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The cohesive zone model (CZM) is a key technique for finite element (FE)
simulation of fracture of quasi-brittle materials; yet its constitutive relationship is
usually determined empirically from global measurements. A more convincing
way to obtain the cohesive relation is to experimentally determine the relation
between crack separation and crack surface traction. Recent developments in
experimental mechanics such as photoelasticity and digital image correlation
(DIC) enable accurate measurement of whole-field surface displacement. The
cohesive stress at the crack surface cannot be measured directly, but may be
determined indirectly through the displacement field near the crack surface. An
inverse problem thereby is formulated in order to extract the cohesive relation by
fully utilizing the measured displacement field. As the focus in this article is to
develop a framework to solve the inverse problem effectively, synthetic
displacement field data obtained from finite element analysis (FEA) are used.
First, by assuming the cohesive relation with a few governing parameters, a direct
problem is solved to obtain the complete synthetic displacement field at certain
loading levels. The computed displacement field is then assumed known, while the
cohesive relation is solved in the inverse problem through the unconstrained,
derivative-free Nelder–Mead (N–M) optimization method. Linear and cubic
splines with an arbitrary number of control points are used to represent the shape
of the CZM. The unconstrained nature of N–M method and the physical validity
of the CZM shape are guaranteed by introducing barrier terms. Comprehensive
numerical tests are carried out to investigate the sensitivity of the inverse
procedure to experimental errors. The results show that even at a high level of
experimental error, the computed CZM is still well estimated, which demonstrates
the practical usefulness of the proposed method. The technique introduced in this
work can be generalized to compute other internal or boundary stresses from the
whole displacement field using the FE method.
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1. Introduction

Quasi-brittle materials, such as plastics, concrete, asphalt or adhesives, usually show

non-linear load-deformation behaviour and a gradual decrease of load capacity (softening

behaviour) after peak load. The relatively ductile behaviour of quasi-brittle materials is

due to the development of a fracture process zone (size of which may be comparable to the

size of the specimen) in front of the macroscopic cracks. For example, Figure 1 illustrates a

fracture process zone formed due to fibre bridging and micro-cracking. Linear elastic

fracture mechanics (LEFM) is inadequate when taking account of the non-linear

characteristic of such a fracture process zone.
A popular fracture mechanics model that accounts for the process zone behaviour is

the cohesive zone model (CZM) [1,2], which has also been referred to as the fictitious crack

model [3]. In the finite element (FE) context, the elastic deformation is represented by the

bulk elements, while the cohesive fracture behaviour is described by cohesive surface

elements. Both ‘intrinsic’ models [4,5] and ‘extrinsic’ models [6–8] have been developed.

Moreover, the CZM concept has also been implemented in conjunction with extended and

generalized FE methods (X-FEM and GFEM) [9,10]. The method has been successfully

applied to various types of materials including polymers [11,12], concrete [13], functionally

graded materials [14] and asphalt [15,16]. Here, the CZM concept is explored with

emphasis on quasi-brittle material systems.
Commonly used in the simulation of mode I and/or combined fracture modes, the

CZM describes a material level constitutive relation for the idealized damage process zone

which applies only to the fracture surface, while the undamaged bulk material remains

elastic. For mode I fracture, the CZM assumes a relation between normal traction and

crack opening displacement (COD; Figure 2), while for pure mode II, the relation is

between shear traction and sliding displacement. In Figure 2, Dn denotes COD, � denotes

the cohesive traction/stress, Dnc and �c are the critical values of Dn and �, respectively, and
�(Dn) describes the traction–separation relation. The CZM may be obtained through

experiments, either directly or indirectly.

Fibre bridging zone Microcracking
zone

Fracture process zone (or cohesive zone)

Traction free zone

Crack tip

Figure 1. Illustration of the fracture process zone in a typical fibre-reinforced composite.
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Many approaches have been proposed to obtain the curve �(Dn). Experimentally,

the direct tension test may be considered the most fundamental method to determine

�(Dn) [17,18]. However, this approach is extremely difficult [17,19], which led researchers

to seek indirect methods. Another direct method involves relating crack tip opening

displacement to energy release rate and then differentiating such relationship to obtain

�(Dn). Other methods employ inverse analysis and one common procedure relies on

assuming a simple shape of �(Dn) with a few model parameters. Independent investigations

by Song et al. [16] and Volokh [20] demonstrate that the assumed CZM shape can

significantly affect the results of fracture analysis. Moreover, Shah et al. [19] reviewed

various shapes of �(Dn) that have been proposed, which include linear, bilinear, trilinear,

exponential and power functions, and concluded that the local fracture behaviour is

sensitive to the selection of the shape �(Dn). These models include a few parameters that

are either computed directly from experimental measurements or indirectly by inverse

analysis.
Some earlier efforts in inverse computing the CZM have been focused on the

well-defined two- or three-branch piecewise linear softening models for mode-I fracture

[21–25]. The two-branch model has actually been recommended by RILEM and it involves

four unknown parameters to be identified (the three-branch model involves six unknown

parameters). Three-point bending and wedge splitting tests are usually used for the inverse

analysis, either numerically or experimentally. Sophisticated algorithms are used to

solve the inverse problems, e.g. Kalman filter [21] and non-linear programming

approaches [24,25].
van Mier [26] summarized the common procedure of inverse analysis: model

parameters are adjusted at each iteration by comparing the difference between the

computational and experimental outcomes of global response. This method is not

computationally efficient since a complete simulation must be carried out at each iteration.

Recently, Elices et al. [27] summarized the main streams of the indirect methods used to

determine �(Dn). These indirect methods have common characteristics: they all use the

global response of the experimental results, load (P) and displacement (�) or crack mouth

opening displacement (CMOD), from popular notched beams or compact specimens, as

the basis of the inverse parametric fitting analysis. This is simply because the global

responses are usually the only obtainable outcomes of experiments. Therefore, the

limitations are manifested: these methods are semi-empirical in that the CZMs are

assumed, a priori, and they cannot be validated confidently at the local level. This also

implies less confidence on the uniqueness of the obtained CZM. However, the obtained

s

sc

Dnc Dn

Figure 2. Crack surface tractions (mode I).
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CZM from these methods still yields satisfactory predictive capability in FE simulation
of fracture [13,28,29].

1.1. Motivation: digital image correlation

Fundamentally, stress can only be measured indirectly, while displacement or strain is
traditionally measured at limited number of discrete points. Recent developments in
experimental stress analysis techniques, such as photoelasticity, laser interferometry and
digital image correlation (DIC), enable measurements of whole deformation field [30].
The rich experimental data have attracted the attention of researchers who work on
inverse identification problems [31,32]. Among these techniques, DIC shows great
potential in experimental fracture analysis [33–35].

Recent hardware and software developments of DIC techniques enable researchers to
obtain submicron measurement of two-dimensional (2-D) whole displacement field on a
flat specimen surface. Such accurate measurement of displacement field allows one to take
numerical derivatives to obtain strain field, though it may introduce errors in the process
of differentiating experimental data. The stress is then obtained using the known elastic
properties. In such a way, stress near the crack surface can be obtained to approximate the
cohesive stress. By statistically correlating the COD with the cohesive stress, one can
obtain the CZM from the local level [35]. This scheme correlates cohesive stress with COD
in a discrete fashion without considering the possible influence from adjacent materials,
which may degrade the accuracy. Also, for stiff, brittle materials, the failure stress of the
material is normally very low and the associated strain level in the bulk material is
therefore always low. This can lead to extreme difficulty in obtaining derived strain
accurately.

More sophisticated methods for the inverse parameter identification problems involve
combining FE method and continuous deformation field. Some well-developed methods
are: constitutive equation gap method [36], equilibrium gap method [37], finite
element model updating (FEMU) method [38,39] and virtual fields method (VFM) [40].
These methods have been reviewed and compared recently [32,41]. The comparative
study between these methods shows that the FEMU and VFM yields consistently the
accurate estimation of the target constitutive parameters. The VFM is a non-updating
method, which is computationally efficient; however, it requires relatively accurate
whole-field displacement measurement. The FEMU method is an updating approach,
which begins with an initial guess and iteratively updates the constitutive parameters by
minimizing a prescribed cost function. Usually, the cost function for the FEMU is a least-
square difference between the measured displacement field and the computed counter-
parts. A whole-field displacement is not necessarily required for the FEMU approach, but
the availability may improve the accuracy of the identification. These methods have been
primarily applied to the identification of distribution of elastic moduli, model parameters
and imbeded objects, and have not been applied to identify the CZM.

Motivated by the access to the full displacement field obtainable from DIC and by the
power of FE simulations of fracture phenomena, the idea of combining DIC with the
FEM adopting the robust FEMU method is explained in this investigation. The key idea is
to utilize the full displacement field in an FEM frame. Avoiding the computation of the
stress from the derived strain field (a potentially significant source of errors) is the major
advantage of using FEM. The proposed scheme is described in the next section.
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1.2. Proposed procedure

The investigation of the proposed scheme to compute CZM is carried on a 2-D FEM of
four-point single edge-notched beam (SENB) specimen for convenience. We assume that
there is only mode I fracture with one crack along the symmetry line of the specimen,
where the CZM is implemented. As an additional note, the proposed method also applies
to other geometries where only mode I fracture is present and the crack path/paths are
known a priori, such as the popular three-point bending and the wedge splitting tests.

In the direct problem, we assume a known CZM. An intrinsic CZM implementation is
then used to solve the non-linear fracture process, results of which include global load (P)
versus CMOD and the displacement field at each loading step. The inverse problem uses
the displacement data at the nodal points of the FEM of the SENB specimen (which is a
large number of data with refined FE meshes) corresponding to certain post-peak points in
the P versus CMOD curve, where the full cohesive zone is formed. The global response
curves, either P versus CMOD, or P versus load–line displacement, are not used in the
inverse identification.

In the inverse problem, the CZM is the unknown while the displacement data, recorded
at every node, from the direct problem is treated as synthetic experimental data. Synthetic
errors are added to the displacement data before it is used in the inverse analysis.
The inverse problem is formulated as an unconstrained optimization problem in which a
flexible CZM shape representation defined by a set of unconstrained parameters is to be
optimized.

The remainder of this article is organized as follows. In Section 2, first, the direct
problem is briefly presented. Subsequently, we focus on the presentation of the inverse
problem: parameterization of the CZM using splines is first presented; the formulation of
inverse problem is elaborated; the Nelder–Mead (N–M) solver and the augmented
objective functions are then explained; finally, the assistance to optimization is briefly
presented. In Section 3, the results of the direct problem are first presented and briefly
discussed. The rationale of adding errors is then described in detail. For the results, the
focus is on the effect of different levels of errors and the practical way of using
experimental data. Then some numerical aspects of the inverse procedure are briefly
discussed. Finally, conclusions are made summarizing the contribution of this study.

2. Problem description

2.1. Direct problem: ‘synthetic’ problem

Figure 3 shows the geometry of the SENB specimen. The problem considered currently is
in a 2-D plane-stress condition. The bulk material is presumed isotropic and linear elastic.

30

25
.5

PP

7070

a=5.5

Units: mm

10 10
12.7

Cohensive elements

Figure 3. Geometry of the SENB and the test set-up.
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Since the relative accuracy of the DIC measurement also depends on the stiffness of
the bulk material, three moduli of elasticity are considered: E¼ 10, 30 and 100GPa.
The Poisson’s ratio is fixed as 0.2.

The subsequent analysis uses a 2-D FEM. Fine meshes are used to simulate the level of
detail for the displacement field that could be obtained by the DIC technique. Figure 4
shows the mesh used for both the direct and inverse problems, where Q4 elements are
utilized for the bulk material and the CZM is implemented for mode I fracture only. The
size of the element (bulk material) along the crack surface is 0.0425mm, which is fine
enough to yield accurate crack propagation simulation.

2.1.1. Idealized CZMs

Idealized CZMs describing three representative behaviours are used (Figure 5): one with a
linear softening behaviour, one with a hardening (HD) then followed by a linear softening
behaviour and one with a power-law (PL) softening behaviour. The linear CZM is
appropriate for the high explosives [35], the PL CZM is effective to simulate the fracture
process of quasi-brittle concrete [42], while the HD CZM may be used for some strong
fibre-reinforced composites [18,43].

2.1.2. Basic formulation

Figure 6 shows one bulk Q4 element aligned to the cohesive surface, where � denotes the
mode I cohesive stress. For this Q4 element

Ke
bu

e ¼ r, ð1Þ

where Ke
b is the bulk element stiffness matrix, ue is the element nodal displacement and r is

the element nodal force. When the cohesive stress is the only stress contributing to r,
we have

r ¼

Z l

0

� DnðsÞð ÞtNsds ¼

Z l

0

kc DnðsÞð ÞDnðsÞtNsds ¼ �K
e
cux, ð2Þ

where s is the local natural coordinate shown in Figure 6, l is the size of the Q4 element, t is
the beam thickness, kc¼ �/Dn, Ns ¼ fð1� sÞ=l, s=lgT is the shape function in natural
coordinate system, and DnðsÞ ¼ �2uðsÞ ¼ �2u

T
xNs. The vector ux ¼ fu1x, u2xg

T denotes the

Figure 4. FEM mesh for the half of the geometry (due to symmetry).
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nodal displacement in the x direction, and Ke
c ¼ 2

R l
0 kc �2uðsÞð ÞNsN

T
s tds denotes the

cohesive element stiffness matrix.
As l ¼ y

ðeÞ
2 � y

ðeÞ
1 , s ¼ l ð�þ 1Þ=2, Ke

c can be simplified:

Ke
c ¼

Z 1

�1

kc �2u
T
xN

� �
NNTtld�, ð3Þ

where N ¼ fð1� �Þ=2, ð1þ �Þ=2gT is the shape function in the isoparametric coordinate

system.
Equations (1) and (2) give the contributions of each element to the cohesive and bulk

stiffness, and the global system of equations becomes

Kb þ KcðuÞð Þu ¼ Fext, ð4Þ

0 0.1 0.2 0.3 0.4
0

10

20

30

40

s 
 (M

P
a)

Linear

Hardening

Power-law n=5

Dn=0.08

s =30(1–Dn/0.6)5

Dnc=0.133

Dn (mm)

Figure 5. The mode I CZMs used in this study.

Q4 bulk 
element

Cohesive 

2

2

34

1 1

Surface

u2x Symmetry line

s = s (Δn(s))

l

s

u1x

Figure 6. A bulk Q4 element along the cohesive surface interface.
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where Kb is the global stiffness matrix of the bulk material, Kc is the global cohesive
stiffness matrix, u is the global displacement vector and Fext is the global external force
vector.

The sequence of iterations for the displacement field u at a specified load can be
obtained through

Kb þ Kc uðnÞ,m
� �� �

uðnÞ,mþ1 ¼ Fext, ð5Þ

where n is the nth loading step and m is the mth iteration for the current loading step.

2.2. Inverse problem

2.2.1. Shape representation of CZMs

We aim to extract CZM without making any assumption about its shape. This approach is
desirable since we usually have limited knowledge of the cohesive property of new
materials or material systems.

We propose the use of splines to describe the CZM, i.e. the relation of traction–
separation. Two common spline interpolations are used (Figure 7): linear spline (LS)
interpolation, which is equivalent to linear interpolation, and piecewise cubic Hermite
(PCH) interpolation to offer choices on the type of description, e.g. polylinear or smooth.
Detailed information of PCH interpolation can be found in [44,45].

The use of splines allows for a shape representation based on an arbitrary number of
control points. Let us define the coordinates of the �þ 2 control points according to
Figure 8, i.e.

Dn ¼ 0, Dn,1, . . . , Dn,�, Dnc

� �
�¼ �c, �1, . . . , ��, 0
� �(

,

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

x

y

Data points
Linear spline interpolation
Piecewise cubic Hermite interpolation

Figure 7. Illustration of various interpolation schemes.
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which leads to the unknown physical CZM parameters as

j ¼ �c, Dnc, �1, Dn,1, . . . , ��,Dn,�

� �
: ð6Þ

2.2.2. Optimization approach

Irrespective of the knowledge of the CZM shape, both the direct and the inverse problem

can be expressed in the form

Kb þ Kcðu, jÞð Þu ¼ Fext: ð7Þ

In the inverse problem, the unknown to solve for is the set of parameters j that

describes the CZM. Denoting by �u the displacement vector representing the whole

displacement field already available, either from the direct problem, or from experimental

measurement, e.g. from DIC, Equation (7) can be rearranged as

Kb �u ¼ Fextð�u;jÞ, ð8Þ

where the following notation is introduced:

bFextð�u; jÞ ¼ Fext � Kcð�u;jÞ�u: ð9Þ

Now the cohesive stress is considered as boundary stress and is accounted for in the new

global external force vector, bFextð�u;jÞ. One intuitive way to solve this problem is through

minimizing the norm of the residual defined as

RðjÞ ¼ Kb �u�bFextð�u; jÞ: ð10Þ

However, Kb as an operator being applied to �u discards the rigid-body-motion part of �u,

and Kb also significantly magnifies the errors exiting in �u. To circumvent such pitfalls, we

propose to search for j as follows:

min
�2RM

(ðjÞ ¼ u�ðjÞ � �uð Þ
T
�wu

��� ���
2
, subject to ciðjÞ � 0, i ¼ 1 . . .L, ð11Þ

sc s1

s m–1

s m

DnDncDn,mDn,m–1Dn,1

Pm–1

Pm+1

Pm

0

σ
P0 P1

Figure 8. Parameterization for splines.
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where M is the number of input parameters and �(j) is the objective function, �k k2 is the
Euclidean norm of a vector, ci(j) are the constraint functions, L is the number of

constraint functions and wu is the vector of weighting factors and u*(j) is computed by

u�ðjÞ ¼ K�1b
bFextð�u; jÞ: ð12Þ

The external force vectorbFext can be computed in the following manner. First, from �u, the

COD vector Dn for all nodes at crack surface can be extracted directly. With a known j,
the CZM function � ¼ �ðDn; jÞ is defined. Then the first part of Equation (2) is used to

compute the equivalent element nodal force vector of the cohesive stress. By assembling all

the element nodal force vectors, bFext can be obtained. Equation (12) can be evaluated

efficiently by first factorizing the constant matrix Kb.
The weighting vector shall reflect the physical significance of every single parameter.

Displacement field near the crack is more directly influenced by the cohesive properties.

Therefore, the corresponding displacement sample points shall be given higher weights.

However, it is not easy to determine a threshold boundary for significant cohesive

influence region. As a simple start, a vector of uniform weighting factors is used. The

numerical results presented in this article have shown the applicability of the uniform

weighting factors.

2.2.3. The N–M solver

The N–M optimization method [46–48], an unconstrained and derivative-free optimization

method, is utilized to solve Equation (11). An initial guess of the CZM parameters j is

provided to the N–M solver, which carries out the procedure described below. The stop

criterion of the N–M algorithm can be set by comparing the best simplex vertex (explained

in the next paragraph) or the value of �(j) between adjacent iterations, or be set by when

value of �(j) is sufficiently small.
For an objective function (ðjÞ : R

M
! R to be minimized, a simplex of Mþ 1 vertices

is first formed. A simplex in R
1 is a line segment, in R

2 is a triangle, in R
3 is a tetrahedron,

and so on. Let j0 ¼ j
ð0Þ be the initial guess/point, which is also a vertex of the simplex to

be formed. The other vertices can be selected by making ji � j0 parallel to the

ith M-dimensional unit vector f0, . . . , 1, 0 . . .gT, in which ‘1’ appears as the value of the ith

component. The length of the vector ji � j0k k2 can be a typical length scale in

ith dimension. This way, j1 � j0, j2 � j0, . . . ,jM � j0 are mutually normal to each other,

i.e. points j0, j1, . . . , jM are not coplanar in the R
M Euclidian space.

At any stage, the N–M method aims to remove the vertex with the largest function

value and to replace it with a new vertex with a smaller function value. This procedure

guarantees that the average objective function value at each step is non-increasing.
Figure 9 demonstrates the algorithm of N–M method for one step. Vertices j1, . . . , j4

are ordered such that(ðj1Þ5(ðj2Þ5 � � � 5(ðj4Þ. We say point ji is better than point jj
if (ðjiÞ5(ðjjÞ. The centroid of the best three points is �jð0Þ ¼ ðj1 þ j2 þ j3Þ=3. Any

point along the line joining points j4 and �jð0Þ can be defined by �jðsÞ ¼ �jð0Þ þ sðj4 � �jð0ÞÞ.
One commonly used scheme is to replace j4 with one of the four points along the line:

expansion point �jð�2Þ, reflection point �jð�1Þ, outside contraction point �jð�1=2Þ or inside
contraction point �jð1=2Þ. The details of which point to replace could be found in reference

[48]. If all those four points are still worse than j4, shrinking of points j2 to j4 towards the
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best point j1 is performed. Either the replacement of the worst point or the shrinking

finishes one step in the N–M method.
The reasons why the N–M method is chosen are: (1) it is a derivative-free optimization

method and it eliminates the derivation and computation of the gradient or the Hessian of

the objective function; (2) it is easier to implement various constraint functions as part of

the objective functions and (3) it is more robust than common Newton-like solvers. One
must note that the N–M method is not as computationally efficient as other optimization

methods. However, the computational cost of optimization algorithms is beyond the scope

of this study.

2.2.4. Constraint functions

The computation of the force vector bFext relies on a valid �ðDn;jÞ curve. The base-line
requirements are �i4 0 and 05Dn,1 5Dn,1 5 � � � 5Dn�þ1 for the control points (Figure 8

and Equation (6)). The former condition requires the cohesive stress to be tensile (positive)

stress. The latter condition is to avoid invalid snapback (Figure 10).
There is no direct mechanism in the N–M method to handle constraints, i.e. the

constraint functions cannot be directly enforced. If the base-line requirements stated above

are broken during the a N–M iteration, we may not even be able to compute bFext, which
depends on a valid CZM. Traditionally, barrier functions can be added to enable one to

solve a constrained optimization problem using an unconstraint optimization method [49].

However, the commonly used barrier functions, while providing the option of applying a

penalty as it approaches the infeasible domain, cannot prevent N–M method from

selecting a point in the infeasible domain. The barrier function must be extended to the
complete infeasible domain. The non-increasing nature and the particular point-selection

procedure of the N–M approach provide a possible implementation. To ensure that the

l3

l2

l1

l4

l (0)

l (−1/2)

l (1/2)

l (−1)

l (−2)

Shrinking Expansion

Reflection

Inside contraction

Outside contraction

Figure 9. Schematic demonstration of the N–M method (three unknowns).
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computed j at each N–M iteration satisfies the condition �i4 0, consider the barrier

function in the form

�1ðjÞ ¼
X
i

10Nbð�b��iÞ=�b , ð13Þ

where 05 �b � 1, and Nb � 1. Apparently, �1(j) is negligible when �i4 �b but becomes

a sharply increasing barrier when �i5 �b. To satisfy the condition 05Dn,1 5
Dn,1 5 � � � 5Dn,�þ1, the barrier function in a similar form to Equation (13) can be used

�2ðjÞ ¼
X
i

10Nb 	i�ð1��bÞ½ �=�bf g, ð14Þ

where

	i ¼
Dn,i � Dn,i�1 þ Dn,iþ1

� �
=2

Dn,iþ1 � Dn,i�1

� �
=2

�����
����� ð15Þ

is the normalized horizontal distance of point i from the midpoint of the adjacent two

points i� 1 and iþ 1. When 	i5 1, condition Dn,i�1 5Dn,i 5Dn,iþ1 is satisfied. Again, �2(j)
is negligible when 0 	 	i 5 1� �b but becomes a barrier when 	i 4 1� �b. Incorporating
barrier functions (13) and (14), the original objective function is augmented to be

(ðjÞ ¼ u�ðjÞ � �uð Þ
T
�wu

��� ���
2
þw�1�1ðjÞ þ w�2�2ðjÞ, ð16Þ

where w�1 and w�2 are the weighting factors. Now the constraints are embedded in the

objective function. Notice that during any N–M iteration, infeasible points may still be

evaluated. This is allowed by evaluating only the barrier functions in the objective function

for the infeasible points, which will yield a very large objective function value. The

parameters �b, Nb, w�1 and w�2 are set so that the following condition is guaranteed

( jinfeasible
� �

4( jfeasible
� �

:

If the initial guess of j is feasible, the non-increasing nature of N–M method will always

discard the infeasible points if encountered but select feasible points only.

σ

0 Δn

Pi+1

Pi+2
Pi

Figure 10. Erroneous CZM description: snapback.
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2.2.5. Additional shape regularization term

Though constrained, the flexible representation of the CZMs may still evolve to some
unsuitable shape and lead to difficulty during the optimization process. Assisting the CZM
in maintaining a valid shape can prevent the CZM from evolving to a possible local
plateau or local minimum that is different from the physical solution. Therefore, it can be
effective or efficient when the CZM is not close to the exact solution. When near the exact
solution (small objective function value), the assistance can be removed. Such assistance
can be implemented through the particular construction method of CZM or through
adding additional constraints. For our shape representation method of CZM, only the
latter method can be used. Among many possible methods, we use the total curve length of
the CZM as a constraint measure. The curve length is computed from the non-dimensional
representation after normalizing the coordinates with respect to the critical cohesive stress
and the critical CMOD. The shortest curve length therefore is

p
2. A barrier function

similar to (13) is used to prevent the normalized CZM curve length from exceeding 3.
The weighting factor for this barrier term is set as 10% of the norm of the displacement
error, and becomes zero when the norm of the displacement error becomes small.

2.2.6. Intelligent aid to optimization

The flexible representation of the CZMs may also lead to clustering of points and the
forming of a ‘tail’ (Figure 11). Apparently, in such situations, the control points are not
fully utilized to help the evolution of the CZM. Therefore, it is desirable to redistribute the
control points while maintaining the CZM shape. The approach we used is to remove the
redundant cluster or ‘tail’ points and add additional points in the middle of longer
segments as demonstrated also in Figure 11. The examination of possible clustering and a
‘tail’ is carried out for each iteration with little computational effort. Once either a ‘tail’ or
a clustering is detected by certain pre-set criteria, the N–M optimization is temporarily
terminated, the control points are redistributed, a new initial guess is computed and the
N–M optimization is restarted. All these steps are done automatically. Demonstration of
such operation and of its effect will be provided in the numerical examples presented in
Section 3.3.2.

3. Numerical examples

3.1. Direct problem

Five cases are simulated (Table 1), each of which is a combination of a particular modulus
of elasticity of the bulk material and a CZM (Figure 5). Cases I–III compare the effect of
different CZM shapes. Cases I, IV and V compare the effect of the bulk material stiffness.

In the simulation, the loading is displacement controlled. The global responses,
P versus CMOD and P versus load–line displacement �, for cases I–III are shown in
Figure 12. One can see that the CZM shape affects the global response apparently around
the peak load, while for the rest of the softening curves, the curves are similar.
An important implication is that numerical simulation to match most of the part of the
global response curve does not prove that the right shape of CZM is used.

Figure 13 shows that the global response curves for cases I, IV and V. When E
increases, the displacement variation decreases, as can be seen from the increasing
deviation of P versus CMOD curve from P versus � curve. This shows that with a fixed
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measurement accuracy, the relative measurement errors of displacement field for softer
material will be smaller; thus the inversely computed CZM may be more accurate.

The areas under the P versus � curves divided by the area of crack surface are used to
estimate the fracture energy Gf, i.e. the area under the � versus Dn curve. A value
comparable to the measured CMOD (0.95 CMOD in our case) is used as an estimate of
Dnc. The target CZM to be computed is first assumed to have linear softening curve; the
critical stress is then given by

�c ¼
2Gf

Dnc
:

An initial guess of CZM, equivalently the unknown set of parameters j, is thereby
obtained.

3.2. Errors for the displacement field

Apparently, measuring CZM properties requires high precision measurement for at least
the complete profile of COD, which can be part of the whole displacement field obtained
by, e.g. DIC technique. However, noisy data are the real outcome of any experimental
measurement. Therefore, we need to take into account the possible measurement errors in
the inverse procedure to compute CZM. The nature of the errors, e.g. random or

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2

4

6

8

10

Move redundant cluster or
‘tail’ points to the middle

of  long line segments

Redundant 
cluster points

Redundant 
‘tail’ points

‘Tail’

Figure 11. Illustration of redundant cluster points and ‘tail’ points possibly formed in the spline
representation of CZM and the treatment.

Table 1. Five direct problem cases, combinations of CZM and modulus of elasticity.

Case I Case II Case III Case IV Case V
CZM Linear HD PL Linear Linear

E of bulk material (GPa) 30 30 30 10 100
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systematic, and the magnitude of the errors can be estimated from their sources. For this
study, it is assumed that the displacement field is measured by DIC technique and the
primary sources of errors are from the digital image resolution and the DIC algorithm.
Actually, DIC is an optical technique and its resolving power depends both on the
correlation algorithm and the image acquisition device. Usually, the quality of a digital
image can be guaranteed with modern CCD (charge-coupled device) or CMOS
(complementary metal-oxide-semiconductor) cameras. High CCD or CMOS sensor
resolution, together with high magnification lenses, is able to achieve a resolution in the
scale of 100–102microns pixel�1. This is the base-line resolution, or maximum error, if
displacement is directly obtained from the image. Resolution of DIC software is measured
as a fraction of pixel. It has been reported [50] that DIC can obtain a sub-pixel precision of
0.005 pixel or even higher [51]. The combined resolving power of high image resolution and
high precision DIC algorithm can reach 10�2–100microns pixel�1. The most popular DIC
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Figure 13. Load, P, versus load–line displacement, �, and P versus CMOD curves for different bulk
elastic moduli (E¼ 10, 30 and 100GPa), but the same linear CZM.
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Figure 12. Load, P, versus load–line displacement, �, and P versus CMOD curves for different
(linear, PL and HD) CZMs, but the same bulk elastic modulus E¼ 30GPa.
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algorithm is based on sub-set cross-correlation; the displacements measured at all points
are independent of each other. The errors can be assumed to be randomly and normally
distributed.

For the inverse procedure used in this study, we introduce errors by only considering
the DIC resolution since the displacement error from digital image itself never exceeds
1 pixel. Assume a moderate image resolution of 1000 pixels along the specimen height,
which corresponds to 0.0255mmpixel�1. We then introduce three levels of errors by
specifying different maximum error magnitudes (Table 2).

In Table 2, the case with no error serves as the control case. The standard deviation of
the introduced errors is estimated based on a population of 5000 random data. The errors
added are all between the interval of negative and positive maximum errors. The mean
value of the errors is zero. The comments on the errors are our subjective judgement based
on reported accuracy of DIC. The moderate error level is reasonable and can be easily
achieved for well-control experiments.

3.3. Results of inverse analysis

The specified errors in Table 2 are added to the displacement field taken at 60% of
the peak load for all five cases listed in Table 1. The weights in Equation (16), w�1
and w�2 , are taken as unit for all the examples. Due to the random nature of the
errors, each case with a specified level of noise has been repeated two more times to
see the variance. In all cases, four control points are used to construct the CZM.
Correspondingly, there are six unknown parameters to determine in the optimization
procedure. Four control points are sufficient for ‘imaginable’ CZM shape. The initial
guess of the CZM is estimated from the method described in Section 3.1. LS
interpolation is used for the CZM.

Figure 14 shows the computed CZMs for all cases with different error levels applied.
The effects of the bulk material stiffness, the different CZMs and the different error levels
to the computed CZMs can all be compared. The computed CZM for the case with no
error added is identified in all subfigures as the solid line with solid circular markers.
For the case of bulk material E¼ 30GPa, the computed CZMs of all three types (linear,
HD and PL) are satisfactory up to an error level¼ 0.05 pixel. At error level¼ 0.2 pixel, the
computed CZMs are significantly off the exact solution. When the bulk material is
E¼ 10GPa, the computed CZMs are acceptable up to 0.2 pixel error level. In fact, the
relative error level with respect to the absolute displacement measurement for the case of

Table 2. Different levels of errors added to the synthetic displacement field.

Image resolution
(mmpixel�1)

DIC resolution
(pixel)

Maximum
absolute

error (mm)

Estimated
standard

deviation or
errors (mm)

Comments on
the errors

0.0255 
 No error ¼ 0 0 Ideal
0.0255 
 0.005 ¼ 1.28
 10�4 7.2–7.4
 10�5 Accurate
0.0255 
 0.05 ¼ 1.28
 10�3 7.2–7.4
 10�4 Moderate
0.0255 
 0.2 ¼ 5.1
 10�3 2.9–3.0
 10�3 Coarse
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E¼ 10GPa with error level¼ 0.2 pixel is similar to that obtained for the case of
E¼ 30GPa with error level¼ 0.05 pixel. For bulk material E¼ 100GPa, apparently,
the relative error is about 3.3 times that for E¼ 30GPa for the same absolute error.
Therefore, the bulk material with E¼ 100GPa is much less tolerable to errors, as can be
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Figure 14. Computed CZMs for all cases (Table 1) with different error levels (Table 2) applied. Each
case is repeated three times. The solid circle with solid line is the computed CZM for the ideal case
(without errors).
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seen for the significant deviation of computed CZMs from the exact one when error
level¼ 0.05 pixel.

Table 3 shows the initial and final values of objective functions and the number of
iterations. For cases with errors, the data are the averages of three repetitions. The table
shows that as the error level increases, both the initial and the final values of objective
function increase. The final objective function value does not indicate whether the
computed CZM converges to the correct solution or not. For example, for the case of bulk
material E¼ 10GPa at error level¼ 0.2 pixel, the average final objective function value is
297.3, which is the largest among all cases; yet it still yields the correct CZM. For the case
of bulk material E¼ 100GPa at error level¼ 0.05 pixel, the average final objective function
value is 55.6, which is moderate among all cases; but the computed CZMs are not close
to the correct solution.

3.3.1. Displacement data at different load levels

At high error levels, each individual inverse analysis converges to an inaccurate CZM.
Using a few data sets of the same case enhances the estimation of the computed CZM. For
example, one would naturally choose to estimate the CZM using all three repetitions for
cases of bulk material E¼ 30GPa at error level¼ 0.2 pixel or bulk material E¼ 100GPa at
error level4 0.05 pixel shown in Figure 14. In practice, this can be done by taking several

Table 3. Initial and finial values of objective function and number of iterations for all cases.
The data for all cases with errors are the averages of three repetitions.

Bulk material
elastic modulus (GPa)

Target
CZM

Peak error level
(DIC resolution) (ðjð0ÞÞ (ðjðnÞÞ

No. of
iterations

30 Linear 0 1562.0 1.0 408
0.005 1647.4 34.5 307
0.05 1656.6 55.2 342
0.2 1732.8 149.0 250

30 HD 0 1139.4 1.6 826
0.005 1245.3 42.1 590
0.05 1288.2 70.1 435
0.2 1331.2 147.3 390

30 PL 0 2413.9 5.5 522
0.005 2535.1 31.1 349
0.05 2546.6 47.1 293
0.2 2601.8 154.0 242

10 Linear 0 2340.8 0.8 261
0.005 2425.1 82.7 365
0.05 2461.5 99.5 364
0.2 2685.4 297.3 240

100 Linear 0 926.4 0.7 422
0.005 988.9 19.8 346
0.05 1054.1 55.6 283
0.2 1009.2 170.3 214

Note: j(0) is initial guess and j(n) is the converged result. The convergent criterion is set as
(ðjðn�100ÞÞ �(ðjðnÞÞ
� �

=(ðjðn�100ÞÞ5 0:01.
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DIC measurements at the same loading and using the average of the computed CZM from
each measurement. Another way, which may be more preferable and may give more
confidence, is to use the DIC measurement at several loadings. As a demonstration, we use
the displacement field taken at 40%, 60% and 80% of the peak load at post-peak regime.
All five cases (Table 1) are applied at an error level¼ 0.1 pixel. Figure 15 shows the final
result. As shown in Figure 15, the exact CZM is close to the average of the computed
CZMs from displacement data with errors, even for the case of bulk material E¼ 100GPa.

3.3.2. Other numerical aspects

Some other features of the proposed optimization scheme are: (1) the initial guess of CZM
for the optimization; (2) the number of control points defining the CZM; (3) the
interpolation used for constructing the CZM and (4) the aid to optimization. In previous
sections, the presented results are all determined using four control points and LSs as
interpolant; the initial guesses of the CZM are all estimated by using P versus � curve,
which is not far from the exact solution. For a further demonstration of the effectiveness of
the proposed inverse procedure, four cases are presented (corresponding to different initial
guesses) as outlined in Table 4. For these four cases, we use six control points to illustrate
the more flexible shape representation, although this is more than enough for the current
need. There are only three relative relations of CZM curves between the initial guess and
the exact solution: (1) intersecting, which is the case for all previously presented cases;
(2) below (Figure 16a) and (3) above (Figure 16b). The initial guesses and the computed
converged CZMs for these four cases are shown in Figure 16.

Notice that in Figure 16a, the computed HD CZM using LS interpolations is not exact
due to a small ‘tail’ present in the solution, which is not removed during optimization.
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Figure 15. CZMs computed using displacement field taken at different post-peak loadings. An error
level¼ 0.1 pixel is applied to all cases.
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However, as can be seen, the computed HD CZMs using both interpolants are fairly
accurate. For the PL CZM, both interpolants yield accurate CZMs. A close examination
of the curve confirms the expectation that the cubic spline interpolations provide smoother
and more accurate results. The evolution of the objective function value for these four
cases is presented in Figure 17. In each plot shown in Figure 17, the locations where
clustering or ‘tail’ forms, as described in Section 2.2.6, are marked in one of the two curves.
The initial objective function values for these four cases are much larger than those shown
in Table 3. Also, the number of iterations to convergence is much larger. The objective
function values steadily decrease except at ‘tail’ points when the CZM parameters are
recalculated. Although the cohesive stress contributed by the ‘tail’ is small, it is located
away from the beam neutral axis. With a long moment arm, the influence of the ‘tail’ to the
deformation of the specimen is apparent. The treatment of the clustered points may only
influence the objective function negligibly, as seen closely at point ‘C’ on the right plot
of Figure 17.

Figure 18 shows the adjustment of control points for the two ‘tails’ found at points ‘A’
and ‘B’ and for the clustering found at point ‘C’ in Figure 17. The removal of the ‘tail’ at
point ‘A’ does not affect the objective function value as the ‘tail’ corresponds to crack
opening larger than the actual case. At point ‘B’, the cohesive stress within the tail acts on
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Figure 16. Illustration of optimization effectiveness for (1) different initial guesses: below and above
the solution; (2) higher number of control points: six here; and (3) different interpolations: linear and
cubic spline interpolations. Left: for HD CZM. Right: for PL CZM.

Table 4. Effect of the initial guess (six control points), and use of different
interpolants.

Cases
Target
CZM

Bulk material,
E (GPa)

Number of
control points

Initial
guess Interpolant

I HD 30 6 Below LS
II HD 30 6 Below Cubic spline
III PL 30 6 Above LS
IV PL 30 6 Above Cubic spline
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the specimen thus affecting the deformation and the value of the objective function.
The treatment of the clustering, as illustrated, does not change the CZM curve
significantly, and therefore does not influence the objective function value much.
A comparison between cases with and without cluster removal shows that the cluster
treatment reduces the number of iterations significantly.

3.3.3. Remarks on the uniqueness of the inverse solutions

In general, inverse problems may not have unique solutions in a feasible domain.
In optimization description, this means there may exist a finite or infinite number of local
minimums in the feasible domain. The solution is usually one of these local minimums and
may not be the global minimum. Therefore, it is important to clearly identify the local
minimum that is physically representative. In this application, it seems that the unwanted
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Figure 17. The evolution of the objective function value for the four cases shown in Figure 16.
Upper plot: for HD CZM. Lower plot: for PL CZM.
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local minimums are mostly induced by the CZM ‘tail’. Point ‘B’ in Figure 18 in fact leads
to a local minimum if the tail is not removed, as removal of the ‘tail’ causes an increase of
the objective function value (Figure 17). As one can imagine, if the ‘tail’ is totally to the
right of the actual maximum COD, the cohesive stress due to the ‘tail’ will not contribute
to the deformation of the specimen, i.e. the existence of the ‘tail’ will not affect the
objective function value. Apparently, one does not expect a CZM to have a ‘tail’ like the
ones shown in Figure 18. In practice, this probably is not an issue as the CZM will be
computed from different sets of experimental data, e.g. at different load levels (Figure 15),
or from specimens with different geometries (either numerical or actual experimental
specimens).
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Figure 18. Demonstration of the removal of ‘tail’ or cluster formed in the CZM representation.
Points ‘A’–‘C’ correspond to the points shown in Figure 17.
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4. Conclusions

In this article, a method is proposed to compute the CZM from whole-field displacement
data. The major differences between this method and previous methods are: (1) a whole
displacement field is used rather than curve fitting using global response, (2) no specific
shape is assumed for CZM during inverse computation and (3) no derivatives of a
synthetic (or experimental) displacement field are needed.

Linear and cubic splines are used to represent the shape of the CZM. The advantage
brought by splines is the flexibility of using an arbitrary number of control points for
representing an arbitrary shape. The non-linear inverse problem is solved using the
unconstrained, derivative-free optimization method, the N–M method. The objective
function is taken to be the difference between the measured displacement field and the
computed displacement field from FEM, but augmented by adding continuous barrier
functions to suppress the non-physical compressive cohesive stress and snapback of the
CZM curve during optimization. The barrier functions enforce the requirement of using
the unconstrained unknown parameters in the N–M method as long as the initial guess
for the optimization problem is within the feasible domain.

The numerical examples investigate cases with different moduli of elasticity of the bulk
material, different CZMs and different levels of errors (corresponding to potential noise in
the experimental data). The numerical examples have shown that the proposed scheme is
quite tolerant to experimental errors but the accuracy of the computed CZM heavily
depends on the elastic modulus of the bulk material. The robustness and effectiveness of
the proposed scheme are also demonstrated using different initial guesses and a different
number of control points.
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Appendix

Nomenclature

u displacement field, also global displacement vector;
�u known displacement field from direct problem or from experimental

measurement;
u* computed displacement field during inverse procedure;
j CZM parameters;
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� cohesive stress/traction;
�c critical cohesive stress;
Dn COD;
Dnc critical COD;

 PL softening index;

Ke
b bulk element stiffness matrix;

Ke
c element cohesive stiffness matrix;

Kb global stiffness matrix of the bulk material;
Kc global cohesive stiffness matrix;
ue element nodal displacement;
r element nodal force;
l size of Q4 element along crack surface;
s local natural coordinate;
t beam thickness;

kc defined as �/Dn;
Ns shape function in natural coordinate system;
N shape function in isoparametric coordinate system;
ux element nodal displacement in x direction;

Fext, bFext global external force;
Dn, r coordinates of the control points;

R residual of the FE system of equations;
�b, Nb, 	i parameters that define the barrier functions;

wu vector of weighting factors;
� number of internal control points;
M number of unknown parameters of the CZM;

�(j) objective function;
Gf fracture energy;

�1, �2 barrier functions;
w�1 ,w�2 weighting factors for the barrier functions.
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