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Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are
attached to the boundary of the body, low intensity alternating currents are applied, and the resulting
electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains
the three-dimensional internal admittivity distribution that corresponds to the image. One of the main
goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. How-
ever, when the finite element method (FEM) is employed and the corresponding mesh is refined to
increase resolution and accuracy, the computational cost increases substantially, especially in the estima-
tion of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the
forward problem, which was previously reported in the context of structural optimization. We propose
several improvements to this solver to increase its performance in the EIT context. The solver is based
on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time
for a constant and high resolution finite element mesh. In addition, we consider a powerful precondition-
er and provide a detailed pseudocode for the improved iterative solver. The numerical results show the
effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradi-
ent (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh
resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low

computational cost.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Electrical impedance tomography (EIT) finds the admittivity
(conductivity and permittivity) distribution in a given model of a
body that corresponds to the boundary measurements of currents
and potentials on electrodes attached to that body [1]. The model
of the body is based on an elliptic partial differential equation ob-
tained from Maxwell’s equations and the admittivity distribution
represents the solution of a non-linear and ill-posed inverse prob-
lem. Several combinations of current-carrying electrodes can be
chosen and, therefore, many induced electric potential values
may be available for the admittivity estimation.

The EIT applications are the spatial conductivity estimation of
carbon nanotube composite thin films for sensing purposes [2],
the detection of faults in coatings of endoprostheses [3] and
ground water resources [4], mammography [5], the monitoring of
lung aeration imposed by mechanical ventilation [1,6,7] (see
Fig. 1), etc. In the context of the last application, which is the main
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interest of our group, the technique is harmless to the patient and
the hardware device is portable with relatively low cost; in addi-
tion, the reconstruction of absolute admittivity values has shown
its relevance because these values help distinguish certain lung
pathologies [1].

Several algorithms have been proposed to solve the non-linear
inverse problem for the absolute admittivity values. They are usu-
ally based on iterative methods, such as Gauss-Newton [2,9-13],
which require the solution of the forward problem, i.e., the compu-
tation of the electric potential for a known admittivity distribution
and prescribed boundary conditions [14]. The solution of the for-
ward problem involves the solution of a linear system of equations,
often obtained through the finite element method (FEM) [1,2,9-16]
(the method of fundamental solutions [17] and the boundary ele-
ment method [18] have also been reported). Since several combi-
nations of current-carrying electrodes are considered in the
image estimation, the linear systems have different right-hand
sides. Iterative methods are usually reported rather than direct
methods [1,11,13,15,16], because of low storage requirements
and fast computations, even for multiple right-hand sides (see
[19]).
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(b)

Fig. 1. EIT applied to monitor the lung. (a) Experimental apparatus, including the electrodes around the volunteer’s chest. (b) Ventilation map [8], a difference image obtained
based on the impeditivity distribution (lighter colors within the lungs indicate higher variations).

In fact, iterative methods [19,20] for solving the forward prob-
lem offer several advantages over direct methods [21]. First, the
systems do not need to be solved accurately at the start of the iter-
ative image estimation process. Second, iterative solvers are easier
to parallelize than direct solvers. Third, one can use solutions from
previous systems as starting guesses, which significantly speeds up
the convergence. Fourth, for a sequence of linear systems that
change slowly, the total runtime can be reduced by recycling sub-
spaces of search spaces corresponding to earlier linear systems
[22,23].

One of the main goals of EIT is to achieve high resolution and
accuracy at low computational cost (for instance, to monitor lung
aeration, a resolution of less than 0.01 m for an adult thorax is
desirable). However, as finer finite element meshes are considered,
the computation time increases as well, especially in the case of
three-dimensional (3D) meshes and the estimation of absolute
admittivity distributions. In fact, the computation time can be pro-
hibitive in practical 3D cases.

Some authors have studied the reduction of runtimes in EIT. In
[18], for instance, neural network approximation models are used
in order to significantly speed up the image estimation process.
On the other hand, in [15], a black-box algebraic multigrid precon-
ditioner is tested, showing reduced time cost of solving the for-
ward problem.

In this work, we consider the fast iterative solver proposed in
[21] with additional improvements in conjunction with a powerful
preconditioner [21,24] to reduce the EIT computation time for a
constant and high resolution finite element mesh. In addition, we
provide a detailed pseudocode for the improved iterative solver.
The considered iterative method is based on the concept of Krylov
subspace recycling, which is applied to diminish the time and
number of iterations of each FEM solution.

We employ sequential linear programming (SLP) [25] to solve
the inverse problem (a similar method has shown good results in
the EIT context [1,16]), and apply a simple regularization method
that proved effective in [1]. However, the approaches proposed in
this paper are general and do not assume a specific image estima-
tion or regularization method. The SLP algorithm finds the admit-
tivity distribution that minimizes a square error function for
measured and numerically computed potential values (see Section
3).

Krylov subspace recycling speeds up the convergence of each
linear system by exploiting the fact that in the iterative optimiza-
tion process (or SLP iterative process) the changes in the linear sys-
tem matrices are small. In addition, this technique can be used to
speed up the computation of the gradient of the error function dur-
ing one SLP iteration, which is based on the solution of several lin-
ear systems with the same matrix and many right-hand sides. The

preconditioner, on the other hand, reduces the condition numbers
of the linear system matrices, giving rise to faster convergence and
shorten solution times in spite of the overhead from its computa-
tion and application.

We consider the image reconstruction of a cylinder with high
resistivity within a conductive body. We also simulate the data,
which means that a numerical phantom [26] provides the mea-
sured potentials. Results show that the image estimation using
the proposed iterative solver is approximately 35% faster than
the estimation using the corresponding conventional Krylov sub-
space solver, and 24% faster than with the well-known (precondi-
tioned) Conjugate Gradient (CG) algorithm [20], for a finite
element mesh with 849,995 elements and 152,226 nodes. The re-
sults also show that the solver can handle high mesh resolutions
at relatively small computational cost (for the same finite element
mesh, the whole estimation process took approximately 6 h and
25 min), even on a standard PC without parallelization.

This paper is organized as follows. In Section 2, the FEM-based
computational model is presented. In Section 3, the solution of the
inverse problem is discussed. In Section 4, Krylov subspace recy-
cling is explained. In Section 5, we describe the preconditioner.
In Section 6, implementation details are provided. Results are pre-
sented in Section 7, and concluding remarks are offered in Section
8. In the Appendix A, we list the pseudocode for the improved iter-
ative solver.

2. Computational model

Maxwell’s equations describe the electromagnetic fields in the
body [26]. Based on these equations and considering the quasi-sta-
tic approximation for a linear and isotropic medium and a suffi-
ciently small excitation frequency, a conductive medium can be
assumed and the following elliptic partial differential equation is
obtained [26]:

V.oVV =0, (M

where ¢ and V are the real valued electric conductivity and electric
potential, respectively. Taking into account Neumann and Dirichlet
boundary conditions, and applying a variational approach [27] fol-
lowed by the discretization of the model in finite elements (in this
work, four node tetrahedral elements are employed), we can obtain:

K(o)Vj(a) =1,. (2)

The term & € R™ is the vector of nodal conductivities (we assume
that the conductivity of each finite element depends on nodal val-
ues, varying linearly within the element in the same way as the
electric potentials [27]), nd is the number of nodes in the mesh,
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K(6) € R™™ is the conductivity matrix, I; € R and V;(¢) € R™ are
the vectors of nodal electric currents and electric potentials, respec-
tively, and the index j indicates different current-carrying elec-
trodes (or excitation patterns, related to the Neumann boundary
conditions). The matrix K(¢) does not depend on j because the same
reference node [14] (corresponding to the Dirichlet boundary condi-
tions) is employed for all excitation patterns.

Point electrodes at nodes model narrow electrodes, that is, an
electrode is modeled as a boundary node of the finite element
mesh. The contact interfaces between the electrodes and the body
[1,14,26,28,29] are not included in this model. However, we be-
lieve these simplifications do not invalidate our results for the case
of more elaborate electrode models [26,28]. The reason is that such
electrode models introduce a small number of new unknowns in
the forward problem [1,14,26,28,29]. In addition, the ill-condition-
ing that may arise due to the high resistivity values of the contact
layers can probably be handled quite efficiently by diagonal scal-
ing. A detailed discussion on diagonal scaling can be found in [24].

3. Solution of the EIT inverse problem

In this section, we succinctly describe the theory regarding the
SLP algorithm employed. We also present the formulation of the
conductivity estimation problem and discuss the computation of
sensitivities, an important step of the SLP algorithm.

3.1. Formulation and SLP algorithm

The EIT inverse problem is usually based on the minimization of
a square error function for measured and computed potential val-
ues [1,2,12,14,16], which can be conveniently given by

F(e) = % " (ABVj(0) - Vi)' (ABVj(6) — V), (3)
=1

where ne is the number of different excitation patterns, Vo; € R™ is
the jth vector of measurements corresponding to differences of
electrical potentials on adjacent narrow electrodes, nm is the num-
ber of measurements for each excitation pattern, B € R"™" selects
from Vj(o) all nt differences of potentials that correspond to adja-
cent point electrodes, and A;R™ ™ is a diagonal matrix that discards
the values of differences on current-carrying electrodes. As sug-
gested, each row of B is given by (0...010 ...0 —10...0), where
the positions of the +1 correspond to the positions of the point
(or nodal) electrodes.

Based on Egs. (2) and (3), we define the following minimization
problem in order to obtain the inner distribution of conductivities
of an object:

min F(6) subjectto K(o)V;(o) =1,
[ Op < O < Op,

j=1...ne,

k=1...nd @

where g4 and a3 are the electric conductivities of the materials that
compose the object (they could be the limits of a range of values in a
clinical situation).

The SLP algorithm iteratively solves the constrained optimiza-
tion problem in (4). At each SLP iteration, the non-linear error func-
tion (3) is linearized at the approximation (for conductivities)
obtained in the previous iteration, and a linear programming (LP)
algorithm [25] solves the linearized problem, obtaining a new
approximation. In addition, moving limits, i.e., additional box con-
straints for each conductivity oy, are applied in the linearized prob-
lem to assure that a good approximation for the solution of the
original non-linear problem is obtained. The range of values within
the moving limits is reduced if the corresponding conductivity
oscillates or stagnates, and it is increased otherwise. The SLP iter-
ative process is continued until a convergence criterion is satisfied.

As LP solutions approach convergence, one can expect the con-
ductivity values to oscillate or stagnate due to a box constraint.
Thus, the reduction (in average sense) of the maximum absolute
change in the nodal conductivities for two conductivity vectors
corresponding to consecutive SLP iterations and, consequently,
the reduction of the differences between the corresponding con-
ductivity matrices K are also expected. This feature of the SLP algo-
rithm is exploited by using the Krylov recycling technique.

3.2. Computation of sensitivities

For brevity, we write V; for the vector Vj(¢) and K for the matrix
K(o).

The gradient of F, used in the SLP iteration, is given by
OF & (@)Tavj
00y a an ooy, ’

5)

where each element of 3 is a derivative of F with respect to an ele-
. L. .

ment of V;. By differentiating (2), one can obtain:

ov; 1 oK

—=-K" —V, 6

00y, oo}, J ( )

On the other hand, one can write:

oF T T
@T/j = (AjBVj - Voj) AB. (7)

By substituting the last two equations into (5) the following is

computed:

oF ne oo 0K
=" (ABV; - Vo) ABK™' V.
agk = ( J J 0}) J ao-k J (8)

Eq. (8) suggests that ne + ne nd linear systems must be solved to
compute the gradient of F (which corresponds to the so-called di-
rect method [30, p. 264]). However, if we solve:

/=K 'B'A{ (ABV; — V), 9)

for each j, transpose the results and substitute the transposed vec-
tors into (8), only 2ne systems need to be solved. This is a significant
reduction since the order of magnitude of nd is equal to 10° in this
work and ne is often smaller than 32 in EIT. This alternative way to
compute (8) is referred to as the adjoint or dummy-load method
[30, p. 264]. Besides the reduction in work introduced by the adjoint
method, a further reduction in computation can be obtained, as ex-
plained below.
The jth column vector of BT, i.e., B; € R", is given by

Bj:a(lj—ljﬂ), j:l...l’l(i'—]7

1
Bne = a(Il - Ine)7 ( O)

where a is a given constant. Eq. (10) holds because nt = ne and the
same nodes, corresponding to the electrodes, are used to apply cur-
rent and to measure potentials, as previously explained in the text.
Based on Egs. (2) and (10), one can write:

K 'Bj=aK ' (I - I,;1)

=a(V;-Vj4), j=1...ne—1, (11)
K "B, = aK™ ' (I — I,) = a(V; — Vy).
Therefore, we do not need to solve K~ 'BT in (9) explicitly, but we

only have to solve (2) for j=1...ne at each SLP iteration in order
to compute (8)." This represents a significant time reduction in

1 Because the constant a in (11) can be relatively high, we must assure that a
sufficiently small tolerance for the residual norm is used in the solution of the linear
systems KV; = I; for j=1...ne. Otherwise, large errors in the gradient could arise and,
consequently, SLP convergence problems might occur.
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relation to the runtime reported in [1,16], for which (10) does not
hold since compound electrodes are used [28].

The solutions of (2) for j = 1...ne are obtained by the solver de-
scribed in the next section.

4. Krylov subspace recycling for symmetric matrices

The basis for our proposed, improved, algorithm is the MINRES
method [31], a Krylov subspace, minimum residual, algorithm for
solving linear systems of equations with symmetric (possibly
indefinite) matrices; see also [19]. At each iteration, the three-term
Lanczos recurrence generates a new vector, expanding the ortho-
normal basis of the Krylov subspace [20]. Then, an approximate
solution in the Krylov subspace that minimizes the two-norm of
the residual is obtained.

The recycling version of MINRES (RMINRES) approximates a
low-dimensional invariant subspace associated with the smallest
absolute eigenvalues while solving a linear system and uses this
approximate invariant subspace in the solution of subsequent lin-
ear systems [21]. For RMINRES to be effective, subsequent matrices
must have approximate invariant subspaces that are close. For
nonsymmetric/non-Hermitian linear systems alternative methods
with Krylov subspace recycling are available [23].

If the columns of the matrix U € R"*" provide a basis for the
recycle space, where 1 is the dimension of the recycle space, then
in the Lanczos recurrence, each new vector in the recurrence has
to be orthogonalized against KU. In addition, at each iteration, we
obtain an approximate solution that minimizes the residual in the
new subspace spanned by the columns of U and the Lanczos vec-
tors. As we iterate to solve the linear system, we periodically up-
date the approximate invariant subspace for the next linear
system. For the iterations between such updates (referred to as
a cycle), we keep the Lanczos vectors, and at the end of the cycle
we compute a new approximate invariant subspace using the
harmonic Ritz vectors with respect to the space given by the di-
rect sum of the previous approximate invariant subspace and the
space spanned by the Lanczos vectors of the past cycle. The max-
imum length of a cycle (and hence the maximum number of
Lanczos vectors kept to update an approximate invariant sub-
space), given by s, is provided by the user and must be tuned,
as discussed in Section 7.1.2. The harmonic Ritz vectors are good
choices since they yield good approximate eigenvectors of the lin-
ear system matrix [32].

The systems in (2) differ only with respect to the right-hand
sides. In these cases, the RMINRES solver effectively reduces the
number of iterations and the runtime of the linear solver. Further-
more, after solving ne systems, the approximate invariant subspace
computed in the last cycle is recycled for the first linear system of
the next SLP iteration. As the linear system matrices change slowly
between SLP steps, using a recycled subspace also reduces the
number of iterations and the runtime of the linear solver in these
cases. In addition, since the changes in the matrix tend to diminish
in the course of the optimization, the effectiveness of Krylov sub-
space recycling increases as the optimization converges.

The RMINRES algorithm considered in this work is discussed in
detail in [21]. However, in Section 6.2, we describe several
improvements to the original code that reduce the runtime of
the solver significantly.

5. Preconditioning

The convergence rate of Krylov subspace methods for symmet-
ric or Hermitian linear systems depends only on the eigenvalues
and the decomposition of the right-hand side along the eigenvec-
tors. Indeed, the condition number of the matrix, the ratio between

the absolute largest and smallest eigenvalues, governs an upper
bound on the convergence rate. The larger the condition number,
the slower the algorithm converges, in general.

The linear systems arising from EIT are ill-conditioned. We can
significantly reduce the large number of (linear solver) iterations,
due to the large condition number, by preconditioning. For the
experiments in this paper we have used as preconditioner the
incomplete Cholesky preconditioner with zero fill-in (IC(0)) for
the matrix K [33]. Application of the IC(0) preconditioner leads
to a significant reduction of iterations and computation time.

It is important to note that the preconditioner used in this work
is a black-box preconditioner. This means that there are no param-
eters that need tuning, such as for the preconditioner proposed in
[15].

6. Numerical implementation

A C/C++ code was developed in [21] in order to implement
RMINRES. The solver was integrated in the open-source package
Portable, Extensible Toolkit for Scientific Computation (PETSc), a
suite of data structures and routines for the solution of scientific
applications modeled by partial differential equations. The rou-
tines include several preconditioners and linear and non-linear
equation solvers, which can be used in codes written in C. The pre-
conditioner and the MINRES and CG solvers used in this work are
implementations from PETSc. More details about PETSc can be
found in [34].

6.1. Flowchart and numerical aspects

A simplified flowchart for the proposed estimation algorithm is
shown in Fig. 2. In this figure, the main steps of the optimization
software are given, including the solution of linear systems.

The figure also shows the recycled subspace defined by U;, the
solution V; of (2) obtained by one of the iterative methods consid-
ered and used as an initial guess for the subsequent system (to re-
duce initial error), and the subspace defined by U,. and the vector

Numerical | |Solution of the
Phantom Linear Systems
Vo Voo Vo KV =I
3w
nitializing _
and Data K‘?_Iz
Input £ l v,
V::e-l l Une-[
K‘/nez ne
V.U,
Computing LP
error function F||algorithm
Estimated
Image

Fig. 2. Flow chart of the estimation process. If MINRES or CG is used to solve the
linear systems, Uj (for j=1...ne) is not computed.
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Fig. 3. (a) Schematic model, showing the point electrodes on the surface and a point on the axis of the cylinder whose potential is taken as ground; (b) resistivity distribution

of the phantom. (units: @m).

V;. considered in the solution of K(6)V;(a) =1, with a new set of
optimization variables ¢ obtained through LP.

The LP step refers to the routine Simplex [25]. A routine from
the GNU Project GNU Linear Programming Kit (GLPK) package is
used in this case [35]. The GLPK package is intended for solving
large-scale LP and other related problems. The routines are written
in C and were compiled as a library.

The remaining routines in the image estimation process, such as
those for the computation of sensitivities and for the preprocessing
step, are implemented in C, and a main routine calls all the rou-
tines, including the PETSc and GLPK Simplex routines.

6.2. Improved RMINRES code

We now briefly outline several improvements to the RMINRES
algorithm given in [21]. We have made the algorithm significantly
more efficient in terms of floating point operations. These improve-
ments are necessary because the matrix-vector products and the
preconditioner steps for the EIT problem are much cheaper than
for the structural design problems described in [21], and therefore
we must reduce overhead.

The first improvement is in computing an orthonormal basis
from the columns of the matrix KU by a reduced QR decomposi-
tion: CR. = (KU). To each orthogonalization of a new Lanczos vec-
tor against the matrix C corresponds an update to the
approximate solution of the type u=u+K 'Cq=u+UR.'q.
However, rather than updating the matrix U = UR,', such that
KU = C and simplifying the solution update, we use the original
matrix U and perform the required matrix-vector products as
U(R:'q). In general, this is much more efficient. This is especially
true in light of the second improvement. Since the approximate
solution is not needed itself during the Lanczos iteration, we
can postpone all updates with vectors of the type Uq until after
the linear solve. This reduces four vector updates or daxpy’s
(multiplying a vector by a scalar and adding to another vector)
for vectors of length nd to vector updates for vectors of length r
(the number of columns of U). We may have nd=0(10°) or
nd = 0(10%), whereas typically r=10 or r=20, and so this consti-
tutes a significant reduction of computational work. The third
improvement arises from the fact that we only need to compute
a new, approximate, invariant subspace basis U; (at the end of cy-
cle j) for the next linear system, and that the matrix C; or KU; is
not needed itself for solving the current linear system. Therefore,
the references to this matrix used in intermediate computations
can be replaced by cheaper, alternative, recurrences.

The proposed improvements represent a time reduction of
approximately 8% when comparing the original RMINRES code
and the improved code, for the smaller mesh test problem discussed
in the next section (observation or measurement noise is not con-
sidered in this particular case). We provide a detailed pseudocode
for the improved RMINRES algorithm in the Appendix A.

7. Numerical results

The results are obtained on a PC with an Intel® Core™ 2 Quad
Q6700 2.66 GHz processor, approximately 8 GB of RAM and the
Ubuntu 9.04 (64-bit version) Linux system. The IC(0) precondition-
er is used, as discussed in Section 5. Based on the work of Wang
et al. [21], the performance of the improved RMINRES is studied
and compared with other solvers.

On the surface of the model, thirty-two uniformly positioned
nodes are regarded as point electrodes, and the electric potential
in one point is taken as ground (that is, the potential in one node
is equal to zero), as indicated in Fig. 3. Additionally, 32 different
excitation patterns are used (ne=32) and 30 electric potentials
are measured for each distinct pattern (nm = 30), which means that
960 measurements are available. For each excitation pattern (i.e.,
for each value of j), one electrode is excited. The magnitude of
the electric currents is equal to 0.001 A. Measurements of potential
differences are taken from adjacent electrodes, as mentioned in
Section 3.

The convergence criterion for the image estimation is that F in
(3) is less than 4 x 1075, For the iterative solvers, the convergence
tolerance for the residual norm is set to rtol|Ij||, for the jth linear
system, where the relative tolerance rtol is equal to 10~'°. For all
tests, the solution of the previous system is used as the initial guess
of the next system, as mentioned in Section 6.1. The initial values
of the optimization variables correspond to 4 Q2 m.

We apply a simple regularization method that proved effective
in [1]. It is based on an explicit spatial gradient control scheme,
which avoids oscillations and thus enforces a certain amount of
smoothness on the solution. For further detail, we refer to [36].

Table 1
FEM meshes MESH1 and MESH2.
MESH1 MESH2
Number of elements 353,337 849,995
Number of nodes 64,862 152,226
Degrees of freedom 64,861 152,225
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Fig. 4. Estimated images using MESH1 (a) and MESH2 (b). (units: 2m).

To simulate the data, we consider a numerical phantom with
367,809 nodes, 2,061,992 elements, and 367,808 degrees of free-
dom. The number of degrees of freedom corresponds to the num-
ber of nodes minus the number of prescribed potentials, which is
equal to one, here, because the electric potential in only one node
is taken as ground. Zero-mean Gaussian measurement noise is
added to simulated data. The standard deviation is 0.1% of the
maximum measurement.

The image to be estimated is shown in Fig. 3. According to
[37,38], the orders of magnitude of the resistivities are in the range
found in the human thorax under normal conditions, for an excita-
tion frequency of 125,000 Hz.

7.1. Test problems

We run two sets of test problems and use two discretizations.
For the first set, we use MESH1 and for the second set MESH1
and MESH2. The number of elements, number of nodes, and the
number of degrees of freedom for each mesh are shown in Table 1.

In the first set of test problems, we discuss the performance of
the RMINRES algorithm. The parameters r, the dimension of the
recycled subspace, and s, the maximum number of Lanczos vectors
stored to periodically update the approximate invariant subspace
(which is equal to the length of a cycle), are varied. In this case,
RMINRES is referred to as RMINRES(s,r). In addition, we compare
RMINRES with the corresponding conventional Krylov subspace
method MINRES and the well-known (preconditioned) CG algo-
rithm [20], the method of choice for symmetric and positive defi-
nite matrices that often arise in EIT. The number of iterations
and time spent in solving the linear system (2) with j=1 are de-
picted for each solver (see Section 7.1.1).

In the second set of test problems, we estimate the image using
CG, MINRES and RMINRES(s, 7). Then, we show the runtime of the
image estimation for each method, and discuss the results.

In this paper, we do not consider the parallelization of the solu-
tion of (2) for j = 1...ne. The maximum amount of allocated mem-
ory for the image estimation never exceeds 1400 MB and,
therefore, swap memory is never required; only physical memory
is used. The typical images obtained using the two meshes are
shown in Fig. 4. The remaining results are discussed in the next
subsections.

7.1.1. First set of test problems
The number of iterations and time spent in solving the linear
system in (2) with j = 1 are shown in Fig. 5. First, it can be seen that

a maximum of 117 SLP steps were taken (for RMINRES(100,30), CG
and MINRES), which means that 3744 (ne times 117) linear sys-
tems are solved in order to estimate the image in the worst case
(if RMINRES(15,10) and RMINRES(100,10) are used, 116 SLP steps
were taken; on the other hand, 115 steps were necessary using
RMINRES(100,5)).

The graphs also show that recycling becomes more efficient to-
wards the end of the optimization process. In addition, the run-
times demostrate that RMINRES can already be more effective
than MINRES and CG after a modest number of SLP steps, and that
the effectiveness of RMINRES increases with r and s. However, the
algorithm does not further reduce the solution time for values of r
above a certain threshold, in spite of a further decrease in the num-
ber of iterations, as suggested by the results for RMINRES(100,30).

Experiments in [21] have suggested that s controls the accuracy
of the approximation to the invariant subspace and, therefore, the
effectiveness of recycling in reducing the number of iterations. The
results for RMINRES(s,10) in Fig. 5(a) for SLP iterations between 22
and 106 corroborate this statement. In addition, the results in
Fig. 5(b) show that reducing the number of iterations, nr, in general
implies the reduction of the computation time. However, the num-
ber of Lanczos vectors computed during the iterative process is
equal to the number of iterations to solve the linear system; there-
fore, since nr is often smaller than 100 (for r = 10), we can expect
limited benefits for s beyond 100 in our tests (see [21]). For larger
or more difficult problems, though, we can expect further
improvements.

It was possible to detect values of r and s that rendered a supe-
rior performance with a few experiments. We suggest that exper-
iments (such as the numerical tests carried out in the present
subsection) should also be performed in practice before clinical
implementation of the proposed solver.

7.1.2. Second set of test problems

The total runtimes of the estimation processes? for CG, MINRES
and RMINRES are shown in Table 2.

The results show that RMINRES was faster than CG for several
values of r and s used. Using the values that provided the best per-
formance (r=10 and s=100), we see that the relative time

2 Note, if the IC(0) preconditioner is not used, the image estimation for MESH1 and
RMINRES(100,10) or CG takes more than 5 h. These results show that the precon-
ditioner effectively reduces the computation runtime in spite of the overhead from
the incomplete Cholesky decomposition and from preconditioning using the resulting
incomplete Cholesky factors.
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Fig. 5. (a) Number of iterations (nr) for CG, MINRES and RMINRES(s, ) for each SLP
iteration (ns); (b) and (c) solution time for CG, MINRES and RMINRES(s,r) for each
SLP iteration. All graphs correspond to the solution of KV, = I.

Table 2
Estimation process runtime (in hours).
MESH1 MESH2

MINRES 2.85 9.88
CG 247 8.42
RMINRES(15,10) 2.65 8.99
RMINRES(100,5) 2.30 7.18
RMINRES(100,10) 2.15 6.42
RMINRES(100,30) 2.62 7.23

difference increases with mesh refinement. In fact, the difference
between the runtimes for CG and for RMINRES(100,10) represents
approximately 13% of the runtime for CG when MESH1 is used, and
24% when MESH2 is used. Further tests must be carried out to
determine if the relative solver performance increases further with
mesh refinement or if this effect must be attributed to a better
choice of the parameters r and s.

8. Concluding remarks and extensions

In this paper, we introduced Krylov subspace recycling in the
context of EIT to reduce the computational cost used to obtain a
3D image. It was shown that for a suitable size of the recycled sub-
space and an appropriate length of the cycles, the RMINRES algo-
rithm leads to a significant reduction in computation time for the
solution of the forward problem. The results also show that RMIN-
RES was faster than MINRES and CG. This suggests that RMINRES is
the method of choice for large-scale EIT.

In future work, we intend to parallelize the solution of the finite
element equations to speed up the optimization process even
more. We also intend to consider other preconditioners, such as
the algebraic multigrid preconditioner proposed in [15] or the mul-
tilevel preconditioner discussed in [24,39], and we will test an
updating rule for the relative tolerance rtol, because the linear sys-
tems do not need to be solved accurately in the beginning of the
SLP process. Finally, we will refine our model by implementing
more elaborate electrode models, and we will test our algorithm
using real experiments data. Further research is needed to analyze
whether recycling an approximate invariant subspace correspond-
ing to small eigenvalues is worthwhile for the estimation of con-
tact parameters in more elaborate electrode models (we refer to
[1,10] for further detail on the estimation of contact parameters).
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Appendix A. Revised RMINRES code

We provide the revised RMINRES code below; however, first we
briefly discuss some notational choices and other important issues.
For brevity, we write K for the preconditioned matrix M]’IKM”,
where K is a symmetric (Hermitian) matrix. In practice, multipli-
cation by the preconditioned matrix, y = Kx, is carried out in three
steps: (1) Sove Moy = %, (2) y® = Ky, and (3) Sove My = 32, By
[] we denote an empty matrix. The scalars t;; are coefficients of the
tridiagonal matrix T. The matrix Gy is a (2 x 2) Given’s rotation,
computed so that the second coefficient of the vector
Co[y07t[1+u]T is set to zero (see descriptions of the MINRES algo-
rithm in [19]).

The scalar n indicates the number of degrees of freedom in the
linear system, that is, number of rows of the matrix K. The scalars
ng and np denote the number of rows of Q and P, respectively. Two
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subscript ranges indicate a subblock of a matrix, F*" denotes the
g x h matrix with ones on the diagonal and zeros elsewhere, 079
denotes the i x j zero matrix, and I, denotes the k x k identity
matrix.

The input variables are defined as follows. The vector u, is an
initial guess for the solution; U is the recycle space, where an
empty matrix indicates that no initial recycle space is provided;
The matrices K, My, and M, are the linear system matrix and the
left and right preconditioner, respectively; € gives the relative con-
vergence tolerance; b is the right-hand side for the linear system; k
is the dimension of the recycle space; /ax is the maximum number
of Lanczos vectors kept for updating the approximate invariant
subspace, which corresponds to the length of a cycle; and iyayx is
the maximum number of linear solver iterations. The two output
variables are the approximate solution u and the new recycle space
U,

' A few steps in the algorithm require some interpretation. For
brevity, we write the orthogonalization of the new Lanczos vector
against the matrix Cin two steps as p = C'#; and # = # — Cp. How-
ever, this should be implemented as a Modified Gram-Schmidt
orthogonalization [40, p. 231]. All multiplications by inverse matri-
ces, e.g., in g = R;'p, should be implemented by solving for the de-
sired vector, typically using backward substitutions. However, for
F', an LU decomposition and a forward and backward substitution
is required. All QR decompositions should be so-called reduced QR
decompositions [41, p. 49], which means that the decomposition
QR =Z"""yields Q" *™ and R™ ™. Finally, some triple matrix prod-
ucts, such as L, = Q"W,P, should be computed carefully to avoid
unnecessary computational work.

Revised RMINRES
Input: uy, U (possible empty), K, My, M, b, €, k, {max, imax
Output: u, U;
ro = b- I(uo;i'o = M;]ro;B = M;]b;
IF U # [] THEN

C-= RU; QR pecomp: CR: = E;

p=C'ri = —Cp;q=R:'p;

¥ ||| < €||b|| THEN

u=uy+M,'Ugq;

RETURN;
END
s {U=[]}
C=[];q=0:

N {if U#[]}

Vi =7/|F|l; 6 = [IT]; 2 = 0;

j=1;i=1;4=4yg=t1=1;

WHILE ||| > €[|B|| AND i < imas,
V= IA(Vm/];d =0;

IF U # [] THEN
Bix =C'9;0= - CByy;d=d+Re' By
END

IF 01> 1 THEN @ = ¥ — £, _1,V1ns-1; END
T ~ ~ ~
tot =Vin, U0 =0ty Ning;
to 10 = 10 Vime 41 = U/t 105t 01 = o105
IF i > 2 THEN
T T
[V2:71] = G2[0,t,, 1.4 ;
ELSEIF i > 1 THEN
Y1 =ty-146
END
i>1 T = Gi[yq, te, "
IF 1> 1 THEN [}, 90]" = G1[)y, tey ]

Revised RMINRES (continued)
Revised RMINRES

ELSE Yo = t¢, ¢ END

comMPUTE Go : Go[g, tr, 11.4]" = [3+,0];

[¢1.02]" = Gol 24,01

W=V, f=d

IFi>2 THEN W=W — Wy)5; f=f— f>72; END

IFi>1THEN W=w — wy)1; f=f— fi171; EnD

w=w/yo; f=fl7o;

u=u+wi;

IF U # [] THEN q = q — f{1; END

IF £ = lmax OR (o] < GHBH THEN

UPDATE APPROXIMATE INVARIANT SUBSPACE

END

IFi>1 THEN Gy = G1; Wy =wyq; o =fi; END

G =Gy, wi=w,fi =f; (=03

(=0+1; =01 +1;

i=i+1;
END {while ||| > €|[b|| and i < imax}
i=i—1;
IF U # [] THEN u = u + Uq; END
u=1uy+M;' u

The update of the approximate invariant subspace consists of
two parts, one for the case that no (initial) recycle space is given
and one for the case that U is defined.

Update approximate invariant subspace

1IF U =[] THEN
UPDATE APPROXIMATE INVARIANT SUBSPACE Uj
WITHOUT INITIAL RECYCLE SPACE U
ELSE
UPDATE APPROXIMATE INVARIANT SUBSPACE Uj
WITH RECYCLE SPACE U
END
{START NEW CYCLE; KEEP LAST TWO LANCZOS VECTORS }
j=i+1;
Vint =Ving; Vinz = Ving +1;
o=ty g1, T = QUmot D lmac ) 4 — g
lp=2;£=0;t,=1;
IF (5] < EHiJH THEN
IF U # [] THEN u = u + Ugq; END
u=1uy+M;'u
RETURN
END

Update approximate invariant subspace without initial
recycle space

IFj=1TtHEN ({first cycle no U;j yet, ¢, = ¢}
Compute harmonic Ritz vectors from Tj.;.q 1., With k
absolute smallest eigenvalues —P**¥;
QR pecomp: QR = T VXp, P = PR,
Ul = Vl:ntl:lPQ
Q1 =Qiv 110 Q= Qur11:ks
QR pECOMP: ZR = Q;
ng=(+1; np=1¢,
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Revised RMINRES (continued)

Update approximate invariant subspace without initial
recycle space

W2 = I(é,‘+1)></.
ELSE
L] _ 0(17,1+‘l)><k.

(Ll)l‘l:k = QnQ—l,I:k? (Ll )2‘]:k = QnQ.J:k;

I, LT >
w, =( ;k 1),
! <L1 Iy )’

L = Q'W,P;
Ly = 05 (Ly) 141 = (Qng.100) s
L3 = V—{:ﬂ.l:[ﬁrl Uj,1;
L4 = [O[X1I[0[X1]T;

_ (L L),
WZ = <L3 L, )7

I okxf
H= k ;
<0K'+1Xk T1:h+1,l:£>
soLve (H'W,H)x = 2(H"W,)x for k eigenvectors
with smallest eigenvalues — P;
F =1y 4 1;F1cik = By Fripia1k = Qa;
QR pecomp: QR = FHP;
P=PR '
U; = [Ujflvlzn.Z:él]ii:,
Qi = Qure—1145
Q, = Qk+[1:k+é1+l,1:k;
QR DECOMmP: ZR = Q;
Q=-F'Q
ng=k+¢,+1; np=k+¢;
eno - {ifj=1}

Update approximate invariant subspace with recycle space

IF j =1 THEN

I, Bik1. )
0 K Ty, s

Wi =i 415
r, = (CTU)R;1; {right order for efficiency}

L2 - okxl;
L; = (V.{:n,]:fﬁrlU)R;];
L4 _ I/1+] x[;
_(Th L
WZ = <L3 L4 )

soLve (HTW;H)x = & (H'W,)x for k eigenvectors
with absolute smallest eigenvalues — P;

QR pecomp: QR = HP; P = PR,

U; = U(RZlf"Lk,]:k) + Vinto Petiern 14

Ql = Ql:k,l:k;

Q2 = Qritikie -1k Q3 = Quepey ey 11,145

QR pEcomP: Z5S; = Qy;

ng=k+¢1+1; np=k+¢;

ELSE {j > 1}
IF j = 2 THEN
@, = [I, 0 1)Q;
ELSE
®; = Iy @; 0" 2)Q;
END

Revised RMINRES (continued)

Update approximate invariant subspace with recycle space

L; = 0+ D%k,
(Ll)m;k = an—l,l;k; (Ll)z‘lzk = QnQ,l:ki
Ik q)] 0k><[1+1
wy,=| o I, L |[;
0[1+1><k L I[1+1
rj _ [rjilokx(np—k)“’;;
L = Q'W,P;
L = 0 (L3) 141 = (Qug 1)
L3 = VI;H,]:[1+1 Uj*];
Ly= [0[X1Ig 0[><1]T;

r] 0k><1{
W, = L, L, 3
L; Ly
0 B
H= Ik okxl
0€1+1><k T1:£1+1,l:[

sove (HTW;H)x = . (H'W,)x for k eigenvectors
with absolute smallest eigenvalues — P;
F =Dy, 15 Friiroe = Qs
Fier1:21041:2k = S25
Fope:2k2k01:26 = Q35
QR pecomp: QR = FHP; P = PR !,
Ui = [Uj 1Vin2,)P;
Qi = Qi1 Q2 = Qurrokes —1.1:k
Q3 = Q2k+[,1 2k+6,+1,1:k>
QR pecomp: Z58; = Q5;
Q-F'Q
ng=2k+4,+1; np=k+¢;
e {ifj=1}
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