Interfacial cracking in a graded coating/substrate system loaded by a frictional sliding flat punch

- Electronic supplementary material -(Figure 7-13)

By Hyung Jip $Choi^{1,\ast}$ and Glaucio H. Paulino^2

 ¹School of Mechanical and Automotive Engineering, Kookmin University, Seoul 136-702, Republic of Korea (hjchoi@kookmin.ac.kr)
²Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (paulino@uiuc.edu)

^{*} Author for correspondence.

Figure 7. Variations of punch-edge stress intensity factors (a) K_T/K_{0T} and (b) K_L/K_{0L} versus punch location e/c for different values of interlayer thickness h_2/h and shear modulus ratio μ_1/μ_3 (h/c=1.0, $\delta/c=0.5$, $\mu_p=0.5$, $K_{0T}=\sigma_0(2\delta)^{-\omega}$, $K_{0L}=\sigma_0(2\delta)^{-\chi}$, $\sigma_0=P/2\delta$).

Figure 8. Variations of crack-tip stress intensity factors (a) $K_{\rm I}(-c)/K_0$, (b) $K_{\rm I}(+c)/K_0$, (c) $K_{\rm II}(-c)/K_0$, and (d) $K_{\rm II}(+c)/K_0$ versus punch location e/c for different values of coating thickness h_1/c ($\mu_1/\mu_3=5.0$, $\mu_f=0.5$, $h_2/c=0.5$, $\delta/c=0.5$, $K_0=\sigma_0c^{1/2}$, $\sigma_0=P/2\delta$).

Figure 9. Variations of punch-edge stress intensity factors (a) K_T/K_{0T} and (b) K_L/K_{0L} versus punch location e/c for different values of coating thickness h_1/c ($\mu_1/\mu_3=5.0$, $\mu_7=0.5$, $h_2/c=0.5$, $\delta/c=0.5$, $K_{0T}=\sigma_0(2\delta)^{-\omega}$, $K_{0L}=\sigma_0(2\delta)^{-\chi}$, $\sigma_0=P/2\delta$).

Figure 10. Variations of crack-tip stress intensity factors (a) $K_{\rm I}(-c)/K_0$, (b) $K_{\rm I}(+c)/K_0$, (c) $K_{\rm II}(-c)/K_0$, and (d) $K_{\rm II}(+c)/K_0$ versus punch location e/c for different values of punch width δ/c ($\mu_1/\mu_3=5.0$, $\mu_f=0.5$, $h_1/h=h_2/h=0.5$, h/c=1.0, $K_0=\sigma_0c^{1/2}$, $\sigma_0=P/2\delta$).

Figure 11. Variations of punch-edge stress intensity factors (a) K_T/K_{0T} and (b) K_L/K_{0L} versus punch location e/c for different values of punch width δ/c ($\mu_1/\mu_3=5.0$, $\mu_f=0.5$, $h_1/h=h_2/h=0.5$, h/c=1.0, $K_{0T}=\sigma_0(2\delta)^{-\omega}$, $K_{0L}=\sigma_0(2\delta)^{-\chi}$, $\sigma_0=P/2\delta$).

Figure 12. Variations of crack-tip stress intensity factors (a) $K_{\rm I}(-c)/K_0$, (b) $K_{\rm I}(+c)/K_0$, (c) $K_{\rm II}(-c)/K_0$, and (d) $K_{\rm II}(+c)/K_0$ versus punch location e/c for different values of friction coefficient $\mu_f (\mu_1/\mu_3=5.0, \delta/c=0.5, h_1/h=h_2/h=0.5, h/c=1.0, K_0=\sigma_0 c^{1/2}, \sigma_0=P/2\delta)$.

Figure 13. Variations of punch-edge stress intensity factors (a) K_T/K_{0T} and (b) K_L/K_{0L} versus punch location e/c for different values of friction coefficient $\mu_f (\mu_1/\mu_3=5.0, \ \delta/c=0.5, \ h_1/h=h_2/h=0.5, \ h/c=1.0, \ K_{0T}=\sigma_0(2\ \delta)^{-\omega}, \ K_{0L}=\sigma_0(2\ \delta)^{-\chi}, \ \sigma_0=P/2\ \delta).$