5 ,6�. In order to quantify the relative

Table 3 Results of SRBDO †34‡ and SRB

Members

Area Ai ��103 mm2�

SRBDO by MacDonald and
Mahadevan �34� SRBDO

1 18.43 17.8
2 18.27 17.8
3 13.51 13.2
4 13.44 13.2
5 13.33 13.2
6 13.09 13.2
mportance of components based on their actual contributions to

ournal of Mechanical Design

aded 17 Dec 2009 to 130.126.242.3. Redistribution subject to ASME
the system failure probability �not based on the magnitude of in-
dividual component events�, the conditional probability impor-
tance measure �CIM� �23,37� of the ith component event

CIMi = P�EiEsys� =
P�EiEsys�
P�Esys�

�28�

can be used. This importance measure can be computed by the
MSR method without significant additional computational cost.
The system failure probability in the denominator is already avail-
able. Because the probability vector can be used once again, the
only additional task required is to find the event vector for the new
system event Esys� =EiEsys. Figure 3 shows the CIMs of the truss
members. The importance ranking is the same as that based on the
individual component failure probabilities for this particular prob-
lem, but it should be noted that these rankings can be different in
some cases. For example, if a constraint having high likelihood of
violation does not contribute much to violating the system-level
constraint, its CIM can be negligible despite its high failure
probability.

Next, we assume all the random variables in the above example
to follow the lognormal distributions with the same means and
standard deviations. This is to investigate the effect of the types of
the probabilistic distributions on the optimal design and to dem-
onstrate the general applicability of the proposed method. The
minimum objective function value is obtained as 105.46�103,
which is slightly larger than that of the normal distribution case.
Table 4 shows that the reliability indexes of the component events
and the optimal cross-sectional areas of the lognormal distribution
case are slightly larger than that of the normal distribution case.
The system failure probability Psys of the optimal design the
SRBDO/MSR analysis is evaluated as 0.000998 by MCS �106

times, cov=0.032�, which is close to the given constraint Psys
t

=0.001.

4.3 Example 3: SRBDO of an Indeterminate Truss Struc-
ture Considering Progressive Failure. In this example, the
SRBDO problem in Example 2 is re-investigated with consider-
ation of load redistribution in the truss system caused by member
failures. This load redistribution can cause a progressive failure of

/MSR for the indeterminate truss system

Reliability index �i

R SRBDO by MacDonald and
Mahadevan �34� SRBDO/MSR

2.89 2.67
2.83 2.67
3.16 2.99
3.12 2.99
3.06 2.99
2.92 2.99

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

C
IM

Components

Fig. 3 Conditional probability importance measures of the
DO

/MS

9
9
0
0
0
0

truss members
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he system. All the parameters are the same as Example 2. The
omplexity of estimating the likelihood of this system event arises
rom the fact that the failures of the remaining members should be
escribed as new component events due to the load redistribution.
igure 4 shows the numbering choice of the component failure
vents defined for the members in the original structure and the
tructures with one failed member.

The structure survives if �1� no member fails in the original
onfiguration or �2� one member fails but no further member fail-
res take place. Using the component numbering choice shown in

ig. 4, the probability of system survival Ēsys is described as

P�Ēsys� = P�Ē1Ē2Ē3Ē4Ē5Ē6

� �E1Ē2Ē3Ē4Ē5Ē6��Ē7Ē8Ē9Ē10Ē11�

� �Ē1E2Ē3Ē4Ē5Ē6��Ē12Ē13Ē14Ē15Ē16�

� �Ē1Ē2E3Ē4Ē5Ē6��Ē17Ē18Ē19Ē20Ē21�

� �Ē1Ē2Ē3E4Ē5Ē6��Ē22Ē23Ē24Ē25Ē26�

� �Ē1Ē2Ē3Ē4E5Ē6��Ē27Ē28Ē29Ē30Ē31�

� �Ē1Ē2Ē3Ē4Ē5E6��Ē32Ē33Ē34Ē35Ē36�� �29�

n which Ei and Ēi, respectively, denote the failure and survival
vent of the ith component. This is a link-set system event con-
isting of 36 components. The size of c and p is 236�6.87

1010. However, the size of the vectors used in MSR analysis can
e further reduced as follows. Due to the mutual exclusiveness of
he seven link-sets, the probability can be computed as the sum of
he probabilities of the individual link-sets, which reduces the

aximum number of components appearing in an MSR analysis

able 4 Results of SRBDO/MSR for normal and lognormal dis-
ribution cases

Members

Area Ai ��103 mm2� Reliability index �i

Normal Lognormal Normal Lognormal

1 17.89 18.18 2.67 2.79
2 17.89 18.18 2.67 2.79
3 13.20 13.51 2.99 3.17
4 13.20 13.51 2.99 3.17
5 13.20 13.51 2.99 3.17
6 13.20 13.51 2.99 3.17

6

4

1 2

53

30

27 28

29

35

32 33

34

11

9

7

8

16

14

12

10 15 20

26
22 23

25

13

17 18

19

21

31

3624

ig. 4 Component failure events defined for the original sys-

em and systems with failed members
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from 36 to 11. It can be further reduced by considering the fact
that some link-sets include component events defined for the same

member. For example, the component events Ē1 and Ē12 are de-
fined for the same member, as shown in Fig. 4. Since their limit-

state functions indicate Ē12� Ē1 for positive values of F1 and FA,

Ē1Ē12 is simplified to Ē12. As a result, the system reliability can be
computed as

P�Ēsys� = P�Ē1Ē2Ē3Ē4Ē5Ē6� + P�E1Ē3Ē4Ē6Ē7Ē10�

+ P�E2Ē5Ē12Ē13Ē14Ē16� + P�Ē1E3Ē4Ē6Ē18Ē20�

+ P�Ē1Ē3E4Ē6Ē23Ē25� + P�Ē2E5Ē27Ē29Ē30Ē31�

+ P�Ē1Ē3Ē4E6Ē33Ē36� �30�

This system decomposition reduces the maximum number of
components appearing an MSR analysis to 6. The size of the
vectors is only 26=64.

Noting some component events having the same limit-state
functions, Eq. �30� is rewritten using 12 distinct component events
as follows:

P�Ēsys� = P�Ē1Ē2Ē3Ē4Ē5Ē6� + P�E1Ē3Ē4Ē6Ē7Ē10�

+ P�E2Ē5Ē12Ē13Ē14Ē16� + P�Ē1E3Ē4Ē6Ē7Ē10�

+ P�Ē1Ē3E4Ē6Ē7Ē10� + P�Ē2E5Ē12Ē13Ē14Ē16�

+ P�Ē1Ē3Ē4E6Ē7Ē10� �31�

Thus, the SRBDO problem is formulated as

min
d=�A1,. . .,A6�

f�d� = �2�A1 + A2� + A3 + A4 + A5 + A6

s.t. Psys = 1 − P�Ēsys� = 1 − �
k=1

7

P� �
i�Lk

gi�d,X� � 0� � 0.001

gi�d,X� = AiFi − 0.707FA, i = 1,2

AiFi − 0.500FA, i = 3, . . . ,6

A2F2 − 1.414FA, i = 7
�32�

A5F5 − 1.000FA, i = 10

A1F1 − 1.414FA, i = 12

A3F3 − 1.000FA, i = 13

A4F4 − 1.000FA, i = 14

A6F6 − 1.000FA, i = 16

A1,A2,A3,A4,A5,A6 � 0

where Lk, k=1, . . . ,7 is the component index set from Eq. �31�,
that is, �Lk�= ��1,2 ,3 ,4 ,5 ,6� , �1,3 ,4 ,6 ,7 ,10� , �2,5 ,12,13,14,
16� , �1,3 ,4 ,6 ,7 ,10� , �1,3 ,4 ,6 ,7 ,10� , �2,5 ,12,13,14,16� , �1,3 ,
4 ,6 ,7 ,10��.

Table 5 compares the results of the SRBDO in Eq. �32� �de-
noted by “Ex. 3” in the following tables� with those given in
Example 2 �Ex. 2�. It is seen that the optimal cross-sectional areas
increase significantly as the effect of load redistribution is consid-
ered. The objective function value also increases from 103.36
�103 to 114.13�103. This implies that neglecting the load redis-
tribution during an SRBDO may result in a design that does not
satisfy the system-level safety criteria. As expected, when the load
redistribution is considered, the system failure probability of the

optimal design from Example 2 is estimated as 0.01208 by MSR
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nalysis and 0.01205 by MCS �106 times; cov=0.009�, which
learly exceed the given constraint 0.001. By contrast, the system
ailure probability of the optimal design in this example is esti-
ated as 0.001 by MSR and 0.000986 by MCS �106 times, cov
0.0318�, which are close to the given constraint.
The impact of statistical correlation between random yielding

trengths Fis on the optimal design is investigated by varying their
orrelation coefficients �i,j. For simplicity, the correlation coeffi-
ients are assumed to be uniform, i.e., �i,j =�. The SRBDO prob-
ems in Eqs. �27� and �32� are solved again with correlation coef-
cient � varying from 0.00 to 0.75. The optimal cross-sectional
reas and the objective function values are shown in Table 6. It is
een that considering the effect of load redistribution results in
ore conservative designs for all levels of correlation considered.

t is also observed that the higher correlation among member yield
trengths increases the cross-sectional areas when redistribution is
ot considered but decreases if redistribution considered. Figure 5

Table 5 Results of SRBDO/MSR of the tru
redistribution

Member �Fig. 2� Component events �Eq. �31�

1 1, 12
2 2, 7
3 3, 13
4 4, 14
5 5, 10
6 6, 16

aTwo reliability indexes correspond to the component events

Table 6 Optimal design and correl

�=0.00a

Ex. 2 Ex. 3 Ex.

Members �Fig. 2�

1 17.89 19.94 18.
2 17.89 19.94 18.
3 13.20 14.44 13.
4 13.20 14.44 13.
5 13.20 14.44 13.
6 13.20 14.44 13.

Objective function 103.36 114.13 105.

Results in Table 5.
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ig. 5 Objective functions versus correlation between mem-

er yield strengths

ournal of Mechanical Design

aded 17 Dec 2009 to 130.126.242.3. Redistribution subject to ASME
presents this trend more clearly by showing the objective function
values of the SRBDOs.

5 Summary and Conclusions
In this study, an efficient and accurate system reliability-based

design optimization approach is developed by integrating a single-
loop RBDO algorithm with the recently developed matrix-based
system reliability method. The use of the MSR method improves
the efficiency and accuracy in computing the system probability
and its sensitivities in the existing single-loop SRBDO approach
�26�. The MSR method enables us to compute the probabilities
of general system events including series, parallel, cut-set, and
link-set systems in a uniform manner without using approximate
bounds or random samplings. It can account for statistical depen-
dence between component events and can compute the sensitivi-
ties of the system failure probability with respect to various pa-
rameters as well, which facilitates the use of gradient-based
optimization algorithms. Three numerical examples demonstrate
the uniform applicability of the proposed SRBDO/MSR approach
to series, cut-set, and link-set systems. It is seen that the accuracy
of system reliability analysis by the MSR method enables us to
obtain less conservative optimal design than SRBDO algorithms
using upper bounds. The effect of load redistribution by member
failures on the optimal designs is investigated as well. In each
example, the accuracy of the MSR method is verified by Monte
Carlo simulations. It is noteworthy that the MSR in this study
employs FORM for component reliability analysis and MSR ac-
curately estimates system probability based on the provided com-
ponent probabilities. If the component reliability analysis FORM
provides inaccurate component probabilities due to the nonlinear-
ity of the limit-state functions, this inaccuracy will affect the ac-
curacy of any SRBDO algorithms including SRBDO/MSR. Po-
tential topics for future studies include improving the accuracy of
SRBDOs using the second-order reliability method, handling a
mixed set of continuous and discrete random variables in SRB-

system with/without consideration of load

Area Ai
��103 mm2� Reliability index �i

Ex. 2 Ex. 3 Ex. 2 Ex. 3a

17.89 19.94 2.668 3.48, �2.07
17.89 19.94 2.668 3.48, �1.78
13.20 14.44 2.987 3.65, �1.95
13.20 14.44 2.987 3.65, �1.95
13.20 14.44 2.987 3.65, �1.62
13.20 14.44 2.987 3.65, �1.95

e second column �in the same order�.

n between member yield strengths

Area Ai ��103 mm2�

=0.25 �=0.50 �=0.75
Ex. 3 Ex. 2 Ex. 3 Ex. 2 Ex. 3

19.90 18.14 19.83 18.31 19.68
19.90 18.14 19.83 18.31 19.68
14.40 13.91 14.33 14.28 14.16
14.40 13.91 14.33 14.28 14.16
14.40 13.91 14.33 14.28 14.16
14.40 13.91 14.33 14.28 14.16

113.93 106.93 113.42 108.90 112.34
ss

�

in th
atio

�
2

03
03
53
53
53
53

12
DOs, and time variant SRBDOs �38,39�.
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omenclature
c � event vector
d � deterministic design variables

f� · � � objective function
gi�d ,X� � limit-state �or performance� function of the ith

failure mode
p � probability vector

Pi � actual failure probability of the ith mode
Pi

t � target failure probability of the ith mode
Psys � actual system failure probability
Psys

t � target system failure probability
S � common source random variables

Ui
� � most probable failure point of the ith mode

X � random variables
�̂i � negative normalized gradient vector
�i � reliability index
�i

t � target reliability index
�X � vector of means of X

ppendix: Illustrative Example of MSR Method
Consider three system events, each of which consists of five

omponent events, Ei, i=1, . . . ,5

Esys = E1 � E2 � E3 � E4 � E5 �series�

Esys = E1 � E2 � E3 � E4 � E5 �parallel� �A1�

Esys = �E1 � E2 � E3� � �E2 � E3 � E4� � �E3 � E4 � E5�
�link-set�

In this illustrative example, the probabilities of the system
vents, P�Esys�, are computed by the MSR method based on the
esults of the component reliability analyses by first-order reliabil-
ty method. After FORM analysis, each component event is ap-
roximately described by

Ei: Zi � − �i, i = 1, . . . ,5 �A2�

here Zi is correlated standard normal random variable; and �i is
he FORM reliability index of Ei, i=1, . . . ,5. The correlation co-
fficient between Zi and Zj, i� j are computed by the inner-
roduct of the negative normalized gradient vectors at the corre-
ponding MPPs �6�. In this example, suppose �i=3, i=1, . . . ,5
nd the inner products give the correlation coefficient matrix

R = �
1 0.89 0.88 0.87 0.86

0.89 1 0.90 0.90 0.90

0.88 0.99 1 0.90 0.90

0.87 0.90 0.90 1 0.90

0.86 0.90 0.90 0.90 1
� �A3�

The MSR method computes the probabilities of the system
vents in Eq. �A1� by the matrix formulation in Eq. �16�. The
umerical integration requires three tasks: �a� describing R ap-
roximately by use of a generalized DS model and identifying
ommon source random variables S, �b� constructing the event
ector c, and �c� computing the conditional probability vector

�s�.

11005-10 / Vol. 132, JANUARY 2010

aded 17 Dec 2009 to 130.126.242.3. Redistribution subject to ASME
First, the correlation coefficients in R are fitted by those con-
structed by a generalized DS model, i.e., �ij =�k=1

m �rik .rjk� with the
minimum error. When one CSRV is used, the coefficients in the
generalized DS model in Eq. �17� are

r11 = 0.9223, r21 = 0.9539, r31 = 0.9541, r41 = 0.9432,

r51 = 0.9435 �A4�
When two CSRVs are used for improved accuracy, the coeffi-
cients are obtained as

r11 = 0.9262, r21 = 0.6989, r31 = 0.6801, r41 = 0.6632,

r51 = 0.6427
�A5�

r12 = 0.3769, r22 = 0.6436, r32 = 0.6614, r42 = 0.6782,

r52 = 0.6998

The joint PDF of CSRVs in Eq. �16�, i.e., fS�s� is 	�s1� and
	�s1�	�s2� for one- and two-CSRV cases, respectively, in which
	� · � denotes the PDF of the standard normal distribution.

Second, the event vector c is constructed for each of the system
events. The event vectors for the five component events are first
constructed by the sequential matrix-based procedures proposed
in Ref. �35�

C�1� = 	1

0

, C�i� = 	C�i−1� 1

C�i−1� 0

 for i = 1,2, . . . ,5

�A6�

where 0 and 1 denote the column vectors of 2i−1 zeros and ones,
respectively. When the iterative procedure is completed, the ith
column of C�5� is the event vector of the ith component event Ei,
i=1, . . . ,5. As a result, the event vectors of the five components
are obtained as

cE1 = �10101010101010101010101010101010�T

cE2 = �11001100110011001100110011001100�T

cE3 = �11110000111100001111000011110000�T �A7�

cE4 = �11111111000000001111111100000000�T

cE5 = �11111111111111110000000000000000�T

Then, the event vector of the system event Esys is obtained by
matrix-based procedures employing the event vectors of the com-
ponents. For example, the event vector for the complementary
event of E, the intersection and the union of the component events
are obtained as follows:

cĒ = 1 − cE

cE1¯En = cE1 . � cE2 . � ¯ . � cEn �A8�

cE1�¯�En = 1 − �1 − cE1� . � �1 − cE2� . � ¯ . � �1 − cEn�

where .� denotes the element-wise multiplication of two vectors.
Finally, the conditional probability vector p�s� is constructed by

the following matrix-based procedure:

p�1��s� = �P1�s�1 − P1�s��T

�A9�

p�i��s� = 	p�i−1��s� · Pi�s�

p�i−1��s� · �1 − Pi�s�� 
 for i = 2, . . . ,5

where Pi�s� is the conditional probability of the ith component
given S=s, which is computed by Eq. �22� employing the reliabil-
ity indexes �i=3 and the generalized DS model coefficients in Eq.

�A4� or Eq. �A5�. When the sequential matrix-based procedure in
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q. �A9� is completed, p�5��s� is used as p�s� in Eq. �16�.
Table 7 shows the results of the system reliability analysis by

he MSR method, Monte Carlo simulations and the bi-component
ounding formula �27�. Close agreements between the results by
SR method and those by MCS confirm the accuracy of the MSR
ethod for the given example while the bi-component bounds

how significant width for the series system.
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