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An analysis of a coupled plane elasticity problem of crack/contact mechanics for a
coating/substrate system with functionally graded properties is performed, where the
rigid flat punch slides over the surface of the coated system that contains a crack.
The graded material is treated as a non-homogeneous interlayer between dissimilar,
homogeneous phases of the coated medium and the crack is assumed to exist along
the interface between the interlayer and the substrate. Based on the Fourier integral
transform method and the transfer matrix approach, formulation of the current coupled
mixed boundary value problem lends itself to the derivation of a set of three simultaneous
Cauchy-type singular integral equations. In the numerical results, the emphasis is placed
on the investigation of interactions between the contact stress field and the crack-tip
behaviour for various combinations of material, geometric and loading parameters of
the coated system. Specifically, effects of interfacial cracking on the distributions of
the contact pressure and the in-plane stress component along the coating surface are
examined and the mixed-mode stress intensity factors evaluated from the crack-tip stress
field with the square-root singularity are provided as a function of punch location.
Further addressed is the quantification of the singular character of contact pressure
distributions at the trailing and leading edges of the flat punch in terms of the punch-edge
stress intensity factors. Implicit in this particular analysis of the coupled crack/contact
problem presented henceforth is that the crack closure behaviour under the compressive
contact stress field is not taken into account, ignoring the influence of crack-face contact
and friction.
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1. Introduction

Coating/substrate systems are commonly utilized in a wide range of modern
engineering practices, in an effort to improve the reliability and durability of
components and parts of mechanical and structural assemblages, where the
coating materials are essentially intended to play a protective role for the
underlying substrate against detrimental wear-, heat- and corrosion-related
damage. In applying a conventional, homogeneous coating to the substrate,
one of the issues of utmost significance is the unavoidable presence of a sharp
interface with an apparent mismatch of thermophysical properties. It is therefore
very likely that the interfacial region suffers from high stress concentrations,
poor bonding strength and consequent vulnerability to failures that may
involve cracking and debonding of the coating layer, thereby counteracting the
enhancements attained by the coating. Recent progress in the field of functionally
graded materials that exhibit smooth spatial variations of properties, however,
has made it viable to cope with such a drawback through the deliberate
incorporation of a graded transitional interlayer as an undercoat between
the coating and the substrate or the direct deposit of a graded coating on
the substrate as an alternative to the homogeneous coating. The mismatch
between the properties of the constituents can thus be alleviated to such
a degree that it leads to superior structural and tribological performances
(Schulz et al. 2003).

On the premise that certain standard classes of boundary value problems are
to be resolved in conjunction with the characterization of this new generation
of engineered materials for many technologically important applications, a
series of benchmark solutions to a variety of fracture and contact mechanics
problems has been obtained for graded, non-homogeneous solids, as described
by Erdogan & Ozturk (2008). When it comes to fracture mechanics analysis,
the distinct problem area is the identification of crack-tip singularities with the
aim of quantifying the effect of material gradations on crack driving forces and
other fracture-related parameters. A thorough review of corresponding earlier
studies of key interest was also given by Erdogan (1998), highlighting the salient
features concerning the crack-tip behaviour that entails the graded properties.
The most noteworthy is the near-tip field possessing square-root singularity
along with the same angular distributions around the crack tip as those in
the homogeneous material, provided the spatially varying elastic modulus is
continuous and piecewise differentiable near and at the crack tip (see also Eischen
1987; Jin & Noda 1994). Hence, the effect of material gradients was shown to
manifest itself through the values of crack-tip stress intensity factors. A number of
additional contributions in the quasi-static crack problems were reported, among
others, by Choi (2001a, 2007a), Paulino et al. (2003) and Chan et al. (2008),
while those addressing the elastodynamic response to impact loading are due to
Choi (2004, 2006, 2007b), Lee & Choi (2006) and Song & Paulino (2006). In
addition, the crack problems involving the thermoelastically graded properties
were dealt with by Lee & Erdogan (1998), Choi (2003), Walters et al. (2004)
and Dag (2006).

From the standpoint of contact mechanics that could find applications
where surface wear and damage due to sliding contact are a serious
concern, such as in the design of load transfer components with property
Proc. R. Soc. A (2010)
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gradations, some mechanistic and phenomenological observations were made by
Suresh et al. (1997) and Jitcharoen et al. (1998). Specifically, when compared
with the results of contact mechanics analysis in the homogeneous solid
(Hills et al. 1993), the appropriate gradual variation of the elastic modulus was
shown to significantly alter the stress field around the contact region. Further
illustrated by Suresh (2001) was that the controlled gradients in the elastic
properties offer unique opportunities for the design of surfaces with improved
resistance to sliding-contact deformation and damage that cannot be realized
in the conventional homogeneous material. It was Guler & Erdogan (2004) who
examined the contact stress field for the graded coating bonded to a homogeneous
substrate indented by frictional rigid punches with various profiles. The same
problem but with arbitrary spatial variations of shear modulus was treated
by Ke & Wang (2007), based on a multilayered approach. Moreover, Choi &
Paulino (2008) considered the problem of thermoelastic contact mechanics for
a flat punch sliding over the graded coating/substrate system with frictional
heat generation.

In many engineering problems of practical interest, the mechanical and
structural members are exposed to frequent occurrences of various cracking modes
under the influence of a stress field imposed as a result of contact loading through
indentation. Such situations have been the subject of increasing importance,
requiring the development of appropriate analytical and numerical models in
extending the fracture mechanics-based predictions to more complicated problems
where severe stress gradients persist in the vicinity of contact loading. Typically
these may involve the studies, for example, by Keer et al. (1982), Bryant
et al. (1984), Hasebe et al. (1989), Bower & Fleck (1994) and Munisamy
et al. (1995) for the contact fracture analyses of uncoated homogeneous solids
and those by Oliveira & Bower (1996) and Zalounina & Andreasen (2004)
for the cases of coated media having dissimilar homogeneous properties, with
a diverse degree of sophistication. To be specific, Keer et al. (1982) and
Bower & Fleck (1994) assumed that the elastic half-space is simply subjected
to normal and shear loading that resembles the frictional Hertzian stresses, and
Oliveira & Bower (1996) also employed the contact pressure distribution that
remains Hertzian despite the mismatch in elastic properties across the interface
between the coating and the substrate. On the other hand, Bryant et al. (1984)
and Hasebe et al. (1989) presented the solutions to the problem of a crack
loaded by a rigid punch passing along the surface of a homogeneous half-plane,
taking the interaction between the crack and the contact into account. Munisamy
et al. (1995) carried out the analysis to examine the effect of the crack-induced
compliance change in a half-plane on the pressure distribution beneath a rigid flat
indenter and on the crack-tip stress intensity factors as well, while Zalounina &
Andreasen (2004) formulated a problem of frictionless rolling contact between an
edge-cracked coated solid and a rigid circular indenter. In the light of a number
of potential benefits achievable from the use of functionally graded materials,
especially in the field of wear-resistant coatings, Choi (2001b) and El-Borgi et al.
(2004) considered the problem of a crack in a graded coating/substrate system,
where the cracked medium was assumed to be loaded solely by the applied
Hertzian contact stresses, and Dag & Erdogan (2002) tackled the coupled problem
for a semi-infinite graded medium containing a surface crack and loaded by a
sliding rigid punch.
Proc. R. Soc. A (2010)
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It can now be inferred that the attempts undertaken to date for contact fracture
analyses involving the functionally graded materials are rather restrictive. The
objective of this paper is, therefore, to investigate a coupled crack/contact
problem of a coating/substrate system with graded properties, within the
framework of plane elasticity. The graded material is assumed to exist as a non-
homogeneous interlayer between dissimilar, homogeneous phases of the coated
medium loaded on its surface by a frictional sliding flat punch, with a crack
being located along the interface between the interlayer and the substrate. As the
method of solution and analysis, the Fourier integral transform and the transfer
matrix approach (Bahar 1972) are employed and a set of three simultaneous
Cauchy-type singular integral equations is derived for the derivatives of crack-face
displacements and the contact pressure. Numerical results are obtained to address
the interactions between the contact stress field and the crack-tip behaviour for
various combinations of material, geometric and loading parameters of the coated
system. In particular, the effects of interfacial cracking on the distributions of the
contact pressure and the in-plane stress along the coating surface are examined
and the mixed-mode crack-tip stress intensity factors are provided as a function of
punch location. Furthermore, with a view to quantifying the degree of criticality
of the local intensification of singular stresses that build up at the edges of the
flat punch, the punch-edge stress intensity factors are also defined and evaluated,
in parallel with the concept used for characterizing the singular behaviour of
crack-tip stresses.

2. Formulation of the coupled crack/contact problem

A schematic of the problem under consideration is depicted in figure 1, where a
homogeneous coating layer is deposited on a substrate with a graded interlayer
between. A rigid flat punch of width 2δ is pressed against the coating by a normal
force P and slides in the positive y-direction, with a frictional shear force Q =
μf P developed between the punch and the coating surface by Coulomb’s friction,
where μf is the coefficient of friction. The interface between the interlayer and
the substrate is assumed to contain a crack of length 2c, the centre of which is
located at a distance e from that of the punch.

The coating, the interlayer and the substrate are distinguished in order from
the top with the thickness hj , j = 1, 2, and semi-infinite and the shear moduli
μj , j = 1, 2, 3, respectively. The non-homogeneous shear modulus μ2(x) of the
graded interlayer is approximated in the form as (Erdogan 1998)

μ2(x) = μ1 eβx and β = 1
h2

ln
(

μ3

μ1

)
, (2.1)

where the gradation parameter β specified in the local coordinates (x , y) = (xj , y),
j = 1, 2, 3, satisfies the continuous transition of the shear moduli from the coating
to the substrate and the spatial variation of Poisson’s ratio is assumed to be
negligible throughout the medium such that νj = ν = constant.

Let uj(x , y) and vj(x , y), j = 1, 2, 3, be the displacement components in the
x- and y-directions, respectively, so that the Navier–Cauchy equations of
Proc. R. Soc. A (2010)
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Figure 1. Schematic of the coupled crack/contact problem for a coating/substrate system with
graded properties.

equilibrium in the absence of body forces are written as

∇2uj + 2
κ − 1

(
∂2uj

∂x2
+ ∂2vj

∂x∂y

)
+ β

κ − 1

[
(κ + 1)

∂uj

∂x
+ (3 − κ)

∂vj

∂y

]
= 0, (2.2)

∇2vj + 2
κ − 1

(
∂2vj

∂y2
+ ∂2uj

∂x∂y

)
+ β

(
∂vj

∂x
+ ∂uj

∂y

)
= 0, j = 1, 2, 3, (2.3)

where κ = 3–4ν for the plane strain and κ = (3 − ν)/(1 + ν) for the plane stress,
β �= 0 for the graded interlayer (j = 2) and β = 0 for the homogeneous constituents
(j = 1, 3), and the stress components σkij(x , y), k = 1, 2, 3, i, j = x , y, are evaluated
from the following constitutive relations:

σjxx = μj

κ − 1

[
(κ + 1)

∂uj

∂x
+ (3 − κ)

∂vj

∂y

]
, (2.4)

σjyy = μj

κ − 1

[
(κ + 1)

∂vj

∂y
+ (3 − κ)

∂uj

∂x

]
, (2.5)

σjxy = μj

(
∂uj

∂y
+ ∂vj

∂x

)
, j = 1, 2, 3. (2.6)

A set of homogeneous boundary and interface conditions for the coupled
problem is written in the local coordinates (x , y) = (xj , y), j = 1, 2, 3, such that

u1(h1, y) = u2(0, y), v1(h1, y) = v2(0, y), |y| < ∞, (2.7)

σjxx(hj , y) = σ(j+1)xx(0, y), σjxy(hj , y) = σ(j+1)xy(0, y), j = 1, 2, |y| < ∞, (2.8)

u3(∞, y) = 0, v3(∞, y) = 0, |y| < ∞, (2.9)
Proc. R. Soc. A (2010)
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and the mixed conditions along the cracked interface are imposed as

u2(h2, y) = u3(0, y), v2(h2, y) = v3(0, y), |y| > c, (2.10)

σ3xx(0, y) = 0, σ3xy(0, y) = 0, |y| < c, (2.11)

while those along the surface of the coating in contact with the frictional punch
are expressed as

u1(0, y) = f (y), σ1xy(0, y) = μf σ1xx(0, y), |y − e| < δ, (2.12)

σ1xx(0, y) = 0, σ1xy(0, y) = 0, |y − e| > δ, (2.13)

where f (y) refers to the indentation deformation at the coating surface presumed
a priori to be within the contact area via the prescribed punch profile.

In order to account for disturbances caused by the presence of interfacial
cracking as well as by the action of the punch, the unknown auxiliary functions
are defined as

φ1(y) = ∂

∂y
[u3(0, y) − u2(h2, y)], |y| < c, (2.14)

φ2(y) = ∂

∂y
[v3(0, y) − v2(h2, y)], |y| < c, (2.15)

φ3(y) = −σ1xx(0, y), |y − e| < δ, (2.16)

under the condition of single valuedness of displacements along the cracked
interface and that of overall equilibrium with the resultant contact force P
such that

∫ c

−c
φj(y) dy = 0, j = 1, 2 and

∫ e+δ

e−δ

φ3(y) dy = P. (2.17)

The general solutions for the displacements in the coating layer (β = 0 and
(x , y) = (x1, y)) are obtained by solving the governing equations (2.2) and (2.3)
based on the Fourier integral transform method as

u1(x , y) = i
2π

∫∞

−∞

{[
F11 + F12

(
x − κ

s

)]
esx −

[
F13 + F14

(
x + κ

s

)]
e−sx

}
e−isy ds,

(2.18)

v1(x , y) = 1
2π

∫∞

−∞

[
(F11 + F12x) esx + (F13 + F14x) e−sx] e−isyds, 0 ≤ x ≤ h1,

(2.19)

where s is the transform variable, i = (−1)1/2, and F1j(s), j = 1, . . . , 4, are
arbitrary unknowns.
Proc. R. Soc. A (2010)
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For the graded, non-homogeneous interlayer (β �= 0 and (x , y) = (x2, y)), the
general expressions of the displacement components can be obtained as

u2(x , y) = − i
2π

∫∞

−∞

4∑
j=1

F2jmj enj x−isy ds, (2.20)

v2(x , y) = 1
2π

∫∞

−∞

4∑
j=1

F2j enj x−isy ds, 0 ≤ x ≤ h2, (2.21)

where F2j(s), j = 1, . . . 4, are arbitrary unknowns, nj(s), j = 1, . . . , 4, are the roots
of the characteristic equation

(n2 + βn − s2)2 +
(

3 − κ

1 + κ

)
β2s2 = 0, (2.22)

from which it follows that

nj = −β

2
+

√
β2

4
+ s2 − i (−1)jβs

(
3 − κ

1 + κ

)1/2

; Re(nj) > 0, j = 1, 2, (2.23)

nj = −β

2
−

√
β2

4
+ s2 + i (−1)jβs

(
3 − κ

1 + κ

)1/2

; Re(nj) < 0, j = 3, 4, (2.24)

and mj(s), j = 1, . . . 4, are given for each root nj(s), j = 1, . . . , 4, as

mj = (κ − 1)(n2
j + β nj) − (κ + 1)s2

[2nj + (κ − 1)β]s . (2.25)

The general solutions for the displacements in the semi-infinite, homogeneous
substrate (β = 0 and (x , y) = (x3, y)) that fulfils the regularity condition in
equation (2.9) is also readily obtainable as

u3(x , y) = − i
2π

∫∞

−∞
s
|s|

[
F31 + F32

(
x + κ

|s|
)]

e−|s|x−isy ds, (2.26)

v3(x , y) = 1
2π

∫∞

−∞
(F31 + F32x) e−|s|x−isyds; 0 ≤ x < ∞, (2.27)

where F3j(s), j = 1, 2, are arbitrary unknowns.
The next step in the solution procedure requires the components of

displacements and stresses in the constituents be determined in terms of the
auxiliary functions φj , j = 1, 2, 3. In the coupled crack/contact problem at hand,
this is made in two parts: (1) the interface crack problem for the coated system
with a traction-free boundary where the displacements and stresses are obtained
in terms of φ1 and φ2 in equations (2.14) and (2.15), with φ3 being zero, and
(2) the contact problem without a crack where the corresponding components
are expressed solely in terms of φ3 in equation (2.16). As a result, the total
displacement and stress fields throughout the cracked medium loaded by the
Proc. R. Soc. A (2010)
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punch are represented as the sum of those obtained for each problem as

uj(x , y) = u(1)
j (x , y) + u(2)

j (x , y), j = 1, 2, 3, (2.28)

vj(x , y) = v
(1)
j (x , y) + v

(2)
j (x , y), j = 1, 2, 3, (2.29)

σjkl(x , y) = σ
(1)
jkl (x , y) + σ

(2)
jkl (x , y), j = 1, 2, 3, k, l = x , y, (2.30)

which should thus satisfy the crack-face and contact boundary conditions of the
original coupled problem, equations (2.11) and (2.12), simultaneously, where the
superscript (1)/(2) stands for the problem (1)/(2).

3. Transfer matrix approach for the crack and contact problems

For the three-layer coating/substrate system, the general solutions of plane
elasticity equations involve a total of 10 unknowns, Fij(s), i = 1, 2, j = 1, . . . 4,
and F3j(s), j = 1, 2, in each part of the formulation. As mentioned above, these
unknowns should be obtained in terms of φ1 and φ2 for the crack problem and
in terms of φ3 for the contact problem from the two separate sets of relevant
boundary and interface conditions. As a judicious way of circumventing the
complexities that may arise from such lengthy algebraic manipulations, the
transfer matrix approach (Bahar 1972) is extended to the current analysis of
the coupled crack/contact problem. The auxiliary functions φj , j = 1, 2, 3, then
become the only unknowns that remain to be evaluated from the crack-face and
contact boundary conditions.

(a) The crack problem—1

From the general solutions in equations (2.18)–(2.27) and the constitutive
equations (2.4)–(2.6), the displacements and tractions in the coated system are
written in the Fourier-transformed domain as

fj(x , s) = Tj(x , s)aj(s), j = 1, 2, 3, (3.1)

where fj(x , s), j = 1, 2, 3, are state vectors containing the physical quantities in
each of the constituents, aj(s), j = 1, 2, 3, are vectors for the arbitrary unknowns
in the general solutions of elasticity equations such that

fj(x , s) = {
ūj(x , s)/i, v̄j(x , s), σ̄jxx(x , s)/i, σ̄jxy(x , s)

}T , j = 1, 2, 3, (3.2)

aj(s) = {
Fj1(s), Fj2(s), Fj3(s), Fj4(s)

}T, j = 1, 2, (3.3)

a3(s) = {F31(s), F32(s)}T, (3.4)

and Tj(x , s), j = 1, 2, 3, are matrices which are a function of the elastic parameters
of the constituents as well as the variables x and s, and 4 × 4 for the coating and
the interlayer (j = 1, 2) and 4 × 2 for the substrate (j = 3).
Proc. R. Soc. A (2010)
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In terms of the state vector equations, the boundary and interface conditions
for the crack problem can be expressed as

T−
1 (s)a1(s) = f01(s) = {

ū−
1 (s)/i, v̄−

1 (s), 0, 0
}T, (3.5)

T+
1 (s)a1(s) = T−

2 (s)a2(s), (3.6)

T+
2 (s)a2(s) − T−

3 (s)a3(s) = 
ūo(s), (3.7)

where the superscript −/+ denotes the upper/lower surface of the constituents
and 
ūo(s) is a vector of length 4 containing the Fourier transforms of the
auxiliary functions φj , j = 1, 2, and the zero elements


ūo(s) = {−
ū(s)/i, −
v̄(s), 0, 0}T, (3.8)


ū(s) = i
s

∫ c

−c
φ1(r) eisr dr , 
v̄(s) = i

s

∫ c

−c
φ2(r) eisr dr . (3.9)

Successive eliminations of the unknown vectors, aj(s), j = 1, 2, from
equations (3.5)–(3.7) allow the surface values of the field quantities, f 01(s), in
equation (3.5) to be written in terms of the unknown vectors a3(s) and 
ūo(s)
as

G1(s)a3(s) + G2(s)
ūo(s) = f01(s), (3.10)

where G1(s) is a 4 × 2 transfer matrix between the substrate and the upper surface
of the coating and G2(s) is a 4 × 4 transfer matrix between the cracked interface
and the upper surface of the coating

G1(s) =
3∏

j=1

Hj(s), G2(s) =
2∏

j=1

Hj(s), (3.11)

in which the matrix functions, Hj(s), j = 1, 2, 3, are defined by

Hj(s) = T−
j (s)

[
T+

j (s)
]−1

, j = 1, 2, H3(s) = T−
3 (s). (3.12)

The transfer matrix equation (3.10) can be decomposed and solved for the
vector a3(s) and for the transformed surface displacements, ū−

1 (s) and v̄−
1 (s)

in equation (3.5), directly in terms of 
ūo(s). After substituting the elements
of a3(s) into the state vector equation (3.1) for the substrate and using the
expressions for ū−

1 (s) and v̄−
1 (s), followed by the inverse Fourier transform, it

can be shown that the traction components along the cracked interface and
the displacement gradients on the upper surface of the coating induced by the
presence of the crack are obtained in terms of φj , j = 1, 2, such that

σ
(1)
3xx(0, y) =

∫ c

−c

2∑
j=1

M (1)
1j (y, r) φj(r) dr , |y| < ∞, (3.13)

σ
(1)
3xy(0, y) =

∫ c

−c

2∑
j=1

M (1)
2j (y, r) φj(r) dr , |y| < ∞, (3.14)
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∂u(1)
1

∂y
(0, y) =

∫ c

−c

2∑
j=1

M (1)
3j (y, r)φj(r) dr , |y| < ∞, (3.15)

∂v
(1)
1

∂y
(0, y) =

∫ c

−c

2∑
j=1

M (1)
4j (y, r)φj(r) dr , |y| < ∞, (3.16)

in which the kernel functions, M (1)
ij (s), i = 1, 2, 3, 4, j = 1, 2, are written as

M (1)
11 (y, r) = − i

2π

∫∞

−∞
1
s
Q31(s) eis(r−y) ds,

M (1)
12 (y, r) = 1

2π

∫∞

−∞
1
s
Q32(s) eis(r−y) ds, (3.17)

M (1)
21 (y, r) = − 1

2π

∫∞

−∞
1
s
Q41(s) eis(r−y) ds,

M (1)
22 (y, r) = − i

2π

∫∞

−∞
1
s
Q42(s) eis(r−y) ds, (3.18)

M (1)
31 (y, r) = − 1

2π

∫∞

−∞
P11(s) eis(r−y) ds,

M (1)
32 (y, r) = − i

2π

∫∞

−∞
P12(s) eis(r−y) ds, (3.19)

M (1)
41 (y, r) = i

2π

∫∞

−∞
P21(s) eis(r−y)ds,

M (1)
42 (y, r) = − 1

2π

∫∞

−∞
P22(s) eis(r−y) ds, (3.20)

where Qij(s), i = 3, 4, j = 1, 2, and Pij(s), i, j = 1, 2, are, respectively, elements
of the 4 × 2 and 2 × 2 matrices

Q(s) = −T−
3 (s)

[
G1

31 G1
32

G1
41 G1

42

]−1 [
G2

31 G2
32

G2
41 G2

42

]
, (3.21)

P(s) =
[
G2

11 G2
12

G2
21 G2

22

]
−

[
G1

11 G1
12

G1
21 G1

22

] [
G1

31 G1
32

G1
41 G1

42

]−1 [
G2

31 G2
32

G2
41 G2

42

]
, (3.22)

in which the superscripts 1 and 2 in the right-hand side signify the elements of
the transfer matrices G1(s) and G2(s), respectively, together with the following
Proc. R. Soc. A (2010)

http://rspa.royalsocietypublishing.org/


Interfacial cracking in a graded coating 863

 on January 25, 2010rspa.royalsocietypublishing.orgDownloaded from 
asymptotic behaviour as |s| approaches infinity:

lim|s|→∞
1
s
Q31(s) = Q∞

( |s|
s

− β

2s

)
= 2μ3

κ + 1

( |s|
s

− β

2s

)
, (3.23)

lim|s|→∞
1
s
Q42(s) = Q∞

( |s|
s

− β

4s

)
= 2μ3

κ + 1

( |s|
s

− β

4s

)
, (3.24)

lim|s|→∞
1
s
Q32(s) = lim|s|→∞

1
s
Q41(s) = Q∞

β

4|s| = 2μ3

κ + 1
β

4|s| , (3.25)

lim|s|→∞ Pij(s) = 0, i, j = 1, 2. (3.26)

(b) The contact problem—2

For the contact problem, the corresponding boundary and interface conditions
are also expressed in terms of the state vector equations as

T−
1 (s) a1(s) = f02(s) = {ū−

1 (s)/i, v̄−
1 (s), σ̄o(s)/i, τ̄o(s)}T, (3.27)

T+
1 (s) a1(s) = T−

2 (s) a2(s), (3.28)

T+
2 (s)a2(s) = T−

3 (s)a3(s), (3.29)

where σ̄o(s) and τ̄o(s) are the transformed normal and tangential tractions acting
on the upper surface of the coating such that

σ̄o(s) = −
∫ e+δ

e−δ

φ3(r) eisr dr , τ̄o(s) = −μf

∫ e+δ

e−δ

φ3(r) eisr dr , (3.30)

and upon removing the unknown vectors, aj(s), j = 1, 2, from equations (3.27)–
(3.29), the surface values of the field quantities, f 02(s), in equation (3.27) can be
written in terms of the unknown vector a3(s) as

G1(s) a3(s) = f02(s), (3.31)

in which G1(s) is the 4 × 2 transfer matrix defined in equation (3.11).
Likewise, the above transfer matrix equation is solved for the vector a3(s)

in terms of the transformed tractions, σ̄o(s) and τ̄o(s), to be substituted into
the state vector equation (3.1) for the substrate. The transformed surface
displacements, ū−

1 (s) and v̄−
1 (s), are also obtainable in terms of σ̄o(s) and τ̄o(s).

After taking the inverse Fourier transform, the traction components along the
nominal interface between the interlayer and the substrate and the displacement
gradients on the upper surface of the coating due to the action of the frictional
punch can be expressed in terms of φ3 as

σ
(2)
3xx(0, y) =

∫ e+δ

e−δ

[
M (2)

11 (y, r) + μf M
(2)
12 (y, r)

]
φ3(r) dr , |y| < ∞, (3.32)

σ
(2)
3xy(0, y) =

∫ e+δ

e−δ

[
M (2)

21 (y, r) + μf M
(2)
22 (y, r)

]
φ3(r) dr , |y| < ∞, (3.33)
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∂u(2)
1

∂y
(0, y) =

∫ e+δ

e−δ

[
M (2)

31 (y, r) + μf M
(2)
32 (y, r)

]
φ3(r) dr , |y| < ∞, (3.34)

∂v
(2)
1

∂y
(0, y) =

∫ e+δ

e−δ

[
M (2)

41 (y, r) + μf M
(2)
42 (y, r)

]
φ3(r) dr , |y| < ∞, (3.35)

together with the kernel functions, M (2)
ij (s), i = 1, 2, 3, 4, j = 1, 2, given by

M (2)
11 (y, r) = − 1

2π

∫∞

−∞
L31(s) eis(r−y) ds, M (2)

12 (y, r) = − i
2π

∫∞

−∞
L32(s) eis(r−y) ds,

(3.36)

M (2)
21 (y, r) = i

2π

∫∞

−∞
L41(s) eis(r−y) ds, M (2)

22 (y, r) = − 1
2π

∫∞

−∞
L42(s) eis(r−y) ds,

(3.37)

M (2)
31 (y, r) = i

2π

∫∞

−∞
s N11(s) eis(r−y) ds, M (2)

32 (y, r) = − 1
2π

∫∞

−∞
s N12(s) eis(r−y) ds,

(3.38)

M (2)
41 (y, r) = 1

2π

∫∞

−∞
s N21(s) eis(r−y)ds, M (2)

42 (y, r) = i
2π

∫∞

−∞
s N22(s) eis(r−y)ds,

(3.39)

where Lij(s), i = 3, 4, j = 1, 2, are elements of the 4 × 2 matrix and Nij(s), i,
j = 1, 2, are those of the 2 × 2 matrix as

L(s) = T−
3 (s)

[
G1

31 G1
32

G1
41 G1

42

]−1

, N(s) =
[
G1

11 G1
12

G1
21 G1

22

] [
G1

31 G1
32

G1
41 G1

42

]−1

, (3.40)

which possess the following asymptotic trends for the large values of |s|:

lim|s|→∞ Lij(s) = 0, i = 3, 4, j = 1, 2, (3.41)

lim|s|→∞ s N11(s) = lim|s|→∞ s N22(s) = N ∞
1

|s|
s

= −κ + 1
4μ1

|s|
s

, (3.42)

lim|s|→∞ s N12(s) = lim|s|→∞ s N21(s) = N ∞
2 = −κ − 1

4μ1
. (3.43)
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4. Integral equations for the coupled crack/contact problem

In the coupled crack/contact problem under consideration, by superimposing the
relevant expressions, the tractions along the cracked interface are written in terms
of the auxiliary functions φj , j = 1, 2, 3, as

σ3xx(0, y) =
∫ c

−c

2∑
j=1

M (1)
1j (y, r) φj(r)dr

+
∫ e+δ

e−δ

[
M (2)

11 (y, r) + μf M
(2)
12 (y, r)

]
φ3(r) dr , |y| < ∞, (4.1)

σ3xy(0, y) =
∫ c

−c

2∑
j=1

M (1)
2j (y, r) φj(r)dr

+
∫ e+δ

e−δ

[
M (2)

21 (y, r) + μf M
(2)
22 (y, r)

]
φ3(r) dr , |y| < ∞, (4.2)

and the displacement gradients on the coating surface are also obtained in terms
of φj , j = 1, 2, 3, such that

∂u1

∂y
(0, y) =

∫ c

−c

2∑
j=1

M (1)
3j (y, r) φj(r) dr

+
∫ e+δ

e−δ

[
M (2)

31 (y, r) + μf M
(2)
32 (y, r)

]
φ3(r) dr , |y| < ∞, (4.3)

∂v1

∂y
(0, y) =

∫ c

−c

2∑
j=1

M (1)
4j (y, r) φj(r) dr

+
∫ e+δ

e−δ

[
M (2)

41 (y, r) + μf M
(2)
42 (y, r)

]
φ3(r) dr , |y| < ∞. (4.4)

Subsequently, after separating the leading terms as identified in equations
(3.23)–(3.25), (3.42) and (3.43) from the kernels in equations (4.1)–(4.4), followed
by the use of Fourier representation of generalized functions given by (Friedman
1991)

∫∞

0
sin s(r − y) ds = 1

r − y
,

∫∞

0
cos s(r − y) ds = πδ(r − y), (4.5)

∫∞

0

1
s

cos s(r − y) ds = − ln |r − y|,
∫∞

0

1
s

sin s(r − y) ds = π

2
sgn(r − y), (4.6)

where δ(r − y) is the Dirac delta function, and applying the remaining conditions
of traction-free crack faces in equation (2.11) and zero surface slope of the flat
punch within the contact area via equation (2.12), i.e. f (y) = constant, one can
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obtain a set of three simultaneous Cauchy-type singular integral equations as

1
π

2μ3

κ + 1

∫ c

−c

φ1(r)
r − y

dr +
∫ c

−c

2∑
j=1

k1j(y, r) φj(r) dr

+
∫ e+δ

e−δ

[g11(y, r) + μf g12(y, r)] φ3(r) dr = 0, |y| < c, (4.7)

1
π

2μ3

κ + 1

∫ c

−c

φ2(r)
r − y

dr +
∫ c

−c

2∑
j=1

k2j(y, r) φj(r) dr

+
∫ e+δ

e−δ

[g21(y, r) + μf g22(y, r)] φ3(r) dr = 0, |y| < c, (4.8)

μf
κ − 1
4μ1

φ3(y) + 1
π

κ + 1
4μ1

∫ e+δ

e−δ

φ3(r)
r − y

dr +
∫ e+δ

e−δ

[k31(y, r) + μf k32(y, r)] φ3(r) dr

+
∫ c

−c

2∑
j=1

g3j(y, r) φj(r) dr = 0, |y − e| < δ, (4.9)

subjected to the satisfaction of compatibility and equilibrium conditions in
equation (2.17), where the kernels, kij(y,r) and gij(y,r), i=1, 2, 3, j=1, 2, are
expressed as

k11(y, r) = 1
π

∫∞

0

[
1
s
Q31(s) − Q∞

(
1 − β

2s

)]
sin s(r − y) ds − βQ∞

4
sgn(r − y),

(4.10)

k12(y, r) = 1
π

∫∞

0

[
1
s
Q32(s) − Q∞β

4s

]
cos s(r − y) ds − Q∞β

4π
ln |r − y|, (4.11)

k21(y, r) = − 1
π

∫∞

0

[
1
s
Q41(s) − Q∞β

4s

]
cos s(r − y) ds + Q∞β

4π
ln |r − y|, (4.12)

k22(y, r) = 1
π

∫∞

0

[
1
s
Q42(s) − Q∞

(
1 − β

4s

)]
sin s(r − y) ds − βQ∞

8
sgn (r − y),

(4.13)

k31(y, r) = − 1
π

∫∞

0
[s N11(s) − N ∞

1 ] sin s(r − y) ds, (4.14)

k32(y, r) = − 1
π

∫∞

0
[s N12(s) − N ∞

2 ] cos s(r − y) ds, (4.15)

g11(y, r) = − 1
π

∫∞

0
L31(s) cos s(r − y) ds, (4.16)

g12(y, r) = 1
π

∫∞

0
L32(s) sin s(r − y) ds, (4.17)
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g21(y, r) = − 1
π

∫∞

0
L41(s) sin s(r − y) ds, (4.18)

g22(y, r) = − 1
π

∫∞

0
L42(s) cos s(r − y) ds, (4.19)

g31(y, r) = − 1
π

∫∞

0
P11(s) cos s(r − y) ds, (4.20)

g32(y, r) = 1
π

∫∞

0
P12(s) sin s(r − y) ds, (4.21)

which are bounded for all values of r and y in the given intervals, except
for the existence of logarithmic singularities in equations (4.11) and (4.12).
These unbounded terms, however, can be treated as part of regular kernels
in the presence of Cauchy singular kernels, 1/(r − y), in the sense that such
logarithmic terms are square integrable without affecting the near-tip singular
field (Erdogan 1998).

5. Solution procedure and stress intensity factors

Because the dominant singular kernels in equations (4.7)–(4.9) are attributable
solely to the Cauchy type and the variations of shear moduli are continuous
throughout the coated system, the standard square-root singularity is retained at
the interfacial crack tips, as compared with the anomalous oscillatory singularity
encountered for the case of an interface crack in piecewise homogeneous bonded
media (Rice 1988). On the other hand, the edges of the rigid flat punch are with
the yet-to-be determined singular orders. As a result, the functions, φj , j = 1, 2, 3,
can be written as (Muskhelishvili 1953)

φj(r) = fj(r)√
c2 − r2

, |r | < c, j = 1, 2, (5.1)

φ3(r) = (δ + e − r)χ(δ − e + r)ωf3(r), |r − e| < δ, (5.2)

where fj(y), j = 1, 2, 3, are unknown functions, but bounded and non-zero at the
end points.

In the normalized intervals specified as

(r , y) = (cη, cξ), |r | < c, |y| < c, |η, ξ | < 1, (5.3)

(r , y) = (e + δη, e + δξ), |r − e| < δ, |y − e| < δ, |η, ξ | < 1, (5.4)

the fundamental functions of the dominant parts of the integral equations that
characterize the singular nature at the crack tips and at the punch edges are,
respectively, found to be the weight functions of Chebyshev polynomials of the
first kind Tn(η) and Jacobi polynomials P (χ ,ω)

n (η) (Gradshteyn & Ryzhik 1980).
The solutions to the set of singular integral equations (4.7)–(4.9) can therefore
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be expressed in the form of the following series expansions:

φ1(r) = φ̃1(η) = 1√
1 − η2

∞∑
n=0

anTn(η), |η| < 1, (5.5)

φ2(r) = φ̃2(η) = 1√
1 − η2

∞∑
n=0

bnTn(η), |η| < 1, (5.6)

φ3(r) = φ̃3(η) = w(η)
∞∑

n=0

cnP (χ ,ω)
n (η), w(η) = (1 − η)χ(1 + η)ω, |η| < 1, (5.7)

where an , bn and cn , n ≥ 0, are unknown coefficients and the orthogonality for
Tn(η) can show that a0 = 0 and b0 = 0 satisfy the single valuedness in equation
(2.17). In addition, the physics of the flat punch problem dictates that the values
of χ and ω, as the powers of stress singularity at the leading (y = e + δ) and
trailing (y = e − δ) edges of the punch, respectively, be negative and determined
as (Hills et al. 1993)

χ = θ

π
, ω = − θ

π
− 1 and tan θ = − 1

μf

κ + 1
κ − 1

, −1 < (χ , ω) < 0. (5.8)

With the kernels in equations (4.10)–(4.21) rewritten in the normalized
intervals as

kij(y, r) = k̃ ij(ξ , η) and gij(y, r) = g̃ij(ξ , η), i = 1, 2, 3, j = 1, 2, (5.9)

after substituting from equations (5.3)–(5.7) into the integral equations
(4.7)–(4.9) and the equilibrium condition in equation (2.17), truncating the
series with a finite number of terms at n = N , and regularizing the singular
parts based on the properties of the Chebyshev and Jacobi polynomials
(Gradshteyn & Ryzhik 1980), it can be shown that equations (4.7)–(4.9) and
(2.17) become

N∑
n=1

[
anA1Un−1(ξ) + anH 11

n (ξ) + bnH 12
n (ξ)

] +
N∑

n=0

cnH 13
n (ξ) = 0, (5.10)

N∑
n=1

[
bnA1Un−1(ξ) + anH 21

n (ξ) + bnH 22
n (ξ)

] +
N∑

n=0

cnH 23
n (ξ) = 0, (5.11)

N∑
n=0

cn

[
− A2

2 sin πχ
P (−χ ,−ω)

n−1 (ξ)
]

+
N∑

n=1

[
anH 31

n (ξ) + bnH 32
n (ξ)

]

+
N∑

n=0

cnH 33
n (ξ) = 0, |ξ | < 1, (5.12)

N∑
n=0

cn

∫ 1

−1
P (χ ,ω)

n (ξ)w(ξ)dξ = P
δ

, (5.13)
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where A1 = 2μ3/(κ + 1) and A2 = (κ + 1)/4μ1, Un(ξ) are Chebyshev polynomials
of the second kind, and the functions H ij

n (ξ), i, j = 1, 2, 3, are given by

H ij
n (ξ) = c

∫ 1

−1
k̃ ij(ξ , η)

Tn(η)√
1 − η2

dη, (i, j) = (1, 1), (1, 2), (2, 1), (2, 2), (5.14)

H 13
n (ξ) = δ

∫ 1

−1
[g̃11(ξ , η) + μf g̃12(ξ , η)] P (χ ,ω)

n (η)w(η) dη, (5.15)

H 23
n (ξ) = δ

∫ 1

−1
[g̃21(ξ , η) + μf g̃22(ξ , η)] P (χ ,ω)

n (η) w(η) dη, (5.16)

H ij
n (ξ) = c

∫ 1

−1
g̃ij(ξ , η)

Tn(η)√
1 − η2

dη, (i, j) = (3, 1), (3, 2), (5.17)

H 33
n (ξ) = δ

∫ 1

−1

[
k̃31(ξ , η) + μf k̃32(ξ , η)

]
P (χ ,ω)

n (η)w(η) dη, (5.18)

in which it is noted that the logarithmic and signum functions involved in
equation (5.14) can be treated by means of the following formulae (Gradshteyn &
Ryzhik 1980):

1
π

∫ 1

−1

Tn(η)√
1 − η2

ln |η − ξ |dη = − 1
n

Tn(ξ), n ≥ 1, |ξ | < 1, (5.19)

∫ 1

−1

Tn(η)√
1 − η2

|η − ξ |
η − ξ

dη = 2
n

Un−1(ξ)
√

1 − ξ 2, n ≥ 1, |ξ | < 1. (5.20)

In order to recast the functional equations (5.10)–(5.13) into solvable form,
the orthogonal relations of Un(ξ) and P (χ ,ω)

n (ξ) are utilized such that a system
of linear algebraic equations is constructed for the unknown coefficients, an , bn ,
1 ≤ n ≤ N and cn , 0 ≤ n ≤ (N + 1) as

π

2
A1ak +

N∑
n=1

Y 11
kn an +

N∑
n=1

Y 12
kn bn +

N∑
n=0

Y 13
kn cn = 0, 1 ≤ k ≤ N , (5.21)

π

2
A1bk +

N∑
n=1

Y 21
kn an +

N∑
n=1

Y 22
kn bn +

N∑
n=0

Y 23
kn cn = 0, 1 ≤ k ≤ N , (5.22)

− A2

2 sin πχ
θ

(−χ ,−ω)
k ck+1 +

N∑
n=1

Y 31
kn an +

N∑
n=1

Y 32
kn bn +

N∑
n=0

Y 33
kn cn = 0, 0 ≤ k ≤ N ,

(5.23)

c0 = −P
δ

sin πχ

π
, (5.24)
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together with the definitions expressed as

Y ij
kn =

∫ 1

−1
Hij

n (ξ)Uk−1(ξ)
√

1 − ξ2 dξ , (i, j) = (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3),

(5.25)

Y ij
kn =

∫ 1

−1
Hij

n (ξ)P(−χ ,−ω)
k (ξ)(1 − ξ)−χ (1 + ξ)−ωdξ , (i, j) = (3, 1), (3, 2), (3, 3),

(5.26)

θ
(χ ,ω)
k =

⎧⎪⎨
⎪⎩

Γ (k + χ + 1)Γ (k + ω + 1)
2(k!)2 , k ≥ 1,

Γ (χ + 1)Γ (ω + 1), k = 0.
(5.27)

Once the coefficients, an , bn and cn , are evaluated from equations (5.21)–(5.24),
the integral equations (4.7) and (4.8) can serve to provide the values of tractions,
σ3xx(0, y) and σ3xy(0, y), ahead of the crack tips |y| > c. The singular terms of
crack-tip tractions, in conjunction with equations (5.3), (5.5) and (5.6), are then
obtained as

{
σ3xx(0, ξ)

σ3xy(0, ξ)

}
= − 2μ3

1 + κ

N∑
n=1

{an

bn

} [
ξ − sgn(ξ)

√
ξ 2 − 1

]n

sgn(ξ)
√

ξ 2 − 1
+ O(1), |ξ | > 1, (5.28)

where O(·) denotes the non-singular terms involving the bounded kernels and
the contact pressure distribution beneath the flat punch can be determined in a
straightforward manner as

σ1xx(0, y) = −φ3(y) = −2σ0

(
δ + e − y

δ

)χ (
δ − e + y

δ

)ω

×
N+1∑
n=0

c∗
nP (χ ,ω)

n

(
y − e

δ

)
, |y − e| < δ, (5.29)

in which σ0 = p/2δ is the average contact pressure and c∗
n = δcn/P.

Moreover, the expression for the in-plane stress component, σ1yy(0, y), acting
on the coating surface is obtainable from the constitutive equations (2.4)–(2.6)
and equation (4.4) such that

σ1yy(0, y) = −φ3(y) + 2μf

π

∫ e+δ

e−δ

φ3(r)
r − y

dr

+ 8μ1

1 + κ

∫ e+δ

e−δ

[k41(y, r) + μf k42(y, r)] φ3(r) dr

+ 8μ1

1 + κ

∫ c

−c

2∑
j=1

g4j(y, r)φj(r) dr , |y| < ∞, (5.30)
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where k4j(y, r) and g4j(y, r), j = 1, 2, are the kernels which are also bounded as

k41(y, r) = 1
π

∫∞

0
[sN21(s) − N ∞

2 ] cos s(r − y) ds, (5.31)

k42(y, r) = − 1
π

∫∞

0
[sN22(s) − N ∞

1 ] sin s(r − y) ds, (5.32)

g41(y, r) = − 1
π

∫∞

0
P21(s) sin s(r − y) ds, (5.33)

g42(y, r) = − 1
π

∫∞

0
P22(s) cos s(r − y) ds, (5.34)

and in particular, in the normalized interval of r = e + δη and y = e + δξ , the
second term on the right-hand side in equation (5.30) can be evaluated via the
formula given by (Erdogan 1978)

Ln(ξ) =
∫+1

−1

w(η)P (χ ,ω)
n (η)

η − ξ
dη, |ξ | < ∞, (5.35)

along with the following recurrence relation:

Ln+1(ξ) = 1

P (χ ,ω)
n (ξ)

[
P (χ ,ω)

n+1 (ξ)Ln(ξ) + 2n + 1
n + 1

θ (χ ,ω)
n

]
, n ≥ 0, (5.36)

L0(ξ) = π

sin πχ

{
(ξ − 1)χ(ξ + 1)ω, |ξ | > 1,
(1 − ξ)χ(1 + ξ)ω cos πχ , |ξ | < 1.

(5.37)

From the structure of the crack-tip singular tractions in equation (5.28), as
the physical quantities of primary interest in fracture analysis, the mixed-mode
stress intensity factors are defined and evaluated in terms of the solution to the
integral equations such that{KI(−c)

KII(−c)

}
≡ lim

y→−c−

√
2(−y − c)

{
σ3xx(0, y)

σ3xy(0, y)

}
= 2μ3

√
c

κ + 1

N∑
n=1

(−1)n
{an

bn

}
, (5.38)

{KI(+c)

KII(+c)

}
≡ lim

y→+c+

√
2(y − c)

{
σ3xx(0, y)

σ3xy(0, y)

}
= −2μ3

√
c

κ + 1

N∑
n=1

{an

bn

}
, (5.39)

where KI and KII are modes I and II stress intensity factors, respectively.
Furthermore, in order to give a quantitative measure of the severity of the contact
pressure singularities at the edges of the flat punch, similar to the concept used
for characterizing the local crack-tip response, the punch-edge stress intensity
factors are defined and evaluated as

KT = lim
y→e−δ

φ3(y)(δ − e + y)−ω = K0T

N+1∑
n=0

c∗
nP (χ ,ω)

n (−1), (5.40)

KL = lim
y→e+δ

φ3(y)(δ + e − y)−χ = K0L

N+1∑
n=0

c∗
nP (χ ,ω)

n (+1), (5.41)
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in which K0T = σ0(2δ)−ω and K0L = σ0(2δ)−χ are the normalizing factors, and the
suffix T refers to the trailing edge of the punch (y = e − δ) and the suffix L is for
the leading edge of the punch (y = e + δ).

It should now be pointed out that, as will be illustrated in the next section,
under the compressive contact stress field imposed by the sliding punch, the values
of mode I stress intensity factors are obtained to be negative with the implication
of the crack closure and the ensuing possibility of crack-face contact and friction,
thereby invalidating the traction-free conditions in equation (2.11). In the present
study, however, the contact and friction between the closed crack faces are not
taken into account.

6. Results and discussion

Numerical results are generated to investigate the interactions between the
contact stress field and the crack-tip behaviour for various combinations of
material, geometric and loading parameters of the coated system (see figures 2–6,
and figures 7–13 in the electronic supplementary material). The state of plane
strain is assumed with a constant Poisson’s ratio ν = 0.3. The integrals in
equations (5.14)–(5.18), (5.25) and (5.26) are evaluated based on the Gauss–
Chebyshev or Gauss–Jacobi quadrature rules, whereas the improper integrals in
equations (4.10)–(4.21) and (5.31)–(5.34) are evaluated employing the Gauss–
Legendre quadrature rule (Davis & Rabinowitz 1984), with 26-term expansions
of the Chebyshev and Jacobi polynomials in equations (5.5)–(5.7). The resulting
values of mixed-mode stress intensity factors are normalized by K0 = σ0c1/2.
It should be noted that, for verification and validation purposes, some of the
results due to Guler & Erdogan (2004) and Choi & Paulino (2008) for the
contact of graded coatings can be reproduced when c/δ approaches zero or e/c
is sufficiently large, as a limiting case of the present coupled formulation and
numerical implementation. Likewise, by letting δ/c be very small and e/c be
also sufficiently large, and applying the uniform crack-face tractions in equation
(2.11), the near-tip solutions corresponding to the pressurized interface crack can
be generated which coincide with those available in the literature (Erdogan 1998).

The effect of the presence of an interface crack on the contact stress field is first
examined. To this end, the crack length relative to the punch width, c/δ, is taken
to be a variable and the other parameters are set as μf = 0.5, h1/h = h2/h = 0.5
and δ/h = 0.5, with the punch being located at e/c = 0. Figures 2 and 3 illustrate
the distributions of normalized contact stress σ1xx(0, y)/σ0 and in-plane surface
stress σ1yy(0, y)/σ0 for μ1/μ3 = 5.0 and μ1/μ3 = 0.2, respectively. In this case, the
powers of stress singularity at the leading (y = e + δ) and the trailing (y = e − δ)
edges of the flat punch as determined from equation (5.8) are χ = −0.4548 and
ω = −0.5452, respectively, resulting in the greater stress concentrations around
the trailing edge of the punch. When the interfacial cracking is extended by
increasing c/δ, it can be observed in figures 2a and 3a that there are also
greater stress concentrations around both ends of the punch. The distributions
of the in-plane stress component in figures 2b and 3b, which are discontinuous
and unbounded at both edges of the punch, exhibit tensile responses just
behind the trailing edge (y < −δ) that may trigger the initiation and growth
of surface cracking in load transfer components through the sliding contact
Proc. R. Soc. A (2010)
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Figure 2. Effect of crack length c/δ on the distributions of (a) contact stress σ1xx (0, y)/σ0 and (b)
in-plane surface stress σ1yy(0, y)/σ0 for shear modulus ratio μ1/μ3 = 5.0 (μf = 0.5, h1/h = h2/h =
0.5, δ/h = 0.5, e/c = 0.0, σ0 = P/2δ).
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0.5, δ/h = 0.5, e/c = 0.0, σ0 = P/2δ).

(Suresh 2001). In the remaining region of the coating surface, it is predicted that
the in-plane surface stress is in general rendered greater as the relative crack size
c/δ increases.

Of particular interest is that when the coating is stiffer, as μ1/μ3 = 5.0, and
the crack length is greater than the punch width as, c/δ > 1.5, in figure 2a, the
contact stress is redistributed from that of c/δ = 0 in such a noteworthy manner
that it becomes tensile around the middle of the contact region, not fulfilling the
complete contact condition between the flat punch and the coating surface in
equation (2.12), but indicating the formation of local separation. With reference
to the above stress response, it is appropriate to recall that Shield & Bogy (1989)
examined the problem of a frictionless, flat punch contacting a layered half-plane
and predicted the tensile contact stress and thus separation in some portion of
the contact region, especially for the case of a stiffer layer bonded to a much
softer half-plane. The local bending of the stiff surface layer was considered to
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Figure 4. Variations of crack-tip stress intensity factors (a) KI(−c)/K0, (b) KI(+c)/K0,
(c) KII(−c)/K0, and (d) KII(+c)/K0 versus punch location e/c for different values of shear modulus
ratio μ1/μ3 (δ/c = 0.5, μf = 0.5, h1/h = h2/h = 0.5, h/c = 1.0, K0 = σ0c1/2, σ0 = P/2δ).

be largely responsible for the separation within the contact region. In the current
coupled crack/contact problem, the presence of a relatively large interface crack
is understood to play the additive role of enhancing such local bending behaviour
of the stiff coating underneath the flat punch, together with the influence of the
crack-induced compliance change in the coated system.

In the sequel, figure 4a–d compares the crack-tip behaviour for different
values of shear modulus ratio μ1/μ3, with the other parameters being fixed as
δ/c = 0.5, μf = 0.5, h1/h = h2/h = 0.5 and h/c = 1.0, by plotting the variations
of corresponding mixed-mode stress intensity factors KI and KII as a function
of punch location e/c. A general observation made from these figures is that,
for the given value of μ1/μ3, the peak stress intensity factors are attained
when the punch is acting around the crack centre and that the increases in
the shear modulus ratio μ1/μ3 result in lowering the absolute values of stress
intensity factors, especially when the punch is passing over the crack. Such
a reduction is mainly due to the suppressed elastic deformation around the
crack tips with the increased coating rigidity, accompanied by a lower likelihood
of debonding.

It should be mentioned that, in figure 4a,b, the overall values of KI during
the passage of the punch are, as expected, found to be negative, implying closed
crack faces under the compressive stress field and thus crack growth possibly
in shear mode. If the interdigitated or interlocked profile across the actual
Proc. R. Soc. A (2010)
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unextended crack faces were to take effect, however, in conjunction with the
frictional resistance between them, such compressive stresses would hinder the
mode II deformation around the crack tips, tending to prevent the crack growth
in shear mode. The trajectory of the crack growth would then be affected by
the values of KII in such a way that the positive KII may deflect or kink the
crack in the clockwise direction, while the negative ones may cause the crack
to also grow out of its plane in the counterclockwise direction, but depending
on the relative magnitude of fracture toughness of the adjacent constituents.
Otherwise, the crack may tend to grow along the line of the interface when the
bonding lacks the necessary strength. For instance, when μ1/μ3 = 0.2, figure 4c,d
depicts that the major values of KII history experienced at each of the crack tips
within the given range of e/c are different in their signs, with a consequence
of probable crack growth in different directions leading to the crack branching
toward the surface of the coated system. It should be noted that the negative
mode I stress intensification becomes positive at both the crack tips when the
coating layer is much less stiff than the substrate, as μ1/μ3 = 0.2, and the punch
is acting to the far right of the crack, as e/c = 2.0.

As mentioned above, the negative values of KI in figure 4a,b and in the other
figures that follow are indicative of the crack closure under the interacting sliding
contact-induced stress field, together with the existence of unknown contact and
frictional stresses between the crack faces. If the crack-face contact and friction
were taken into account, the incumbent problem would become highly nonlinear
and more complicated. In consideration of the processing-induced internal stress
gradients, however, that may be residing inside the coated medium (Kesler et al.
1997) and within the context of linear elasticity, the effect of any pre-existing
residual stresses can be superimposed on the present solutions. The negative
values of KI in this study can then be applicable when the superposition with
uncoupled solutions due to the large enough residual and/or other external tensile
stresses gives rise to the positive resultant KI and thus keeps the crack open at
any load.

To be addressed subsequently is the assessment of criticality resulting from
the singular nature of the contact pressure distributions around a flat punch in
terms of the punch-edge stress intensity factors, KT and KL, as evaluated from
equations (5.40) and (5.41) and plotted in figure 5a,b. The singular stresses at
the punch edges therein are predicted to be intensified as the shear modulus ratio
μ1/μ3 becomes greater, as opposed to those at the crack tips. In addition, the
values of such punch-edge stress intensity factors at the trailing edge arrive at the
peaks when the punch is acting on the location of the left-hand half of the crack,
while those at the leading edge attain their peaks when the punch is acting on
the right-hand half of the crack. In comparison, the severity of singular stresses
in the close vicinity of punch edges is seen to be slightly greater at the leading
edge than at the trailing edge, which is also in contrast to the case in which there
is no crack (Choi & Paulino 2008).

The variations in crack-tip stress intensity factors KI and KII with distance
e/c behind the punch centreline are shown in figure 6a–d for different interlayer
thicknesses h2/h and shear modulus ratios μ1/μ3. The other geometric parameters
are specified as h/c = 1.0, δ/c = 0.5, with the friction coefficient being μf = 0.5.
It is then observed that, for the stiff coating with μ1/μ3 = 5.0, the increase in the
thickness of the graded interlayer has a tendency to augment the stress intensity
Proc. R. Soc. A (2010)
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factors, while the reverse effect of the interlayer prevails for the compliant coating
with μ1/μ3 = 0.2. Such a trend with h2/h indicates that the thinner graded
interlayer for the stiff coating, to some extent, would be more effective in shielding
the tip behaviour of the interface crack, and, for the compliant coating, the thinner
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interlayer would have the adverse influence of intensifying the crack-tip severity
under the interacting contact stress field. The results also predict that, when the
punch is located to the right of the crack and μ1/μ3 = 0.2, the closed crack faces
may open, although the effect of h2/h on this crack opening is not significant. In
addition, figure 7a,b in the electronic supplementary material plots the variations
of punch-edge stress intensity factors, KT and KL. It is then demonstrated that,
for the stiff coating, the state of punch-edge stresses becomes more severe with the
increasing interlayer thickness h2/h, whereas the state of such stresses is relaxed
with h2/h for the compliant coating.

The effect of the homogeneous coating thickness, h1/c, on the crack-tip is
examined in figure 8a–d in the electronic supplementary material for μ1/μ3 = 5.0,
μf = 0.5, h2/c = 0.5 and δ/c = 0.5. A notable feature is that, for the thinner
coating that may correspond to a relatively long and shallow crack, due to the
enlarged interactions with the contact stress field, the values of both KI and KII
are of greater magnitude. Figure 8c,d in the electronic supplementary material
also delineates that, when the coating is as thin as h1/c = 0.2 and the punch
is approaching the crack from the left-hand side, the values of KII are going
through the negative peaks, accelerating the crack growth in shear mode. It should
be pointed out that the effect of increasing h1/c is quite compatible with that
of increasing the coating stiffness, as was illustrated in figure 4a–d. Moreover,
the results in figure 9a,b in the electronic supplementary material show that the
punch-edge stress intensifications, KT and KL, are markedly amplified when the
punch passes over the crack and the coating thickness is less than the crack length,
mainly caused by the greater interactions with the crack-tip stress field.

Figure 10a–d in the electronic supplementary material further demonstrates
how the punch width, δ/c, affects the tip behaviour of the interface crack, where
the results are for μ1/μ3 = 5.0, μf = 0.5, h1/h = h2/h = 0.5 and h/c = 1.0. In this
case, the magnitudes of KI and KII are, as expected, undergoing substantial
increases for the greater punch width. Likewise, the state of punch-edge singular
stresses in terms of KT and KL is shown to be intensified for the greater punch
width, as can be observed in figure 11a,b in the electronic supplementary material.
It should be pointed out that the overall effect of increasing the punch width is
quite similar to that of decreasing the coating thickness.

With the friction coefficient μf being chosen to vary in the range of 0–0.9,
figure 12a–d in the electronic supplementary material illustrates the variations
of crack-tip stress intensity factors versus punch locations e/c, along with
μ1/μ3 = 5.0, δ/c = 0.5, h1/h = h2/h = 0.5 and h/c = 1.0. In figure 12a,b in the
electronic supplementary material, the closed crack faces at all punch locations
are also revealed for the given values of the friction coefficient. As the sliding
contact between the punch and the coating surface becomes more frictional,
it is further observed that the values of both KI and KII are rendered greater
when the punch is approaching the crack, but reduced when the punch is sliding
away from the crack, such that the effect of the friction is to increase the
closure of the crack faces for e/c < 0 and to decrease the closure for e/c >
0. In figure 13a,b in the electronic supplementary material, however, during
the more frictional passage of the punch, the values of punch-edge stress
intensity factors at the trailing edge KT become greater as the punch approaches
and leaves the crack tips, whereas those at the leading edge KL yield the
reverse trend.
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7. Closure

The problem of a coupled crack/contact mechanics has been investigated for a
coating/substrate system with functionally graded properties, in the context of
linear plane elasticity. The graded material was modelled as a non-homogeneous
interlayer in the coated system that was loaded by a frictional siding flat punch
and the crack was assumed to exist along the interface between the interlayer and
the substrate. With the derivation of a set of three simultaneous Cauchy-type
singular integral equations for the coupled mixed boundary value problem, the
strong interactions between the contact stress field and the crack-tip behaviour
were addressed by evaluating the crack-tip and punch-edge stress intensity factors
as well as the contact stress distributions for various combinations of material,
geometric and loading parameters of the coated medium. It is worth noting
that the analysis of the coupled fracture and contact problem considered herein
could become more intricate by a crack closure with unknown contact and
frictional stresses between the crack faces, under the influence of a sliding contact-
induced stress field that is predominantly compressive. The crack-face contact and
friction may be dealt with by using a Coulomb friction model, which assumes
an instantaneous dependence between normal and shear stresses. Nonetheless,
incorporation of such complicating factors that require further elaboration was
not simulated in the present work, in the sense that the crack closure is what may
occur in reality under the compressive stress field and the corresponding negative
values of mode I stress intensification could still be useful, provided superposition
with those arising from large enough residual and/or remote tensile loading keeps
the crack open at any punch locations.
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