Single-Loop System
Reliability-Based Design
Optimization Using Matrix-Based
System Reliability Method:
Theory and Applications

This paper proposes a single-loop system reliability-based design optimization (SRBDO)
approach using the recently developed matrix-based system reliability (MSR) method. A
single-loop method was employed to eliminate the inner-loop of SRBDO that evaluates
probabilistic constraints. The MSR method enables us to compute the system failure
probability and its parameter sensitivities efficiently and accurately through convenient
matrix calculations. The SRBDO/MSR approach proposed in this paper is applicable to
general systems including series, parallel, cut-set, and link-set system events. After a
brief overview on SRBDO algorithms and the MSR method, the SRBDO/MSR approach is
introduced and demonstrated by three numerical examples. The first example deals with
the optimal design of a combustion engine, in which the failure is described as a series
system event. In the second example, the cross-sectional areas of the members of a
statically indeterminate truss structure are determined for minimum total weight with a
constraint on the probability of collapse. In the third example, the redistribution of the
loads caused by member failures is considered for the truss system in the second example.
The results based on different optimization approaches are compared for further investi-
gation. Monte Carlo simulation is performed in each example to confirm the accuracy of
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1 Introduction

The main objective of design optimization is to obtain the val-
ues of design variables that minimize or maximize the objective
function(s) of interest while satisfying given design constraints. If
design optimization is performed in a deterministic manner, that
is, uncertainties are not taken into account during the optimiza-
tion, the resultant optimal design may have unquantified risk of
violating the given constraints. Various reliability-based design
optimization (RBDO) methods have been developed to achieve
optimal designs with acceptable failure probabilities (see Refs
[1,2] for a state-of-the-art review of RBDO methods and recent
applications to civil and aerospace structural systems). During
RBDO, the probability of violating given constraint(s), namely,
the failure probability, is often computed by reliability analysis
methods such as first-order reliability method (FORM), second-
order reliability method (SORM), or response surface method.

Traditionally, RBDO has been performed by use of a nested or
“double-loop” approach, in which each step of the iterations for
design optimization involves another loop of iterations for reli-
ability analysis. For example, the reliability index approach (RIA)
[3] and performance measure approach (PMA) [4,5] employ
FORM to perform the reliability analysis, which requires nonlin-
ear constrained optimization (for a review on FORM, see Ref.
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[6]). If the constraints are active, the two approaches yield the
same results. However, it is known that PMA is generally more
efficient and stable than RIA [4,5]. The double-loop computation
can be prohibitive if the function evaluation cost is expensive
because the inner-loop often involves iterative reliability analysis
to search for the most probable point (MPP) [7-9]. As an effort to
reduce the computational burden of RBDO, many approximate
RBDO approaches have been developed to decouple the double-
loop problem [9-21]. For example, a single-loop approach [21]
was proposed by using the Karush-Kuhn-Tucker (KKT) optimal-
ity condition to approximate the solution of the inner-loop optimi-
zation. As a result, the inner-loop is replaced by a deterministic
constraint, which transforms a double-loop RBDO problem into
an equivalent single-loop optimization problem.

When multiple failure modes need to be considered as the con-
straints of a design optimization, RBDO is often formulated such
that the optimal structure satisfies each failure mode with prede-
termined probabilities. This approach is termed as “component
reliability-based design optimization (CRBDO)” in this paper. In
some cases, however, the failure event is better described by a
system event, i.e., a logical (or Boolean) function of multiple fail-
ure modes. In this case, the probabilistic constraint should be
given for the system event, not on individual component failure
modes. This approach is called “system reliability-based design
optimization (SRBDO).” The SRBDO requires system reliability
analysis, which is not trivial, especially for systems with statisti-
cally dependent component events, or for events that are not series
or parallel systems. Theoretical bounding formulas are applicable
to parallel and series systems only (see Ref. [22] for a review),
and it is inconvenient to deal with probability bounds during
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RBDO. Various sampling methods are available, but they may
render SRBDO inefficient in practice. Song and Kang [23] re-
cently developed a matrix-based system reliability (MSR) method
that computes the system reliability by convenient matrix-based
framework. The MSR method is applicable to general system
events including series, parallel, cut-set, and link-set systems, and
can account for statistical dependence between component events.
It also provides parameter sensitivities of the failure probability
for general system events, which facilitates efficient RBDO.

This paper aims to overcome aforementioned challenges in
SRBDO by integrating a single-loop SRBDO approach with the
MSR method (SRBDO/MSR). After an overview of existing
RBDO formulations and the MSR method, the proposed SRBDO/
MSR procedure is explained. The MSR method is further devel-
oped for integration with a single-loop SRBDO approach. The
proposed SRBDO/MSR approach is demonstrated by three nu-
merical examples.

2 System Reliability-Based Design Optimization

2.1 Component Reliability-Based Design Optimization. In
general, RBDO problems are formulated as follows:

min f(d, px)
d.ux

st Plg(d.X)=0]=P, i=1,...n 1)

d'=d=d", px=mx=m

where d e ¥ is the vector of deterministic design variables; X
e R™ is the vector of random variables; pyx is the vector of the
means of X; f(-) is the objective function; g;(-), i=1,...,n is the
ith limit-state function indicating the occurrence of the failure by
gi(-)=0; P! is the constraint on the probability of the ith limit-
state; d- and dVY are the lower/upper bounds on d; ;L§ and ,L;’ are
the lower/upper bounds on ux (for simplicity, these boundary
values will be omitted in the following RBDO formulations in the
paper); and n, k, and m are the numbers of constraints, determin-
istic design variables, and random variables, respectively. The
probabilistic constraint in Eq. (1) can be given alternatively by use
of the cumulative distribution function (CDF) of the limit-state
function, that is,

Plg(d,X) = 0]=F,(0) = D(- B) 2

where ng(-) denotes the CDF of g;(-); ®(-) is the CDF of the
standard normal distribution; and ! is the target reliability index.
First-order reliability method [6] is widely employed to compute
failure probability in Eq. (2). In all the numerical examples of this
paper, FORM is used for component-level reliability analysis.

This RBDO problem has two nested optimization loops: the
outer-loop for design optimization and the inner-loop for reliabil-
ity analysis. One of the double-loop approaches commonly used
for RBDO is the reliability index approach (RIA) [3], which uses
the formulation

min f(d, px)
d,pux

(3)
s.t. Biz—(D‘I[Fg[(O)]zB; i=1,....n

where fS; is the distance from the origin of the space of standard
normal random variables U=U(X) to the nearest point on the
limit-state surface G;(d,U)=0, in which G,(-) is the limit-state
function g;(-) determined in terms of U, that is, g;(d,X)
=G,(d,U(X)). This distance B; is termed as the “reliability in-
dex.” The nearest point on the limit-state surface, often termed as
“design point” or “most probable failure point (MPP)” is identi-
fied by solving a nonlinear constrained optimization [6]
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U; = arg min||U||
U

(4)
st. G{(d,U)=0

where U; is the MPP of the ith limit-state function, and “arg min”
denotes the argument of the minimum of a function.

The RIA formulation in Eq. (3) can be inefficient if the con-
straints are inactive. Moreover, the algorithm may not provide an
optimal design solution if the failure events G;(d,U)=0 never
occur in the given feasible domain. To overcome these issues, Tu
et al. [4] proposed the performance measure approach (PMA), in
which the probabilistic constraint is described in terms of “perfor-
mance function,” which is defined as the quantile of the limit-state
function g,(+) at the target failure probability ®(-/}). It is thus
formulated as

min /(d, px)
d,pux

(5)
st g, = F;l_l[CI)(— B)1=0, i=1,....n

where g, is the performance function. The constraint in Eq. (5)
implies that F, (g,)=®(~f) is greater than Fy (0)=d(-p;), so it
is equivalent to the constraint in Eq. (3), 8;= ,8;. The performance

function can be obtained by solving a constrained optimization
problem [4,5,24]

gp. = min Gz(d3U)
N

(6)
st Ull=4;

To improve efficiency of these double-loop RBDOs, several
single-loop RBDO approaches have been developed [9-21]. For
example, a sequential optimization and reliability assessment
(SORA) method was recently proposed [11]. Its main idea is to
decouple the outer-loop optimization from reliability analysis. Us-
ing the information from previous design iteration, the boundaries
of the constraints are shifted to the feasible direction and the de-
sign point is updated accordingly. Additionally, the safety-factor
approach [13,14], one of the single-loop approaches, was devel-
oped by using the approximate equivalent deterministic constraint
to convert the double-loop into single-loop problem. The effi-
ciency of double-loop approach can be enhanced by some effi-
ciency strategies such as the enriched performance measure ap-
proach (PMA+) [7]. It was reported that with such efficiency
strategies, double-loop approach can be more efficient than single-
loop approach [7,8].

Recently, Liang et al. [21] proposed a single-loop RBDO by
approximating the result of the nonlinear constrained optimization
in Eq. (6) by solving the system equations that describe the KKT
condition

VuGi(d,U) +\ - Vy([U]| - B) =0

(M
ol - gi=0

in which N denotes a Lagrange multiplier. Next, the “negative
normalized gradient vector” [6] of the limit-state function at the
solution of Eq. (6) is approximately obtained by evaluating it at

the solution of Eq. (7), U=U,, that is

&=

1

Vxgi(d,X(U))
i Tey——T DS 1) B ®)
HVXg,-(d,X(U))” U=U,
where Jx y is the Jacobian of the X=X(U) transformation. The

solution of Eq. (6) is then approximated by scaling this unit vector
by the target reliability index, i.e.,
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U = Bid; ©)

[

The performance function is then approximated by evaluating the
limit-state function at Ué. As a result, the RBDO is formulated as

d,pux

(10)
st g, = g(d,X(Uh) =0, i=1,...,n
In summary, the inner-loop of the PMA RBDO is replaced by the
approximate noniterative procedures shown in Egs. (7)—(9). This
single-loop approach was reported to have the accuracy compa-
rable with the double-loop approach and the efficiency almost
equivalent to deterministic optimization [21]. This study aims to
improve this single-loop RBDO approach when system reliability
analysis is needed for failure probability calculations.

2.2 System Reliability-Based Design Optimization. In the
case when the failure event in the design constraint is better de-
scribed by a system event, i.e., a logical (Boolean) function of
multiple component events, the RBDO requires a system reliabil-
ity analysis. This system reliability-based design optimization
(SRBDO) can be formulated as

d.pux
(11)
st Py=P(Ey) = P[U N g(d,X)=0]=P'

sys
ieCy

where Py is the system failure probability; E is the system
failure event; C; is the index set of the components in the kth cut
set; and Pbyb is the target system failure probability. Any type of
system event may be used during SRBDO but, for illustration
purposes, Eq. (11) shows a cut-set system formulation that can
represent series, parallel, and cut-set systems. Royset et al. [12]
proposed a decouple procedure for RBDO of series systems. The
target system reliability is achieved by adjusting the target com-
ponent reliabilities heuristically.

An SRBDO approach was proposed for series system problems
in Ref. [25]. In this approach, the failure probability of a series
system is approximated as the sum of the component failure prob-
abilities, i.e.,

PsyszP[Ulgi(d,X) so] Emin(l,z P,») (12)
i= i=1
Then, SRBDO problems are formulated as

min  f(d, pux)
d.px.P....P,

st. Plg(d,X)=0]=P, i=1,....,n (13)

n
Py = min( LY Pﬁ-) =P,

i=1

Note that the constraints on the component probabilities, Pls are
used as design variables. This approach can significantly overes-
timate the system risk because the approximation in Eq. (12) pro-
vides a fairly conservative upper bound (see Ref. [22] for a review
on system reliability bounding formulas). Moreover, this approach
cannot account for the effect of the statistical dependence between
component events, which is caused by common random variables
or statistical correlation between random variables.

A single-loop SRBDO approach was recently proposed for se-
ries systems by Liang et al. [26]. This approach also uses Pls as
design variables. The inner-loop is eliminated by approximating
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the design points by KKT conditions as explained above. The
system failure probability is approximated as the upper bound by
the bi-component theoretical bounding formula [27]. As a result,
the single-loop SRBDO is formulated as

min  f(d, px)
d.ux.Pl... P,

st g(d,X(U)) =0, i=1,...,n (14)

Py = 2 Pi- E max Pj; = P

i=2 Jj<i

in which U} is obtained by Egs. (7)~(9); and P’ is the joint failure
probability of the ith and jth constraints, computed by a numerical
integration based on P;, P;, and the inner-product of approximated
negative normalized gradient vectors [26]. Despite its improved
accuracy in estimating the system failure probability by using a
higher-order bounding formula, it still overestimates the system
failure probability and is not applicable to nonseries system events
for which general theoretical bounding formulas are not available.
In this paper, we propose to use the recently developed matrix-
based system reliability method to compute Py, in the single-loop
SRBDO shown in Eq. (14). The method enables us to compute
Py of general system events including series, parallel, cut-set,
and link-set systems efficiently and accurately during SRBDO.
The sensitivity of P with respect to design variables further
facilitates the use of gradient-based optimization algorithms.

3 System Reliability-Based Design Optimization Using
MSR Method

3.1 Matrix-Based System Reliability Method. Although
system reliability analysis is a well established research area, it is
still challenging to compute the probability of a general system
event and its parameter sensitivity, especially when component
events are statistically dependent. Song and Der Kiureghian [22]
introduced a method to compute the bounds on the probability of
a general system event by linear programming (LP). This “LP
bounds” method subdivides the sample space of component
events into the mutually exclusive and collectively exhaustive
events (termed as basic MECE events), and the probability of any
event is described by use of vectors representing the probabilities
of basic MECE events. Then, its upper and lower bounds are
obtained by solving the LP problems subjected to the constraints
derived from given information such as component probabilities
and statistical dependence. This matrix-based framework of sys-
tem reliability analysis enables obtaining the narrowest possible
bounds on the probability of any general system and the parameter
sensitivities of the bounds [28] as well.

Song and Kang [23] recently proposed the MSR method to
compute the probability of general system events by use of simple
matrix calculations instead of solving LP. Consider a system event
with n components each of which has two distinct states, e.g.,
“failure” and ‘“safe.” Then, the sample space can be subdivided
into N=2" basic MECE events denoted by e, J =1,...,N. Then
any system event can be presented by an “event” vector ¢ whose
Jth element is 1 if e; belongs to the system event and 0 otherwise.
Let p;=P(e)), j=1,...,N, denote the probability of e;. Because e;s
are mutually exclusive to each other, the probability of system
event, Py is simply the sum of the probability of ¢;s that belong
to the system event Egy,. Therefore, the system probablhty is com-
puted by the inner-product of the two vectors

sys E p/—Cp

]eCE

(15)

sys
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where p is the “probability” vector that contains p;s, j=1,...,N.
Both ¢ and p are column vectors in this paper and can be con-
structed efficiently using matrix-based procedures proposed in
Ref. [23].

When component events are statistically dependent, the con-
struction of p requires system reliability analysis for each ele-
ment. This challenge can be overcome by achieving conditional
independence between component events given outcomes of a few
random variables representing the sources of “environment depen-
dence” or “common source effects.” For example, during a risk
analysis of a transportation network based on bridge failure prob-
abilities, the uncertain magnitude of earthquake was considered as
a random variable representing the common source effect [29].
Let S denote the vector of such random variables, named “com-
mon source random variables” (CSRV). By the total probability
theorem, the system failure probability can be then computed as

PsyszfP(Esys|s)fs(s)d5=fch(s)fS(S)ds (16)

S

where P(Eqy|s) is the conditional probability of the system event
given an outcome of CSRV, S=s; fg(s) is the joint probability
density function (PDF) of S; and p(s) is the conditional probabil-
ity vector given S=s, which can be constructed efficiently by the
proposed matrix-based procedure employing conditional prob-
abilities of component events given S=s, i.e., P;(s)=P(E;|S=s)
instead of the marginal probabilities P;=P(E;).

The approach in Eq. (16) can be used even in the case when the
CSRVs are not explicitly identified. One way to identify such
implicit common source effect as CSRVs is to fit the correlation
coefficient matrix of random variables representing component
events such as safety margin (or factor) with a special correlation
matrix model that allows such an identification. For example,
Song and Kang [23] generalized Dunnett—-Sobel (DS) class corre-
lation matrix [30] to identify CSRVs. Consider correlated standard
normal random variables Z;, i=1,...,n. Their correlation matrix
can be fit with the following generalized DS model through an
optimization:

(17)

m 0.5 m
Z,-:(l-zrfk) Yi+ D rgS;, for i=1,....n
k=1

k=1

in which Y;, i=1,...,n and S}, k=1, ...,m are uncorrelated stan-
dard normal random variables; and r;s are the coefficients of the
generalized DS model that determine the correlation coefficient
between Z; and Z; as p;;=3;L (ry. rj) for i # j. Note that Z; and Z;
are conditionally independent of each other given the outcome of
CSRVs S, k=1,...,m. The MSR method is demonstrated by an
illustrative example in the Appendix of this paper.

3.2 Parameter Sensitivity of System Failure Probability.
The MSR method enables us to compute the parameter sensitivity
of the probability of a general system event. First, when the com-
ponent events are statistically independent, the sensitivity of the
system failure probability with respect to a parameter 6 is com-
puted as

Py 0
Do _ (1P (18)
FTARRT,

The separation of the system event description (¢) and the prob-
abilities (p) in the MSR framework allows us to compute the
parameter sensitivity for general system events in a uniform man-
ner. The sensitivity of p in Eq. (18) can be computed by the
following matrix-based procedure [23]:

011005-4 / Vol. 132, JANUARY 2010

Initial Design

Equivalent SRBDO/PMA

I
y

Find MPPs of components by PMA

!

Find PSys and its sensitivities by MSR

I

Update d, P/ by an optimization algorithm

Fig. 1 Flowchart of the proposed SRBDO/MSR algorithm

P _rpp2 g ?E_pP (19)
a0 a0 a6

where P=[P,P,---P,]T in which P; is the probability of the ith
component event; and p<7>, j=1,...,n is the probability vector
constructed by the matrix-based procedure developed for p except
that the probabilities of the jth component event and its comple-
mentary event are replaced by 1 and —1, respectively, during the
construction. In summary, the MSR framework allows us to com-
pute the system-level parameter sensitivities by use of component
probabilities and their parameter sensitivities.

When the components are statistically dependent, the parameter
sensitivity is computed as

P, 9
i fs cT%fs(s)ds (20)

in which the sensitivity in the integral is constructed by the pro-
cedure in Eq. (19) except that the conditional probability of the
component events given S=s, i.e.,

P(s)=P(B;-Z;=0S=5s), (21)

is used instead of P;. Substituting Eq. (17) into Eq. (21), the
conditional probability is computed as

i=1,...,n

m

Bi- %riksk

m 0.5
(1 -2 r?k)
k=1

3.3 SRBDO/MSR. The proposed SRBDO/MSR (Fig. 1)
adopts the same single-loop SRBDO approach in Eq. (14) except

that Py is computed by the MSR method. It is thus formulated as

Pi(s)=®| - (22)

min f(d, px)

r
d,px. Py, .,Pn

st g(d,X(U)) =0, (23)

i=1,...,n
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f c"p(s)fs(s)ds = Py, dependent
sys s

ch = Pt

oys independent

If the sensitivities of Py, with respect to d and Pls,i=1,...,n are
available, one can use a gradient-based optimization algorithm for
the SRBDO. As shown in Sec. 3.2, the MSR method provides the
sensitivity of Py with respect to general parameters if the param-
eter sensitivities of component probabilities are available. For ex-
ample, one can obtain such sensitivities using FORM [31]. Herein
it is explained how the sensitivity with respect to P;s can be com-
puted by the MSR method. First, the sensitivity of P;(s) with

respect to the reliability index B; is derived as

m m 0.5
2
dP(s) __ ¢[_ ('Bi - Elriksk)/<1 - Elrik) } (24)

JB; m 0.5
B (l -2 r,-2k>
k=1

in which ¢(-) denotes the PDF of the standard normal distribu-
tion. Then, the sensitivity with respect to the ith component prob-
ability is derived as
P (s) B AP (s) B IP(s) 1 (25)
P, B 0P B ¢(=p)
This sensitivity is used for computing the sensitivity vector in Eq.
(18) or Eq. (20).

4 Numerical Examples

In this section, three numerical examples are presented to dem-
onstrate the capability and accuracy of the proposed SRBDO/
MSR approach. In the first example, the optimal design of a com-
bustion engine is obtained, in which the failure is described as a
series system event. In the second example, the cross-sectional
areas of the members of a statically indeterminate truss structure
are determined for minimum total weight. A constraint is given on
the probability of the system failure described by a cut-set system
event. In the third example, the redistribution of the member
forces caused by member failures is considered for the truss sys-
tem in the second example. The results based on different RBDO
approaches are compared for further investigations. Monte Carlo
simulations are also performed to confirm the accuracy of the
system failure probability computed by the MSR method.

4.1 Example 1: Design of an Internal Combustion Engine.
This example adopted from Liang et al. [26] deals with the opti-
mal design of the flat head of an internal combustion engine [32].
The objective is to find the mean values of the random design
variables that maximize the “specific power” (or minimize the
negative specific power). A constraint is given on the probability
that the design will violate at least one of the requirements—a
series system event. This SRBDO problem is formulated using the
negative specific power as follows:

. Mo
min f(px) == 7-[3688 - 7,(1c , s o) - (M b))
i 120 , i

- FMEP(u, , pty 1))

where

FMEP = 4.826 - (1, —9.2) +7.97 +0.253 - [8V/(7N,) ey 1) 2
+(9.7 X 107) - {[8V/(7N) I ()2}

= 0.8595 - [1 - (/’Lcr)_o‘}}] - SV : (I-S/Mw)o's

S,=0.83 [8 +dp. + 15 (e = DyaNIVYIQ2+ ) s

Journal of Mechanical Design

7= M- (1+5.96 X 1073 u2)/{1 +[(9.428 X 10)4V/(wN,Cy)
X (po 1)1}

1.067 — 0.038¢ #0529 n, =525
=1 0.637 +0.13, - 0.0142 +0.00066,47 ., < 5.25

sys

9
st Py= P[ Ug(X) = 0} =P
i=1

g1=400—- 12N, (min. bore wall thickness)

2, =b—-[8V/(200mN,)]*> (max. engine height)  (26)

g3=0.82b—d,—dy (valve geometry and structure)

g4=dp—0.83d; (min. valve diameter ratio)

g5=0.89d,—d; (max. valve diameter ratio)

86=0.6C,—(9.428 X 107°)(4V/mN,)(w/d?) (max. mech/index)

g7=—0.045b - ¢, + 13.2  (knock-limit compression ratio)
g3 =6.5— w (max. torque converter rpm)

80=230.50{0.8595 - (1 —¢;***) = 0.83 - [8 +4c, + 1.5
X (¢, = B3N JVI[(2 +¢,)b]} - 3.6 X 10°
(max. fuel economy)

where V=1.859% 10® mm?, 0=43,958 kJ/kg, C,=0.44, N.=4,
and u. denotes the mean of the corresponding random variable in
the subscript. The following five random variables are considered:
the cylinder bore b, compression ratio c,, exhaust valve diameter
dg, intake valve diameter d;, and the revolution per minute at peak
power (divided by 1000) denoted by w. These are assumed to
follow normal distributions. Table 1 shows the standard deviations
of the random variables and the lower and upper bound values for
their means, i.e., /Lﬁ and pg.

Liang et al. [26] first performed a PMA-based CRBDO (shown
in Eq. (10)) for the given problem. For each of the nine require-
ments, the constraint on the component failure probability P}
=0.00135 (equivalent to target reliability index B;=3.0) was as-
signed. The second column of Table 2 shows the optimal mean
values and the corresponding maximum specific power 50.9713.
The system failure probability was estimated as 0.006539 by
Monte Carlo simulation (MCS) [26]. For the purpose of compari-
son, this MCS estimate was used as the constraint on Py, during
the single-loop SRBDO in Ref. [26] and SRBDO/MSR in this
study. During SRBDO in Ref. [26], the “active set” strategy was
introduced to deal with a convergence issue caused by small fail-
ure probabilities. They assigned “1” to active components whose
failure probabilities P! are greater than 1077, and “0” to the inac-
tive components with smaller probabilities. The “inactive” com-
ponents (those with “N/A” in Table 2) were excluded from the
system failure probability calculations. The SRBDO/MSR in this

Table 1 Standard deviations of the random variables and
bounds given on their means

Random variables Std dev Lower bounds Upper bounds

Cylinder bore b (mm) 0.40 70 90
Intake valve diameter d; (mm) 0.15 25 50
Exhaust valve diameter d; (mm) 0.15 25 50
Compression ratio ¢, 0.05 6 12
(rpm at peal power)/1000 @ 0.25 5 12
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Table 2 Results of CRBDO [26], single-loop SRBDO [26], and SRBDO/MSR for combustion

engine
SRBDO
CRBDO b SRBDO b MCS for design b
Liong et al. [26]  Liang etal, [26]  SRBPO/MSR SRBDO/MSR

4 82.1333 82.1419 82.1434 82.1434
1, 35.8430 35.8456 35.8394 35.8394
e, 303345 303641 30.3639 303639
' 9.3446 9.3174 9.3194 9.3194
P 53141 5.3598 53621 5.3621
P! 0.00135° 0.001448 0.001467 0.0014686
P, 0.00135° N/A 107 0
P, 0.00135° 0.001665 0.001558 0.0015627
P, 0.00135" 0.000811 0.000778 0.0007713
P 0.00135° N/A 107 0
P 0.00135" 0.002370 0.002502 0.002503
P 0.00135° 0.000232 0.000266 0.0002573
P, 0.00135° N/A 0.000003 0.0000023
P, 0.00135° N/A 1077 0
P N/A 0.006539° 0.006539°

- 0.006539 (MCS) 0.006546
Max. power: —f(sx) 50.9713 51.1023 51.1014 51.1014

Predetermined constraints.

study used a different optimizer [33] and did not experience the
convergence issue, so the active set strategy was not used, but the
lower bounds 1077 were assigned on component probabilities P,
i=1,...,9 to facilitate the convergence. The component events
whose probabilities are lower than the lower bound were not con-
sidered during the MSR analysis.

For the given problem, the optimal mean values and the maxi-
mum specific power by CRBDO are similar to those by SRBDOs.
However, it should be noted that for a given SRBDO problem, the
CRBDO approach may require repeated optimizations to find the
level of constraints on the component failure probabilities that
lead to the desired system-level reliability. It is also noted that the
maximum specific power by CRBDO is smaller than those by
SRBDOs even if the system failure probability is the same. This is
because CRBDO approach (assigning fixed constraints on indi-
vidual components) is generally more constrained than SRBDOs
(assigning a constraint on system event, not on the individual
components) at the same level of system reliability.

The comparison in Table 2 confirms that the two SRBDO ap-
proaches provide fairly close results for the series system prob-
lem. The small difference is caused by the upper bound approxi-
mation in SRBDO in Ref. [26]. According to the component
failure probabilities of the optimal designs, the contribution of
components 2, 5, 8, and 9 to system reliability is insignificant. The
importance ranking of the other significant components is as fol-
lows: 6—3—1—4—7. This ranking of component contribu-
tions is an important by-product of the SRBDO approaches. The
fifth column of Table 2 shows the results of MCS (107 times;
coefficient of variation (cov)=0.004) performed using the optimal
design variables from SRBDO/MSR. The results confirm that the
optimal design by SRBDO/MSR leads to the component/system
failure probabilities that are compatible with the component fail-
ure probabilities found during optimization and with the assigned
constraint on the system failure probability.

4.2 Example 2: SRBDO of an Indeterminate Truss
Structure. The uniform applicability of SRBDO/MSR to general
system problems is demonstrated by an SRBDO example of a
statically indeterminate truss system by MacDonald and Mahade-
van [34]. Figure 2 shows the geometry and the applied load of
the truss system. The yielding failures of the six members are
considered as component failure events. When the buckling fail-

011005-6 / Vol. 132, JANUARY 2010

ure modes, the dynamic effect of member damages, and the influ-
ence of the load redistribution during progressive failures [35]
are neglected, the system fails when at least two members
fail. The system failure event is described by the union of 15
minimal cut-sets: {C;}={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),
(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}, each
of which represents the joint failure of the corresponding mem-
bers (see Fig. 2 for the member numbering choice).

In order to minimize the total weight of the structure, the ob-
jective function is defined such that it is proportional to the total
weight of the members. The design variables are the cross-
sectional areas of the members, A;, i=1,...,6, which are consid-
ered deterministic in this problem. The applied load F, is assumed
to follow a normal distribution with the mean of 4450 kN and a
standard deviation of 445 kN, while the yield strengths of the
members (in stress), F;, i=1,...,6, are assumed to be a normal
distribution with the mean 745 MPa and the standard deviation 62
MPa. All random variables, F,...,Fg and F,, are assumed to be
statistically independent of each other. The member forces are
derived in terms of the applied load assuming that the two diag-

Fig. 2 A six-member indeterminate truss example
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Table 3 Results of SRBDO [34] and SRBDO/MSR for the indeterminate truss system

Area A; (X10° mm?) Reliability index g;

SRBDO by MacDonald and SRBDO by MacDonald and

Members Mahadevan [34] SRBDO/MSR Mahadevan [34] SRBDO/MSR
1 18.43 17.89 2.89 2.67
2 18.27 17.89 2.83 2.67
3 13.51 13.20 3.16 2.99
4 13.44 13.20 3.12 2.99
5 13.33 13.20 3.06 2.99
6 13.09 13.20 2.92 2.99

onal bars carry equal forces. The target system failure probability
ngs is given as 0.001. As a result, the SRBDO problem is formu-
lated as

the system failure probability (not based on the magnitude of in-
dividual component events), the conditional probability impor-
tance measure (CIM) [23,37] of the ith component event

min  f(d) =V2(A, +A,) + Ay + A, + As + Ag CIM, = P(E|E.,.) = P(EEqy,) (28)
d={A;,... Ag} i ilEsys) = P(E )
sys

15
s.t. PsyszP[ U N g(d,X) <0] =P

can be used. This importance measure can be computed by the

e sys = 0.001 MSR method without significant additional computational cost.

et The system failure probability in the denominator is already avail-
(A,X)=AF,—0707F,, i=1.2 27 able. Because the probability vector can be used once again, the
8i(d.X) =AF; At @7 only additional task required is to find the event vector for the new
AF;—0500F, i=3,...,6 system event E;yszE,-Esys. Figure 3 shows the CIMs of the truss

A,AyA3,A4A5,Ag=0

In the study by MacDonald and Mahadevan [34], a single-loop
SRBDO approach shown in Eq. (14) was used except that the
system failure probability was computed as follows. First, the
probability of each cut-set was calculated as a parallel system
using the product of conditional marginals method [36]. Consid-
ering the entire system event as a series system whose compo-
nents are the cut-sets, the system failure probability was approxi-
mated by the first-order bounding formula in Eq. (12) with P;s
replaced by the probabilities of the cut-sets.

The proposed SRBDO/MSR approach in Eq. (23) is applied to
this example. The system failure probability and its sensitivities
with respect to P! are computed by the MSR method as explained
in Sec. 3. The system failure probability is accurately estimated
without using a bounding formula. The computed sensitivities fa-
cilitate the use of a gradient-based optimization algorithm. Table 3
compares the results by the two approaches. Except a slightly
more conservative design in member 6, the SRBDO/MSR ap-
proach finds less conservative designs in all members while the
same requirement on the system-level reliability is achieved. The
minimum objective function value (i.e., minimum total weight) of
the proposed approach is 103.36 X 103, which is less than that by
the approximation method [34], 105.24 X 103. This is due to the
overestimation of the system failure probability by the first-order
bounding method, which results in a more conservative design
than required. This is also evidenced by the lower reliability in-
dexes of the component events by the proposed approach shown

in Table 3. It is also noteworthy that due to the accurate system 1.00
reliability estimates during the SRBDO/MSR, the symmetric con-

ditions between diagonal members (1 and 2) and between nondi- 0.75 1
agonal members (3—-6) give rise to symmetric results in the opti-

mal design (i.e., cross-sectional areas) and the component failure % 0.50 1
probabilities (i.e., reliability indexes) as well. The system failure

probability Py of the optimal cross-sectional areas found by 0.25 1
SRBDO/MSR is evaluated as 0.001 by the MSR analysis and as

0.00107 by MCS (10° times, cov=0.03). Both estimates are fairly 0.00 -

close to the given constraint 0.001.

According to the magnitude of component failure probabilities
of the optimal design, the importance of the components is ranked
in the order of (1,2)—(3,4,5,6). In order to quantify the relative
importance of components based on their actual contributions to

Journal of Mechanical Design

members. The importance ranking is the same as that based on the
individual component failure probabilities for this particular prob-
lem, but it should be noted that these rankings can be different in
some cases. For example, if a constraint having high likelihood of
violation does not contribute much to violating the system-level
constraint, its CIM can be negligible despite its high failure
probability.

Next, we assume all the random variables in the above example
to follow the lognormal distributions with the same means and
standard deviations. This is to investigate the effect of the types of
the probabilistic distributions on the optimal design and to dem-
onstrate the general applicability of the proposed method. The
minimum objective function value is obtained as 105.46 X 107,
which is slightly larger than that of the normal distribution case.
Table 4 shows that the reliability indexes of the component events
and the optimal cross-sectional areas of the lognormal distribution
case are slightly larger than that of the normal distribution case.
The system failure probability Py of the optimal design the
SRBDO/MSR analysis is evaluated as 0.000998 by MCS (10°
times, cov=0.032), which is close to the given constraint ngs
=0.001.

4.3 Example 3: SRBDO of an Indeterminate Truss Struc-
ture Considering Progressive Failure. In this example, the
SRBDO problem in Example 2 is re-investigated with consider-
ation of load redistribution in the truss system caused by member
failures. This load redistribution can cause a progressive failure of

1 2 3 4 5 6
Components

Fig. 3 Conditional probability importance measures of the
truss members
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Table 4 Results of SRBDO/MSR for normal and lognormal dis-
tribution cases

Area A; (X10° mm?) Reliability index B;

Members Normal Lognormal Normal Lognormal
1 17.89 18.18 2.67 2.79
2 17.89 18.18 2.67 2.79
3 13.20 13.51 2.99 3.17
4 13.20 13.51 2.99 3.17
5 13.20 13.51 2.99 3.17
6 13.20 13.51 2.99 3.17

the system. All the parameters are the same as Example 2. The
complexity of estimating the likelihood of this system event arises
from the fact that the failures of the remaining members should be
described as new component events due to the load redistribution.
Figure 4 shows the numbering choice of the component failure
events defined for the members in the original structure and the
structures with one failed member.

The structure survives if (1) no member fails in the original
configuration or (2) one member fails but no further member fail-
ures take place. Using the component numbering choice shown in

Fig. 4, the probability of system survival E,, is described as

sys

U (E\E,E;E,EsEg)(E;E4EgE E) )

U (E|E>E5E4EsEq) (E oE sE 4E 5E )
U (E\|E>E5E4EsE) (E\7E sE oExE»)
U (E\EyEEEsEq)(ExyyExsEryEsEre)

U (E|EyEsE,EsEq)(EyEssEroEEs))

U (E\E2E3E4EsEg)(EsyE33E34E5E )] (29)

in which E; and E,, respectively, denote the failure and survival
event of the ith component. This is a link-set system event con-
sisting of 36 components. The size of ¢ and p is 230=6.87
% 10!, However, the size of the vectors used in MSR analysis can
be further reduced as follows. Due to the mutual exclusiveness of
the seven link-sets, the probability can be computed as the sum of
the probabilities of the individual link-sets, which reduces the
maximum number of components appearing in an MSR analysis

%
A

11 21

4 17 18
8 10 20
9 19
26
27 28 32 33
36
35
E L 2 4

22 23
Fig. 4 Component failure events defined for the original sys-
tem and systems with failed members

I
§>
I

24 25
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from 36 to 11. It can be further reduced by considering the fact
that some link-sets include component events defined for the same

member. For example, the component events £, and E,, are de-
fined for the same member, as shown in Fig. 4. Since their limit-
state functions indicate E;, C E, for positive values of F| and F,

E(E, is simplified to E},. As aresult, the system reliability can be
computed as

P(qug) P(E\E,EsE(EsEq) + P(E\EsE EEE )

+P(E2E5E12E13E|4E16) + P(EIE3E4E6EISEZO)
+ P(E\EsE,EGEy3Eys) + P(EyEsEy ErgEEs)

+ P(E\EsE,E¢E33E3q) (30)

This system decomposition reduces the maximum number of
components appearing an MSR analysis to 6. The size of the
vectors is only 26=64.

Noting some component events having the same limit-state
functions, Eq. (30) is rewritten using 12 distinct component events
as follows:

P(Esys) P(E\E,E;E\EsE¢) + P(E|EsE,EqEqE )

+ P(EyEsE\yE3E 4E ) + P(E\EsE,EGESE )
+ P(E\E;E4E¢E+E 1) + P(E,ESE o E 3E 4E )

+ P(E\EsE{EGE-E o)
Thus, the SRBDO problem is formulated as

(31

min f(d) = V’E(A] + A2) + A3 + A4 +A5 +A6

d={A},...Ag

;
st Pyy=1-P(Ey)=1-, P( N g(d,X) > o) <0.001

k=1 iel;

g(d,X)=AF;-0.707F,, i=1,2

AF;—0.500F,, i=3,...,6

AyFy—1.414F,, i=7

(32)

AsFs—1.000F,, i=10

AF - 1414F,, i=12

A3F3—1.000F,, i=13

A4F,—1.000F,, i=14

AgFs—1.000F,, i=16

A,ArA3,ALA5,Ag=0

where Ly, k=1,...,7 is the component index set from Eq. (31),
that is, {L;}={(1,2,3,4,5,6),(1,3,4,6,7,10),(2,5,12,13,14,
16),(1,3,4,6,7,10),(1,3,4,6,7,10),(2,5,12,13,14,16),(1,3,
4,6,7,10)}.

Table 5 compares the results of the SRBDO in Eq. (32) (de-
noted by “Ex. 3” in the following tables) with those given in
Example 2 (Ex. 2). It is seen that the optimal cross-sectional areas
increase significantly as the effect of load redistribution is consid-
ered. The objective function value also increases from 103.36
X 103 to 114.13 X 103. This implies that neglecting the load redis-
tribution during an SRBDO may result in a design that does not
satisfy the system-level safety criteria. As expected, when the load
redistribution is considered, the system failure probability of the
optimal design from Example 2 is estimated as 0.01208 by MSR
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Table 5 Results of SRBDO/MSR of the truss system with/without consideration of load

redistribution

Area A; S
- Reliability index f;
Member (Fig. 2) Component events (Eq. (31)) (X10° mm?) '
Ex. 2 Ex. 3 Ex. 2 Ex. 3*
1 1, 12 17.89 19.94 2.668 3.48, —2.07
2 2,7 17.89 19.94 2.668 3.48, —1.78
3 3,13 13.20 14.44 2.987 3.65, —1.95
4 4, 14 13.20 14.44 2.987 3.65, —1.95
5 5,10 13.20 14.44 2.987 3.65, —1.62
6 6, 16 13.20 14.44 2.987 3.65, —1.95

“Two reliability indexes correspond to the component events in

the second column (in the same order).

Table 6 Optimal design and correlation between member yield strengths

Area A; (X103 mm?)

p=0.00" p=0.25 p=0.50 p=0.75
Ex. 2 Ex. 3 Ex. 2 Ex. 3 Ex. 2 Ex. 3 Ex. 2 Ex. 3
1 17.89 19.94 18.03 19.90 18.14 19.83 18.31 19.68
2 17.89 19.94 18.03 19.90 18.14 19.83 18.31 19.68
Members (Fig. 2) 3 13.20 14.44 13.53 14.40 13.91 14.33 14.28 14.16
& 4 13.20 14.44 13.53 14.40 13.91 14.33 14.28 14.16
5 13.20 14.44 13.53 14.40 13.91 14.33 14.28 14.16
6 13.20 14.44 13.53 14.40 13.91 14.33 14.28 14.16
Objective function 103.36 114.13 105.12 113.93 106.93 113.42 108.90 112.34

“Results in Table 5.

analysis and 0.01205 by MCS (10° times; cov=0.009), which
clearly exceed the given constraint 0.001. By contrast, the system
failure probability of the optimal design in this example is esti-
mated as 0.001 by MSR and 0.000986 by MCS (10° times, cov
=0.0318), which are close to the given constraint.

The impact of statistical correlation between random yielding
strengths F;s on the optimal design is investigated by varying their
correlation coefficients p; ;. For simplicity, the correlation coeffi-
cients are assumed to be uniform, i.e., p; j=p. The SRBDO prob-
lems in Egs. (27) and (32) are solved again with correlation coef-
ficient p varying from 0.00 to 0.75. The optimal cross-sectional
areas and the objective function values are shown in Table 6. It is
seen that considering the effect of load redistribution results in
more conservative designs for all levels of correlation considered.
It is also observed that the higher correlation among member yield
strengths increases the cross-sectional areas when redistribution is
not considered but decreases if redistribution considered. Figure 5

x103
120 A
= 115 4
‘g 110
=t
o
Z 105 1
3
= == Re-distribution Considered
O 100 A
== No Re-distribution
95 T T T
0.00 0.25 0.50 0.75

Correlation coefficient, p

Fig. 5 Objective functions versus correlation between mem-
ber yield strengths

Journal of Mechanical Design

presents this trend more clearly by showing the objective function
values of the SRBDOs.

5 Summary and Conclusions

In this study, an efficient and accurate system reliability-based
design optimization approach is developed by integrating a single-
loop RBDO algorithm with the recently developed matrix-based
system reliability method. The use of the MSR method improves
the efficiency and accuracy in computing the system probability
and its sensitivities in the existing single-loop SRBDO approach
[26]. The MSR method enables us to compute the probabilities
of general system events including series, parallel, cut-set, and
link-set systems in a uniform manner without using approximate
bounds or random samplings. It can account for statistical depen-
dence between component events and can compute the sensitivi-
ties of the system failure probability with respect to various pa-
rameters as well, which facilitates the use of gradient-based
optimization algorithms. Three numerical examples demonstrate
the uniform applicability of the proposed SRBDO/MSR approach
to series, cut-set, and link-set systems. It is seen that the accuracy
of system reliability analysis by the MSR method enables us to
obtain less conservative optimal design than SRBDO algorithms
using upper bounds. The effect of load redistribution by member
failures on the optimal designs is investigated as well. In each
example, the accuracy of the MSR method is verified by Monte
Carlo simulations. It is noteworthy that the MSR in this study
employs FORM for component reliability analysis and MSR ac-
curately estimates system probability based on the provided com-
ponent probabilities. If the component reliability analysis FORM
provides inaccurate component probabilities due to the nonlinear-
ity of the limit-state functions, this inaccuracy will affect the ac-
curacy of any SRBDO algorithms including SRBDO/MSR. Po-
tential topics for future studies include improving the accuracy of
SRBDOs using the second-order reliability method, handling a
mixed set of continuous and discrete random variables in SRB-
DOs, and time variant SRBDOs [38,39].
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Nomenclature
¢ = event vector
d = deterministic design variables
f(-) = objective function
gi(d,X) = limit-state (or performance) function of the ith
failure mode
p = probability vector
P; = actual failure probability of the ith mode
P! = target failure probability of the ith mode

Py, = actual system failure probability
Péys = target system failure probability
S = common source random variables
U; = most probable failure point of the ith mode

X = random variables

@; = negative normalized gradient vector
B; = reliability index

B = target reliability index
pmx = vector of means of X

Appendix: Illustrative Example of MSR Method

Consider three system events, each of which consists of five
component events, E;, i=1,...,5

Ey=E, UE,UE;UE,U Es

sys (series)

Ey=E,NE,NE;NE;NEs (parallel) (A1)

sys

Esys= (El @] E2 @] E3) N (E2 U E3 @] E4) N (E3 U E4 U Es)
(link-set)

In this illustrative example, the probabilities of the system
events, P(E,), are computed by the MSR method based on the
results of the component reliability analyses by first-order reliabil-
ity method. After FORM analysis, each component event is ap-
proximately described by

E: Zi=-(, i=1,...,5 (A2)
where Z; is correlated standard normal random variable; and g; is
the FORM reliability index of E;, i=1,...,5. The correlation co-
efficient between Z; and Z;, i#j are computed by the inner-
product of the negative normalized gradient vectors at the corre-
sponding MPPs [6]. In this example, suppose B;,=3, i=1,...,5
and the inner products give the correlation coefficient matrix

1 089 0.88 0.87 0.86
0.89 1 090 090 0.90
0.88 099 1 090 0.90
0.87 0.90 090 1 0.90
0.86 0.90 090 090 1

The MSR method computes the probabilities of the system
events in Eq. (A1) by the matrix formulation in Eq. (16). The
numerical integration requires three tasks: (a) describing R ap-
proximately by use of a generalized DS model and identifying
common source random variables S, (b) constructing the event
vector ¢, and (c) computing the conditional probability vector

p(s).

R= (A3)

011005-10 / Vol. 132, JANUARY 2010

First, the correlation coefficients in R are fitted by those con-
structed by a generalized DS model, i.e., p;;=2_, (ry.rj) with the
minimum error. When one CSRYV is used, the coefficients in the
generalized DS model in Eq. (17) are

ryg= 09223, ry1 = 09539, r3;p = 09541, rq1 = 09432,

rsy =0.9435 (A4)

When two CSRVs are used for improved accuracy, the coeffi-
cients are obtained as

i1 =09262, 1 =O6989, r3p 2068017 Y41 =O6632,
rs;p = 0.6427
(AS)
}’12=0.3769, 7'22=0.6436, 732=O.6614, Yyp = 06782,
rey = 0.6998

The joint PDF of CSRVs in Eq. (16), i.e., fg(s) is ¢(s;) and
¢o(s1)¢(s,) for one- and two-CSRV cases, respectively, in which
¢(-) denotes the PDF of the standard normal distribution.

Second, the event vector c¢ is constructed for each of the system
events. The event vectors for the five component events are first
constructed by the sequential matrix-based procedures proposed
in Ref. [35]

C —[1] Coe| ST M e imia s
[1] O ’ [i] C[[—l] 0 94y sy

(A6)

where 0 and 1 denote the column vectors of 2/~! zeros and ones,
respectively. When the iterative procedure is completed, the ith
column of Cjsjis the event vector of the ith component event E;,
i=1,...,5. As a result, the event vectors of the five components
are obtained as

¢£1=[10101010101010101010101010101010]"
¢£2=[11001100110011001100110011001100]"

¢f5=[11110000111100001111000011110000]" (A7)

cf4=[11111111000000001111111100000000]"

cfs=[11111111111111110000000000000000]"

Then, the event vector of the system event E is obtained by
matrix-based procedures employing the event vectors of the com-
ponents. For example, the event vector for the complementary
event of E, the intersection and the union of the component events
are obtained as follows:

cf=1-cf
L - I P (A8)
VB (X =cFr). x(1=cB2). % oo (1 —chn)

where .* denotes the element-wise multiplication of two vectors.
Finally, the conditional probability vector p(s) is constructed by
the following matrix-based procedure:

Pris) =[Py ()1 -~ Py()]"
(A9)
o2 {p[,-_ms) P(s)
P =1 p (o) - [1 - Pts)]

where P;(s) is the conditional probability of the ith component
given S=s, which is computed by Eq. (22) employing the reliabil-
ity indexes ;=3 and the generalized DS model coefficients in Eq.
(A4) or Eq. (A5). When the sequential matrix-based procedure in

} for i=2,...,5
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Table 7 System probabilities computed by MSR, MCS, and bounding formula (X10-%)

Bi-component bounds

MSR: No. of CSRVs MCS (N=107 times)

System events Lower bound Upper bound 1 2 P(Egy) cov

Series 2.309 4338 3.528 3.526 3.532 0.005
Parallel N/A N/A 0.2314 0.2318 0.2329 0.021
Link-set N/A N/A 1.738 1.739 1.764 0.008

Eq. (A9) is completed, pys)(s) is used as p(s) in Eq. (16).

Table 7 shows the results of the system reliability analysis by
the MSR method, Monte Carlo simulations and the bi-component
bounding formula [27]. Close agreements between the results by
MSR method and those by MCS confirm the accuracy of the MSR
method for the given example while the bi-component bounds
show significant width for the series system.
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