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SUMMARY

In topology optimization literature, the parameterization of design is commonly carried out on uniform
grids consisting of Lagrangian-type finite elements (e.g. linear quads). These formulations, however, suffer
from numerical anomalies such as checkerboard patterns and one-node connections, which has prompted
extensive research on these topics. A problem less often noted is that the constrained geometry of these
discretizations can cause bias in the orientation of members, leading to mesh-dependent sub-optimal
designs. Thus, to address the geometric features of the spatial discretization, we examine the use of
unstructured meshes in reducing the influence of mesh geometry on topology optimization solutions.
More specifically, we consider polygonal meshes constructed from Voronoi tessellations, which in addition
to possessing higher degree of geometric isotropy, allow for greater flexibility in discretizing complex
domains without suffering from numerical instabilities. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND MOTIVATION

The goal of topology optimization is to find the most efficient distribution of a fixed volume
of material in a specified design domain, without violating user-defined design constraints. The
computational solution procedure for solving such problems begins with a spatial discretization of
the design domain, based on which the set of design variables are defined (e.g. element volume
fractions) and candidate designs are analyzed. If additional constraints are not imposed on the
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problem, the topology optimization solutions may not be convergent under mesh refinement because
the oscillation of the design field is limited only by the grid scale. For example, the minimum
compliance problem does not have a physical length scale, and is ill-posed in the continuum setting
(for a review, see Reference [1]). Therefore, one would obtain designs with finer features as the mesh
is refined. The issue of mesh dependency can be treated by imposing restrictions on the continuum
problem. For example, it has been shown that placing an upper bound on the total variation of the
design field, corresponding to the perimeter of the design, guarantees the existence of an optimal
solution [2, 3]. However, Petersson [4] points out that the standard finite element formulation for
the perimeter-controlled method on structured square meshes suffers from a ‘rotational mesh-
dependence’, which causes the members to align with the element edges. Therefore, one cannot
expect convergence of numerical results to the optimal solution. Here lies another form of mesh
dependency that stems from the geometric features of the spatial discretization. Thus, there is need
for better computational framework and techniques.

To simplify the discussion and avoid the ill-posed nature of the continuum problem, consider
the discrete topology optimization problem defined on a fixed mesh. Assuming that the design
variables take discrete values (what is often desired), then an optimal solution exists. Since the
geometry of the mesh dictates the possible layout of material and orientation of members, one
expects the solution obtained on a less-biased mesh to be better. Moreover, if the geometric
attributes of the mesh are too restricting, certain characteristic patterns of the optimal solution (e.g.
orthogonality of members in classic Michell problems) may be excluded from the final design.
Similarly, artificial features specific to the choice of discretization may be introduced. A commonly
encountered artifact is the one-node hinge that spuriously improves the performance of compliant
mechanisms [5]. Therefore, it is important to examine the influence of geometric properties of
the spatial discretization on topology optimization solutions. We remark that such investigations
have been conducted in computational fracture mechanics, in particular, for crack propagation
simulations, where quantities of interest such as crack path and crack length are sensitive to
the mesh geometry. Park et al. [6] employed topological operators such as edge-swap and nodal
perturbation to avoid undesirable crack patterns in 4K structured meshes. Papoulia et al. [7] used
a 2D pinwheel mesh with the isoperimetric property to ensure convergence of crack path, while
Bolander and Saito [8] proposed fracture simulations on spring networks with random geometry
that maximize directional isotropy for crack propagation.

Another limitation of uniform grids is the difficulty in discretizing complex design domains and
accurately representing loading and support boundary conditions. In finite element applications,
complex domains are usually discretized using triangular or tetrahedral elements. However, such
meshes exhibit one-node connections and are susceptible to checkerboard patterns in topology
optimization applications. Indeed, one can use regularization schemes such as filtering to suppress
the numerical instabilities, but these measures often involve heuristic parameters that can augment
the optimization problem. Moreover, as Rozvany et al. [9] argue, these schemes can lead to
significant weight increases. Therefore, there remains interest in obtaining checkerboard-free results
without placing additional constraints. Polygonal elements can be very useful in this respect since
they naturally exclude checkerboard layouts [10, 11], and provide flexibility in discretizing complex
domains (see Section 2).

In this work, Voronoi diagrams are used as a natural and effective means for generating irregular
polygonal meshes. These diagrams have been studied extensively in mathematics, computer science,
and natural sciences, and the interested reader is referred to [12] for a survey on the topic. We adopt
an extension of the scheme proposed in [8, 13] for meshing arbitrary two or three-dimensional

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:671–698
DOI: 10.1002/nme



POLYGONAL FINITE ELEMENTS FOR TOPOLOGY OPTIMIZATION 673

domains using Voronoi tessellations. An attractive feature of the method is that randomness and
subsequently higher levels of geometric isotropy are obtained as a byproduct of arbitrary seed
placement. Furthermore, the use of Lloyd’s algorithm [14] can remove excessive element distortion,
and allows for construction of meshes that are uniform in size.

The remainder of this paper is organized as follows. In Section 2, we discuss the approach
for generating Voronoi meshes. We review the finite element formulation for convex polygons in
Section 3, and present the topology optimization solution scheme in Section 4. Next, we address
some implementation issues in Section 5, and show several numerical results in Section 6. Finally,
we conclude with some remarks in Section 7.

2. MESHING USING VORONOI TESSELLATIONS

In this work, we extend the method proposed in [8, 13] for generating polygonal meshes using
Voronoi diagrams. The main idea is to choose a set of generating points or seeds such that the
corresponding Voronoi tessellation incorporates the boundary of the domain. By requiring the
Voronoi diagram to be centroidal, one can obtain high-quality meshes.

2.1. Concepts and definitions

Consider the set of seeds P={pi }ni=1 in domain �⊆Rd . The Voronoi tessellation of P , denoted
by V(P), is the partitioning of the domain � into n regions defined by

Vi = ⋂
∀ j, j �=i

{x∈�|�(x,pi )��(x,p j )}, i=1, . . . ,n (1)

where �(·, ·) is the Euclidean distance [15]. That is, the Voronoi cell Vi is composed of points that
are closer to pi than any other point in P . Note that each Vi is non-empty since pi ∈Vi . If � is
unbounded (e.g. �=R2), some cells are unbounded because the number of Voronoi cells is equal
to the number of seeds. Note also that the bounded Voronoi cells are necessarily convex polygons
as they are formed by finite intersection of half-planes. This is important because the finite element
formulation presented in the next section is restricted to convex polygonal discretizations. A number
of efficient algorithms are available that construct Voronoi tessellations directly, or based on its
dual, the Delaunay triangulation of the same point set [15], rendering this fundamental geometric
construct an attractive tool for mesh generation.

A Voronoi tessellation is centroidal if each generating point coincides with the centroid of the
corresponding Voronoi cell, i.e.

pi =pi ∀i=1, . . . ,n where pi :=
∫
Vi
x�(x)dx∫

Vi
�(x)dx

(2)

and �(x) is a given density function over domain � [16]. When �(x)≡1, pi is the geometric center
of Vi . Another description of Centroidal Voronoi tessellations (CVTs) is based on the following
‘energy’ functional, which is a measure of the deviation of each cell from the corresponding seed:

E(P)=
n∑

i=1

∫
Vi

|x−pi |2�(x)dx (3)
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The minimizer of this functional is necessarily a CVT [16]. The converse, however, is not true.
Square and regular hexagonal tessellations are both CVTs on �=R2, while only the hexagonal
tessellation minimizes the energy [16, 17].

One of the most popular algorithms for constructing CVTs is an iterative scheme called Lloyd’s
algorithm [14]. Since each iteration is guaranteed to reduce the energy, Lloyd’s algorithm is locally
convergent [18]. The deterministic version of Lloyd’s algorithm is as follows:

1. Construct the Voronoi diagram V(P) associated with P={pi }ni=1.
2. Compute the centroid of each Voronoi cell pi .
3. Replace the original point set P with the set of centroids P={pi }ni=1 and go to step 1 unless

convergence is reached.

The convergence criterion can be based on the reduction in energy or the movement of seeds in
the last iteration. For example, consider the Voronoi diagram defined over a square domain shown
in Figure 1. Clearly, the centroids of the Voronoi cells do not coincide with the generating point
set (Figure 1(a)). Figure 1(b) shows the Voronoi diagram generated by the centroids of the original
cells, i.e. after one iteration of Lloyd’s algorithm. After 10 iterations, the Voronoi diagram is nearly
centroidal (see Figure 1(c) and (d)).

2.2. Meshing algorithm

A polygonal mesh can be generated from a given set of points in the domain � by including
additional points such that the resulting Voronoi tessellation incorporates an approximation to the
boundary ��. The procedure proposed in [8, 13] is summarized as follows:

1. The interior of � is populated with a desired number of generating seeds. We denote this
point set by Pint.

2. To establish an approximation to the boundary of the domain, the interior points are reflected
about the edges of the domain. This set of auxiliary points is denoted by Paux.

3. The Voronoi diagram of point set P= Pint∪Paux is constructed.
4. A polygonal discretization of the domain is given by the cells associated with the points in

Pint.

Note that if a seed and its reflection have adjacent Voronoi cells, the common edge between them
lines up with the boundary. This procedure is illustrated in Figure 2 for discretizing a four-sided
region with 10 points. It is clear that some auxiliary points do not affect the final Voronoi mesh
and therefore are unnecessary. By reflecting each point only about the ‘closest’ boundary, it is
possible to avoid including such unnecessary auxiliary points.

The main steps of this meshing procedure, namely seed placement and reflection, can be
implemented for general domains based on an implicit description of the geometry. One such
approach is to construct a signed distance function, d(x), that gives the distance to the closest
boundary of the domain. In [19], the construction of distance functions for some simple geometries,
as well as operations for combining geometries (e.g. union, intersection, and subtraction) are
discussed. One can determine whether a randomly generated seed is inside the domain using
the sign of the distance function, which by convention is taken to be negative in the interior of
the domain. Moreover, the direction to the nearest boundary (i.e. outward normal at the closest
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Figure 1. Illustration of Lloyd’s algorithm: (a) initial distribution of seeds (circles), the corresponding
Voronoi diagram (E=0.3017), and the centroid of the Voronoi cells (crosses); (b) the Voronoi diagram
after one iteration. The distribution of points is substantially more regular (E=0.1796); (c) the Voronoi
diagram after 10 iterations. The generating seeds (circles) and centroids (crosses) are nearly coincident

(E=0.1402); and (d) convergence of Lloyd’s algorithm in terms of energy.

(a) (b) (c)

Figure 2. Meshing procedure: (a) interior of the domain is populated with desired number of seeds
(circles); (b) the Voronoi diagram of the seeds and the corresponding auxiliary points (squares) are
obtained (unnecessary auxiliary points are not shown); and (c) the Voronoi discretization is given

by the cells associated with the seeds.
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boundary point) is given by the gradient of the distance function at that point (Figure 3). This
means that the reflection of point x∈� can be generically computed as:

x=x−2d(x)
∇d(x)
|∇d(x)| (4)

Figure 4 illustrates example (7) of Reference [19], where the distance function is determined from
the level set description of the domain boundary. Note that in order to accurately represent the
corners (where there is a jump in the outward normal), it is necessary to reflect the nearby seeds
about both boundary segments incident on that corner.

2.3. Mesh quality

In References [8, 13], it is recommended that the domain interior be populated in a quasi-random
manner by enforcing a minimum allowable distance between the interior points. This minimum
separation eliminates the bunching up of the random points, and can also be used to generate
graded meshes. Even with such a measure, the method may produce distorted elements not suitable
for use in finite element analysis. An attractive alternative is to incorporate Lloyd’s algorithm so
that the resulting Voronoi mesh is centroidal. The modified procedure is as follows:

1. Perform one iteration of Lloyd’s algorithm on the point set Pint to obtain the new set of
interior points P int.

2. Generate the auxiliary point set Paux corresponding to P int.
3. Replace P with P= P int∪Paux and go to step 1 until desired level of regularity is reached.

We compare the above-mentioned approaches by considering the discretization of a square domain
with a circular hole using random and quasi-random seed placement, and the proposed procedure.
Meshes shown in Figures 5–7 have n=1000 elements. In the case of quasi-random discretization,
we use a minimum allowable distance of

√
0.68ab/n, as prescribed by Bolander and Saito [8]

for a rectangular domain with dimensions a and b. The CVT mesh was constructed with 100
iterations of Lloyd’s algorithm. As a measure of mesh quality, the coefficient of variation of edge
lengths for each element is plotted in gray-scale. The coefficient of variation for a regular polygon
is zero (indicated as white in the figures) since all the edges have the same length. We observe that
the CVT mesh is superior to the other two meshes in terms of element quality. The histograms
of interior angles (at the triple joints) and element areas are also shown in these figures. These
plots indicate that Lloyd’s iterations drive the Voronoi mesh toward a regular hexagonal packing.
Moreover, we note that the CVT mesh is significantly more uniform in size over the domain.

Before concluding this section, we remark that since the seeds are placed randomly, the element
and node numbering of the resulting mesh will be random. This, in turn, may cause the stiffness
matrix to exhibit an undesirable sparsity pattern and suffer from a large bandwidth. A remedy to this
problem consists of using the heuristic reverse Cuthill–McKee (RCM) algorithm, which is designed
to reduce the bandwidth and profile (skyline) of sparse symmetric matrices by systematically
reordering the node numbers [20]. For example, a typical mesh with 500 elements and 1002 nodes
has the sparsity pattern shown in Figure 8. After applying RCM, the bandwidth is reduced from
966 (almost full) to 75. This leads to substantial savings in computational time needed for solving
the linear systems with direct solvers. Other reordering algorithms (e.g. [21, 22]) and other solvers,
including direct sparse solvers (see, for example, [23]) and iterative solvers tailored for topology
optimization problems [24], can also be explored in this work.
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Figure 3. Reflecting points about domain boundary using the distance function d(x).

(a)

(b)

(c)

Figure 4. Implicit description of meshing domain: (a) example domain boundaries (taken from [19]);
(b) generated distance function; and (c) CVT mesh constructed using the distance function.

3. FINITE ELEMENT SCHEME

In this section, we briefly review the finite element scheme for convex n-gons outlined in [25].
This approach constructs a conforming approximation space on polygonal meshes using natural
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Figure 5. Random seed placement: (a) resulting mesh with coefficient of variation of edge lengths plotted
in gray-scale; (b) histogram of interior angles of the mesh; and (c) histogram of element areas.

neighbor interpolation functions and isoparametric transformations. For n=3 and n=4, the
resulting finite element is identical to the constant strain triangle and bilinear quadrilateral, respec-
tively. We assess the accuracy of the polygonal finite elements by considering a verification
problem.

3.1. Formulation

Consider a set of nodes {qi } and point p where we would like to interpolate the nodal data. Points
p and qi are ‘natural neighbors’ if their Voronoi cells have a common edge [25, 26]. We define the

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:671–698
DOI: 10.1002/nme



POLYGONAL FINITE ELEMENTS FOR TOPOLOGY OPTIMIZATION 679

(a)

(b) (c)

= 3.7 × 10–3

= 0.6 × 10–3

=120°

= 16.8°

1

0

Figure 6. Quasi-random seed placement: (a) resulting mesh with coefficient of variation of edge lengths
plotted in gray-scale; (b) histogram of interior angles of the mesh; and (c) histogram of element areas.

set of natural neighbors of p as follows:

I(p)={i |Vi ∩Vp �=∅} (5)

where Vi and Vp denote the Voronoi cells of qi and p, respectively. The Laplace interpolant
corresponding to qi is given by:

�i (x)=
wi (x)∑
j∈Iw j (x)

where wi (x)= si (x)
hi (x)

(6)
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Figure 7. CVT mesh generation: (a) mesh with coefficient of variation of edge lengths plotted in gray-scale;
(b) histogram of interior angles of the mesh; and (c) histogram of element areas.

Here x is the location of p, si is the length of the Voronoi edge common to Vi and Vp, and hi
denotes the distance between p and qi , as illustrated in Figure 9. By construction, the Laplace
functions are non-negative, bounded and satisfy partition of unity:

0��i (x)�1,
∑
i∈I

�i (x)=1 (7)
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Figure 8. Sparsity pattern for the stiffness of polygonal mesh with 500 elements and 1002 nodes before
RCM resequencing (left) and after resequencing (right). The bandwidth is reduced from 966 to 75.

Figure 9. For a convex polygon, every interior point is a natural neighbor to all the vertices. The geometric
quantities si and hi used to define the Laplace shape functions are shown here.

Furthermore, it can be shown that these functions are linearly precise:

∑
i∈I

xi�i (x)=x (8)

In this expression, xi represents the location of node qi . This property along with constant precision
(partition of unity) ensures the convergence of the Galerkin method for second-order partial
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Figure 10. Typical Laplace shape function for a regular hexagon.

differential equations [27]. Moreover, Laplace functions are linear on the boundary of the convex
hull of {qi |i ∈I} [28], and satisfy the Kronecker-delta property:

�i (x j )=�ij (9)

This means that the interpolated value at a node is equal to the nodal value. A typical Laplace
shape function is shown in Figure 10.

If the nodes are located at the vertices of a convex polygon, any interior point of this polygon has
{qi } as its natural neighbors. Therefore, Laplace shape functions corresponding to {qi } constitute
a finite element for that polygon. Furthermore, an isoparametric mapping from regular n-gons
(the so-called ‘parent’ element) to any convex polygon can be constructed using these shape
functions (Figure 11). Since the interpolated field varies linearly on the boundary, the resulting
approximation is conforming. Following the usual approach in the finite element community, the
shape functions are defined on the parent domain,‡ where the weak form integrals are evaluated
numerically. The reference n-gon is divided into n triangles (by connecting the centroid to the
vertices) and well-known quadrature rules are used on each triangle. For the verification problem
in the next section, we have used three integration points per triangle. Alternatively, numerical
integration can be carried out using special quadrature rules developed for polygonal domains (see,
for example, [30–32]).

3.2. Verification

The numerical verification example chosen here is Cook’s problem [33, 34], which consists of a
tapered swept panel subjected to uniform shear loading (Figure 12). The quantity of interest is the
tip deflection at mid-depth (point C), which is computed on several quadrilateral and polygonal
discretizations, some of which are shown in Figure 12. Note that the refinement for quadrilateral

‡The closed-form expressions for these shape functions can be found in the appendix of Reference [29].
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Figure 11. Isoparametric mapping from the parent (reference) domain (regular n-gon) to the physical
domain. The weak form integration is carried out in the parent domain by triangulating the n-gon and

using triangular quadrature rules.

(a) (b) (c) (d)

Figure 12. (a) The geometry, boundary conditions, and material properties for Cook’s problem;
(b) polygonal mesh with 4 elements; (c) polygonal mesh with 16 elements; and (d) typical

quadrilateral mesh with 16 elements (each edge is divided evenly).

meshes is progressive (i.e. the finer meshes are embedded in the coarser ones), whereas the
polygonal meshes are constructed independently. The results are compared with the reference value
of 23.96, reported in Reference [34]. The values for deflection and relative error are summarized
in Table I and plotted in Figure 13.

As expected, convergence to the exact solution is monotonic for both types of elements. However,
polygonal elements are not as stiff as the quadrilateral elements and produce better results, espe-
cially with coarser meshes. It is interesting to observe that even though the polygonal mesh with
four elements is made of three quadrilaterals and only one pentagon, it gives a significantly more
accurate deflection value than the corresponding quadrilateral mesh. In fact, the accuracy obtained
on this mesh is comparable to that of the quadrilateral mesh with 16 elements. Since numerical
instabilities such as checkerboard patterns are caused by their artificial stiffness in the finite element
approximation, polygonal elements are expected to be less susceptible to such pathologies. In fact,
it was shown in a recent study that undesirable fine scale patterns (resembling checkerboard) are
appropriately penalized in the compliance minimization problem when modeled by hexagonal finite
elements [10]. We note that better accuracy and in some cases superconvergence of polygonal and
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Table I. Summary of results for Cook’s problem.

Polygonal Quadrilateral

# elements # nodes Deflection % error # nodes Deflection % error

4 10 17.4494 27.17 9 11.8090 50.71
16 34 21.9240 8.497 25 18.2902 23.66
64 130 23.4488 2.134 81 22.0781 7.854
256 514 23.8204 0.583 289 23.4303 2.211
1024 2050 23.9257 0.143 1089 23.8176 0.594
4096 8194 23.9539 0.026 4225 23.9245 0.148
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Figure 13. Illustration of the convergence of numerical results for Cook’s problem.

triangular finite element discretizations constructed using CVTs have been previously observed in
References [35, 36].

4. TOPOLOGY OPTIMIZATION

In this work, we consider the compliance minimization problem, which consists of finding the
stiffest (i.e. least compliant) configuration of material in an extended design domain � subject to
a given set of loading and support conditions. We assume that the constituent material is linear
elastic and isotropic with stiffness tensor C0. Furthermore, we follow the solid isotropic material
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with penalization (SIMP) method, in which the design field is characterized by a density function
�(x), and the stiffness tensor follows the power-law relation [37]:

C(x)=[�(x)]pC0, 0<�(x)�1 (10)

To penalize the intermediate densities, the penalty exponent p is taken greater than 1. The minimum
compliance problem is given by

inf
�

�(u) subject to
∫

�
�(x)dx�V (11)

where V is a given upper bound for the total volume of structure and u is the displacement field
corresponding to the equilibrium configuration:

a(u,v)=�(v) ∀v∈U (12)

Here U={u∈H1(�)|u=0 on ��u} is the space of admissible displacement fields and

a(u,v) =
∫

�
C(x)e(u) :e(v)dx

�(v) =
∫

�
f ·vdx+

∫
��t

v·tds
(13)

are the energy bilinear form and linear form, respectively. In the above expression, f is the body
force, t is the traction applied to ��t=��\��u and e is the linearized strain given by:

e(u)= 1
2 (∇u+∇uT) (14)

To solve this problem numerically, we discretize the displacement field using polygonal finite
elements as described in Sections 2 and 3. The discretization of the density is implicitly carried
out on the same mesh by assuming a constant element density inside each displacement finite
element �e:

�h(x)=
n∑

e=1
�e(x)�e where �e(x)=

⎧⎨
⎩
1, x∈�e

0, x /∈�e

(15)

With this discretization, {�e}ne=1 is the set of design variables. Alternatively, a continuous vari-
ation of density can be obtained by sampling the density at the nodal locations and interpo-
lating it with the shape functions [38, 39]. As mentioned before, the optimization problem (11)
does not have a physical length scale. However, the mesh size induces a length scale on �h ,
which effectively translates the ill-posedness of (11) into the mesh dependency of the discrete
system.

We can avoid this issue by imposing an explicit length scale on the problem independent of the
mesh size. One possibility is to use the projection method [40, 41] which introduces a minimum
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member size, rmin, into the discrete problem by assigning the weighted average of the nearby nodal
densities to each element. Thus, the projected element density becomes:

�e=
∑m

i=1wi
e�

i∑m
i=1wi

e
(16)

Here {�i }mi=1 is the set of nodal densities (taken as the design variable for the optimization problem)
and wi

e is the (linear) weight function defined as:

wi
e=max

(
rmin−r ie
rmin

,0

)
(17)

As shown in Figure 14, r ie is the distance from the centroid of element e to node i . We remark that
this projection is effectively a convolution of the density function with the weight functions. In the
continuum setting, this amounts to regularizing the density field, which inherits the smoothness
properties of the weight functions. According to the analysis by Bourdin [42], this convolu-
tion removes the ill-posedness of the continuum problem and mesh dependency of the discrete
problem.

5. IMPLEMENTATION ISSUES

In this work, the polygonal finite element meshes are represented by a compact topological data
structure called TopS [43–45]. TopS is designed to provide direct and efficient access to local
topological information about the mesh, and it does so by relying on static element topology
templates. A template consists of a table with all the topological relationships within an element
and is defined for each element type. Among the information stored in the template are the number
of nodes, vertex-, edge- and facet-uses of the element; the number and local indices of the nodes
incident to a given edge- or facet-use; and the number and local indices of the edge- and facet-uses
incident to a given vertex-use.

For the most element types (e.g. T 3, T 6, Q4, Q8, Tetra4, Tetra10), topological information is
common to all the elements of the same type and thus can be efficiently represented by a static
template. However, polygonal elements contain a variable number of nodes, vertices, and edges.
In order to represent these elements in TopS, we have extended the topological framework with
support for dynamic templates. In this manner, if topological information is requested from a
polygonal element, a virtual method of the element, rather than a static template, is invoked in order
to provide the required data. Moreover, nodal and adjacency data of each polygonal element are
allocated dynamically. Although this approach introduces additional costs for polygonal elements,
it has a very simple implementation and allows one to represent arbitrary elements in a seamless
way using the existing template-based topological framework of TopS.

The optimization problem described in the previous section is solved using the globally conver-
gent method of moving asymptotes (GCMMA) [46, 47]. The algorithm requires the sensitivities
of the objective and constraint functions, which are straightforward to compute for the minimum
compliance problem (this can be found in several references, for example, see [48]). To avoid
converging to local minima, we perform a continuation on the penalty parameter p by gradually
increasing its value from p=1 to p=5. For each value of p, we terminate the iterations when the
maximum change in the design variables is less than a given tolerance. Unless otherwise stated,
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(a)

(b)

Figure 14. Illustration of the projection scheme: (a) radius of projection rmin and nodes that contribute
to density of element e and (b) the solid line indicates the linear weight function and the dashed line

indicates a non-linear weight function.

increments of �p=0.5, tolerance of 0.01, minimum of 15 iterations, and maximum of 75 iterations
per value of p were used for the numerical results in Section 6.

6. NUMERICAL RESULTS

In this section, we assess the performance of the polygonal discretization by considering various
numerical examples. We begin with a geometric study in which we compare polygonal meshes
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(a)

(b)

Figure 15. Geometric study: approximation of curve y=(tan3�/4)x and y= x3 using
(a) regular square mesh and (b) CVT mesh.
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Table II. Summary of results for the geometric study.

Straight line Cubic line

Type CVT mesh Square mesh CVT mesh Square mesh

Average vertex distance 2.18×10−3 2.41×10−3 2.29×10−3 2.43×10−3

Length of approx. path 1.151 1.178 1.649 1.649

and structured square grids in their ability to represent arbitrary curves. We then present topology
optimization results for benchmark Michell-type problems.

6.1. Geometric study

As discussed in the introduction, the geometric properties of the spatial discretizations affect the
quality of topology optimization results one could obtain. With higher levels of geometric isotropy,
arbitrary curves (i.e. structural members) can be better approximated. Subsequently there would
be less restriction on the formation of the optimal design. In this study, we consider two simple
curves: a straight line with slope of 67.5◦ with respect to the horizontal axis and a cubic curve
y= x3 (Figure 15); and we find approximations to these curves on a square grid and a CVT
mesh. We define the ‘closest’ approximation as the sequence of elements with the least deviation
from the given curve. The deviation is computed as the sum of the distances of the element
centroids to the curve. The problem of finding the closest approximation can be formulated as
a shortest path problem (in a graph) if we view the element centroids as the graph nodes, and
the element adjacencies as the graph connectivity. In this setting, the cost associated with going
from one graph node to the next is the distance of the centroid of the target element to the curve.
The shortest path problem is solved using Dijkstra’s algorithm [49], and results are shown in
Figure 15.

Qualitatively, the approximations on the CVT mesh appear to follow the curve more closely.
The approximate curves on the square mesh suffer, as expected, from one-node connections, while
CVT approximations enjoy greater uniformity. To quantify this, we have computed the average
distance of the element vertices to the curve. As shown in Table II, the approximate path on
the CVT mesh, on an average, is closer to the given curve. We also computed the length of the
approximate path as the sum of lengths of line segments connecting the centroids in the path. In
both cases, this length is larger than that of the true path, but the error is slightly larger for the
square mesh, indicating more zig-zagging around the curves.

6.2. Benchmark examples

For the examples in this section, we used the Poisson’s ratio of �=0.3 and Young’s modulus of
E0=1 for the solid phase. The first example is the MBB-beam problem [50], whose design domain
and boundary conditions are shown in Figure 16. To examine the effects of mesh regularity, we
compared the results obtained on random, quasi-random, and CVT discretizations, each made up
of 2000 elements (see Section 2). The final designs with compliance values are shown in Figure 17.
The results generally agree with the analytic least-weight Michell truss (Figure 16). The CVT
design has a smoother flow of members and also a slightly lower compliance. We point out that
a direct comparison of compliance values may not be appropriate since they are computed on
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(a)

(b)

Figure 16. MBB beam problem: (a) the extended design domain and loading and support conditions and
(b) the corresponding Michell solution taken from Reference [51].

Figure 17. Effects of mesh regularity: (a) random; (b) quasi-random; and (c) CVT meshes. The final
compliance value is shown below each result.
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Figure 18. MBB beam problem: left-hand-side shows Q8 meshes (a)(c)(e) and right-hand-side shows
CVT meshes; (b)(d)(f) with 1200, 2700, and 4800 elements (from top to bottom). The final compliance

value is shown below each result.

different finite element meshes. It is also noteworthy that the design on the ‘random’ mesh follows
the expected layout despite the poor quality of the finite elements.

Next we compare the results obtained on standard structured square grids with those obtained
with CVT meshes (Figure 18). To alleviate the checkerboard problem, we use Q8 elements for
the rectangular mesh. We point out that this choice increases the size of problem considerably.
For example, the Q8 mesh with 4800 elements has 29 360 unknown degrees of freedom, whereas
the CVT mesh with the same number of elements has 19 163 unknowns. As shown in Table III,
the overall cost of polygonal elements is lower even though shape function computations are more
expensive. Given that the same number of elements is used for both meshes, CVT results seem to
have higher resolution: there are more (but finer) members in the CVT results, indicating a more
even distribution of material. Also, we can see instances of one-node connections and diagonal
element chains (see [9] for a detailed discussion on these discretization errors) in the Q8 results.

Both sets of results in Figure 18 exhibit the well-known mesh dependency associated with
the refinement of discretization. By applying the projection scheme, one can enforce a minimum
member size independent of the grid scale. The results for rmin=0.12 are shown in Figure 19.
The designs with the projection method appear to be convergent under mesh refinement. However,
the final compliance is increased significantly compared with the results without the minimum
member size.

Finally, we consider theMichell cantilever problemwith circular support, shown in Figure 20. For
this problem, we compare the CVT meshes with triangular discretizations, which are widely used
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Table III. Summary of the computational cost associated with finite element analysis.

Element Polygonal Polygonal
(type of integration) Q8 (reduced) Q8 (full) (1 pt/triangle) (3 pts/triangle)

# elements 4800 4800 4800 4800
# integration points 19 200 43 200 28 501 85 503
# unknowns 29 360 29 360 19 163 19 163
Time for assembling stiffness matrix (s) 0.1049 0.1657 0.1605 0.3797
Time for solving the linear system (s) 1.1847 1.1883 0.7398 0.7372
Total time for FE analysis (s) 1.2896 1.3540 0.9003 1.1169

Figure 19. MBB solution obtained with CVT meshes using the projection scheme with
rmin=0.12: (a) 1200 n-gons; (b) 2700 n-gons; and (c) 4800 n-gons. The final compliance

value is shown below each result.

for meshing in finite element community. We use quadratic T 6 elements to avoid checkerboard-
type instabilities. In both cases, the meshes are constructed to be symmetric about the horizontal
axis at mid-depth, and solutions are forced to be symmetric via a simple mapping scheme. Also
a tighter convergence criterion consisting of �p=0.25, tolerance of 0.001 and maximum of 100
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(a)

(b)

Figure 20. Cantilever beam with circular support: (a) the extended design domain and loading and support
conditions and (b) a typical Michell solution taken from Reference [52].

iterations per value of p is used for the continuation. Similar to the MBB results, the CVT design
has more members and thus exhibits higher resolution. More importantly, the general layout of
members is in better agreement with the Michell solution. The members intersect at roughly 90◦
angles and are spaced more evenly. Also, the principal stresses for the optimal design are aligned
with the members according to the Michell layout theory. This fact is illustrated for a smaller CVT
mesh for better visualization in Figure 22. These results indicate that the CVT meshes have the
flexibility to represent the optimal layout for this problem. The T 6 mesh, on the other hand, suffers
from the limitation of its geometry. Members that line up with the mesh must strictly conform to
it, while others are poorly approximated (see the members marked on the Figure 21).

7. CONCLUSIONS

Solutions of discrete topology optimization problems with fixed mesh representation include a
form of mesh dependency that stems from the basic geometric features of the spatial discretiza-
tion associated with standard triangles/tetrahedra or quads/bricks usually employed in the finite
element method. The constrained geometry of such discretization can cause bias in the orientation
of members (cf. Figure 21(b)), leading to non-objective, mesh-dependent, sub-optimal designs.
To circumvent this problem, we employ fully unstructured meshes to reduce the influence of the
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Figure 21. Solutions for the cantilever beam with circular support based on (a) 10 000 Voronoi elements
and (b) 10 220 T 6 elements. The final compliance value is shown below each result.

simplex geometry on topology optimization solutions. This is accomplished by means of polyg-
onal meshes based on Voronoi tessellations, which in addition to possessing higher degree of
geometric isotropy allow for greater flexibility in discretization without introducing numerical
instabilities/pathologies.

Most two-dimensional investigations in topology optimization are based on triangular elements
of three nodes (T 3) and bilinear quadrilateral (Q4) [48]. For n=3 and n=4 the resulting polygonal
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Figure 22. (a) Solution for the cantilever beam with circular support using CVT mesh with 5000 elements
and (b) the trajectory of the principal stresses for the optimal design.

element coincides with the T 3 and Q4 finite elements, respectively. Thus, the present polygonal
finite element framework (n=3,4,5,6,7, . . .) provides a unifying paradigm for topology optimiza-
tion, including developments beyond the scope of the present work. For instance, further investi-
gations associated with compliant mechanism design, solution of multiscale problems involving
multiple governing equations (e.g. thermo-electro-mechanical) and fluid–structure, can benefit from
the present approach.
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NOMENCLATURE

pi generating seed for the Voronoi diagram
Vi Voronoi cell corresponding to seed pi
V(P) Voronoi diagram generated from the set of seeds P
�(·, ·) Euclidean distance in Rd

�(x) density function defining the centroid of Voronoi cells
pi centroid of cell Vi
E(P) energy functional for diagram V(P)

Pint set of interior seeds for the mesh generation procedure
Paux set of auxiliary points for the mesh generation procedure
d(x) distance function at point x
I(p) index set for the natural neighbors of point p
�i (x) Laplace shape function
wi (x) weight function used to define the Laplace interpolants
si (x) length of Voronoi edge common to Vi and Vp
hi (x) distance between p and node qi
C0 stiffness tensor for the base material
C(x) stiffness tensor following the SIMP law
�(x) material density characterizing the topology
V upper bound for the volume of design
� extended design domain
U space of admissible displacement fields
a(·, ·) energy bilinear form
�(·) load linear form
e(·) linearized strain operator
f body force defined over �
t traction applied to ��t
u admissible displacement field satisfying equilibrium
�h(x) discretization of density field
�e(x) characteristic function associated with finite element �e
{�e}ne=1 set of element densities
{�i }mi=1 set of nodal densities
wi
e weight function associated with element e and node i

r ie distance from centroid of element e to node i
rmin prescribed radius of projection
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