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Abstract This paper presents a multiresolution topology
optimization (MTOP) scheme to obtain high resolution
designs with relatively low computational cost. We employ
three distinct discretization levels for the topology optimiza-
tion procedure: the displacement mesh (or finite element
mesh) to perform the analysis, the design variable mesh
to perform the optimization, and the density mesh (or den-
sity element mesh) to represent material distribution and
compute the stiffness matrices. We employ a coarser dis-
cretization for finite elements and finer discretization for
both density elements and design variables. A projection
scheme is employed to compute the element densities from
design variables and control the length scale of the mate-
rial density. We demonstrate via various two- and three-
dimensional numerical examples that the resolution of the
design can be significantly improved without refining the
finite element mesh.
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1 Introduction

Topology optimization using the material distribution
method has been well developed and applied to a variety
of applications such as structural, mechanical and mate-
rial systems (Bendsøe and Kikuchi 1988; Rozvany 2001).
The material distribution method (Bendsøe 1989) rasterizes
the domain by defining the topology via the density of pix-
els/voxels, and thus a large number of design variables are
usually required for a well defined design, especially in
three-dimensional (3D) applications. Several studies have
been devoted to developing efficient procedures to solve
large-scale topology optimization problems. Most of the
efforts focus on the finite element analysis since it con-
stitutes the dominant cost in topology optimization. For
example, Borrvall and Petersson (2001) solved 3D real-
istic topology optimization designs with several hundreds
of thousands of finite elements using parallel computing
with domain decomposition. Wang et al. (2007) intro-
duced fast iterative solvers to reduce the computational
costs associated with the finite element analysis of 3D
topology optimization problems. Amir et al. (2009) pro-
posed an approximate reanalysis procedure for the topology
optimization of continuum structures. According to this pro-
cedure, the finite element analysis is only performed at an
interval of several iterations and approximate reanalyses are
performed for other iterations to determine the displace-
ment. The authors showed that this rough approximation is
acceptable in topology optimization. Another approach con-
sists of using adaptive mesh refinement (AMR) to reduce the
number of finite elements (Stainko 2006; de Sturler et al.
2008). de Sturler et al. (2008) tailored the AMR method
to represent void regions with fewer (coarser) elements and
solid regions, especially in material surface regions, with
more (finer) elements. In a topology optimization problem,
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where shape, size and position of the void and solid regions
are unknown, the AMR method allows the finite element
mesh to be refined during the optimization process.

The abovementioned studies mainly focus on reducing
computational cost of large-scale problems to obtain high
resolution design. However, the mesh representation may
also improve the resolution. The existing element-based and
nodal-based approaches can be interpreted with a design
variable mesh and a displacement mesh. In the element-
based approach, a uniform density of each displacement
element is considered a design variable. In contrast, the
nodal-based approaches (Guest et al. 2004; Rahmatalla and
Swan 2004; Matsui and Terada 2004) consider the densities
at nodes as the design variables. The element densities are
then obtained from nodal values using projection. Because
the projection scheme provides control over the local gradi-
ent of material density, it imposes a minimum length scale
feature and alleviates the checkerboard problem. Recently,
Paulino and Le (2009) proposed another choice of nodal
design variables to obtain high resolution design for quadri-
lateral elements. According to their study, the nodal design
variables can be located at the midpoints of the four edges
of the quadrilateral element. The authors showed that these
locations of the design variables result in a higher resolu-
tion topology design without increasing mesh refinement.
Also in the study by de Ruiter and van Keulen (2004), the
decoupling of topology definition and the finite element
mesh was introduced by using topology definition func-
tion. Additionally, wavelets for design variables have been
applied to topology optimization in order to obtain high res-
olution design (Kim and Yoon 2000; Poulsen 2002a). Guest
and Genet (2009) reduced the computational cost of topol-
ogy optimization by using adaptive design variables while
keeping the same finite element mesh.

In this paper, we propose a multiresolution topology opti-
mization (MTOP) approach for handling large-scale prob-
lems with relatively low computational costs. Our proposed
MTOP approach focuses on using the concept that the finite
element mesh, density element mesh, and design variable
mesh are distinct. In this study, the analysis is performed
on a coarser finite element mesh, optimization is performed
on a fine design variable mesh, and element densities are
defined on a finer mesh. Therefore, the total computational
cost is reduced compared to uniformly using fine meshes.
Since topology is defined on the fine density element mesh,
high resolution design is obtained. We can employ different
density element/design variable meshes from coarse to fine,
therefore, multiresolution designs can be obtained for the
same finite element mesh.

This paper is structured as follows: Section 2 pro-
vides an overview of the topology optimization formula-
tion; Section 3 describes the concept and implementation
of the proposed MTOP approach; Section 4 presents two-

dimensional (2D) numerical examples, which explore con-
ceptual aspects of the proposed approach; Section 5 shows
3D numerical examples, which illustrate the MTOP solu-
tion of relatively large problems; and Section 6 presents the
conclusions.

2 Topology optimization formulation

In this section, the problem formulation of topology opti-
mization is reviewed. The integration procedure of the
stiffness matrix for the element-based approach and con-
tinuous approximation of material distribution (CAMD)
approach (Matsui and Terada 2004), one of the nodal-based
approaches, is also discussed.

2.1 Problem statement and formulation

In continuum structures, topology optimization aims to opti-
mize the material densities which are considered design
variables in a specific domain. In this study, minimum
compliance is considered to maximize the stiffness of the
structure while satisfying a volume constraint. Considering
a reference domain � in R

2 or R
3, the optimization problem

is defined as the problem of finding the choice of the stiff-
ness tensor Ei jkl (x) which is considered as variable over the
domain. Let U be the space of kinematically admissible dis-
placement fields, f the body forces and t the tractions. The
equilibrium equation is written in the weak, variational form
(Bendsøe and Sigmund 2003). The energy bilinear form is
as follows: a (u, v) = ∫

�
Ei jkl (x) εi j (u) εkl (v) d� with the

linearized strains εi j (u) = 1
2

(
∂ui
∂x j

+ ∂u j
∂xi

)
and the load lin-

ear form given by L (u) = ∫
�

fud� + ∫
�T

tuds. The basic
minimum compliance problem is expressed as

min L (u)

s.t. : a (u,v) = L (v) , for all v ∈ U
volume constraint

(1)

The continuum problem statement (1) can be solved by
using the finite element method. The basic problem state-
ment is expressed in the discrete form as follows:

min
ρ

C (ρ, u) = fTu

s.t. : K (ρ) u = f
V (ρ) = ∫

�
ρdV ≤ Vs

(2)

where ρ = ρ(x) is the density at position x, f and u are
the global load and displacement vectors, respectively, K is
the global stiffness matrix, and Vs is the prescribed volume.
The desirable solution specifies if the density at any point
in the domain is either 0 (void) or 1 (solid). However, it is
impractical to solve the integer optimization problem. In a
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relaxed problem, the density can have any value between
0 and 1. For example, in the popular model named solid
isotropic material with penalization (SIMP; Rozvany et al.
1992; Bendsøe 1989; Bendsøe and Sigmund 1999), Young’s
modulus is parameterized using solid material density as
follows

E (x) = ρ (x)p E0 (3)

where E0 is the original Young’s modulus of the material in
the solid phase, corresponding to the density ρ = 1, and p
is the penalization parameter. To prevent singularity of the
stiffness matrix, a small positive lower bound, e.g. ρmin =
10−3, is placed on the density. Using the penalization
parameter p > 1, the intermediate density approaches either
0 (void) or 1(solid).

0 < ρmin ≤ ρ (x) ≤ 1 (4)

In the element-based approach, the density of each ele-
ment is represented by one value ρe and the global stiffness
matrix K in (2) is expressed as

K =
Nel∑

e=1

Ke (ρe) =
Nel∑

e=1

∫

�e
BTD (ρe) Bd� (5)

where Ke(ρe) is the stiffness matrix of the element e, B
is the strain-displacement matrix of shape function deriva-
tives, and D(ρe) is the constitutive matrix which depends
on the material density. For example, the formulation of the
constitutive matrix for plane stress state is

D (x) = E (x)

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 (1 − ν) /2

⎤

⎦ (6)

The solution of the gradient-based optimization prob-
lem in (2) requires the computation of sensitivities of the
objective function and the constraint. In the element-based
approach, element density ρe is used as the design variable;
therefore, these sensitivities can be obtained as follows

∂C

∂ρe
= −uT

e
∂Ke

∂ρe
ue = −p (ρe)

p−1 uT
e K0

eue

∂V

∂ρe
=

∫

�e
dV

(7)

where K0
e is the element stiffness matrix of the solid

material.

2.2 Integration of the stiffness matrix

The stiffness matrix of each element in (5) is computed by
integrating the stiffness integrand contribution over the dis-
placement element domain. Numerical quadrature, such as

Gaussian quadrature, is commonly reduced to the evaluation
and summation of the stiffness integrand at specific Gauss
points (Cook et al. 2002). The material density is also evalu-
ated at the Gauss points during computation of the material
property matrices.

In the element-based approach, the element density is
represented by one design variable at the centroid of the
element and the material densities of all the Gauss points
are equal to the element density. In contrast, in the CAMD
approach (Matsui and Terada 2004), the material densities at
the Gauss points are computed from the nodal design vari-
ables and the stiffness matrices are evaluated at the Gauss
points, i.e.

Ke =
∫

�e

⎛

⎝
Nnod∑

i=1

Ni (x)ρi

⎞

⎠

p

BTD0Bd�

�
Nn∑

g=1

⎛

⎝
Nnod∑

i=1

Ni (x)ρi

⎞

⎠

p

K0
g (8)

where Nnod is the number of nodes per element (e.g.,
Nnod = 4 for Q4 and Nnod = 8 for B8 element), Nn

is the number of Gauss points for integration, Ni (.) is the
i-th shape function, i = 1, ..., Nnod , K0

g is the stiffness

integrand at the Gauss point g, and D0 corresponds to the
constitutive matrix of the solid material.

3 Multiresolution scheme in topology optimization

In this study, we call elements associated with the dis-
placement mesh displacement elements and elements asso-
ciated with the density mesh density elements. In light of
the present work, existing element-based and nodal-based
approaches can be interpreted with a design variable mesh
and a displacement mesh. For example, in the element-
based approach using Q4 element, a uniform density of
each displacement element is considered a design variable
so called Q4/U element. Figure 1 shows the element-based
approach using Q4/U elements with the displacement mesh,
the design variable mesh, and the superposed meshes. In
this section, the concept and implementation of the MTOP
approach will be discussed.

3.1 Multiresolution scheme and stiffness matrix integration

We employ three different meshes for the topology opti-
mization problem: the displacement mesh to perform the
analysis, the design variable mesh to perform the optimiza-
tion, and the density mesh to represent material distribution
and compute the stiffness matrices. Design variables are
defined as the material densities at the center of the density
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a b c

Displacement   Density  

Fig. 1 Q4/U elements: a Displacement mesh, b Superposed meshes, c Density mesh

elements. However, the design variable mesh and density
mesh do not necessarily coincide. Design variables do not
have physical meaning on their own. The design variable
concept in this study is similar to the nodal design variable
in the study by Guest et al. (2004). However, in their study,
the design variables are associated with nodes of the finite
element mesh, while in the MTOP scheme, the design vari-
able mesh can be different from the finite element mesh.
In our proposed scheme, the element densities are com-
puted from the design variables by projection functions.
The topology optimization problem definition in (2) is then
rewritten accordingly:

min
d

C (ρ, u) = fTu

s.t. : ρ = f (d)

K (ρ) u = f

V (ρ) =
∫

�

ρdV ≤ Vs

(9)

where d is the vector of design variables and f(.) is the
projection function.

To obtain high resolution design, we employ a finer
density mesh than the displacement mesh so that each dis-
placement element consists of a number of density elements
(sub-elements). Within each density element, the material
density is assumed to be uniform. Furthermore, a scheme to
integrate the stiffness matrix, in which the displacement ele-
ment consists of a number of different density elements, is
introduced. For example, Fig. 2a shows a Q4 displacement
element, Fig. 2b presents the multiple meshes, and Fig. 2c
shows the density mesh with 25 density elements (also
25 design variables) per Q4 displacement. In the MTOP
approach, we denote this element as Q4/n25 where “n25”
indicates that the number of density elements “n” per Q4 is
25. The stiffness matrix is computed by evaluation of the
stiffness integrand at the 25 integration points which are the
centers of 25 density elements. The corresponding weight
of the integrand is the area of the density element. The

Displacement  Density   Design variable 

a b c

Fig. 2 MTOP Q4/n25 element: a Displacement mesh, b Superposed meshes, c Design variable mesh
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formulation for the stiffness matrix integration is expressed
as follows

Ke =
∫

�e
BTDBd� �

Nn∑

i=1

(
BTDB

)∣∣
i Ai (10)

where Nn is the number of integration points in the displace-
ment element domain (Nn is also equal to the number of
density elements per displacement element), and Ai is the
contribution of density element i to the integration (Ai rep-
resents the area/volume of the density element for 2D/3D
problems).

The SIMP interpolation model is employed to evaluate
the stiffness matrix in (10) as follows

Ke �
Nn∑

i=1

(ρi )
p
(

BTD0B
)∣
∣
∣
i

Ai =
Nn∑

i=1

(ρi )
p Ii (11)

where

Ii =
(

BTD0B
)∣
∣
∣
i

Ai . (12)

The sensitivity of the compliance requires the computation
of the sensitivity of the stiffness matrix with respect to the
design variable, which can be calculated as

∂Ke

∂dn
= ∂Ke

∂ρi

∂ρi

∂dn
=

∂

(
Nn∑

j=1

(
ρ j

)p I j

)

∂ρi

∂ρi

∂dn
=(ρi )

p−1 Ii
∂ρi

∂dn

(13)

where dn and ρi are the design variable and element density,
respectively. The sensitivity analysis of the constraint in (9)
is calculated similarly to (7) as follows

∂V

∂dn
= ∂V

∂ρi

∂ρi

∂dn
. (14)

The sensitivity ∂ρi /∂dn is presented in Section 3.3 on the
projection method.

3.2 General element types and isoparametric elements

In addition to the quadrilateral element Q4/n25 discussed in
Section 3.1, the MTOP approach can also be applied to other
element types. For the 2D case, Fig. 3a shows a Wachspress

hexagonal element (Talischi et al. 2009) with 24 density ele-
ments per displacement element (denoted by H6/n24), while
Fig. 3b shows triangular element with 16 density elements
per displacement element (T3/n16). For the 3D case, Fig. 3c
shows 125 density elements per B8 element (B8/n125),
while Fig. 3d shows the tetrahedral element with 64 density
elements (TET4/n64).

The integration technique in (9) can also be used for
isoparametric elements. For example, for a Q4 element with
unit thickness in Fig. 4, the formulation to compute the stiff-
ness matrix in the reference (parent) domain is as follows
(Cook et al. 2002)

Ke =
∫

�e
BTDBd�=

1∫

−1

1∫

−1

BTDBJdξdη (15)

where (ξ , η) denote intrinsic coordinates in the interval
[−1,1], J is the Jacobian, B is the strain-displacement
matrix in the reference (parent) domain. The standard for-
mulation of matrix B in the reference domain can be found
in the literature (Cook et al. 2002). The integration of (15)
in the reference domain can be computed as follows

Ke =
1∫

−1

1∫

−1

BTDBJdξdη =
∫

�0
BTDBd�0

�
Nn∑

i=1

(
BTDBJ

)∣∣
i A0

i (16)

where �0 is the reference domain, A0
i is the area/volume of

each density element i in the reference domain as shown in
Fig. 4.

3.3 Projection method: a minimum length scale approach

Without projection, the MTOP scheme above does not pro-
vide mesh independency, which might lead to numerical
instability and checkerboard effects (Diaz and Sigmund
1995). Note that high resolution design has been the objec-
tive of various studies to alleviate the checkerboard patterns
(Diaz and Sigmund 1995; Sigmund and Peterson 1998;
Bourdin 2001; Bruns and Tortorelli 2001; Poulsen 2002a,
b; Pomezanski et al. 2005). In this study, we use a varia-
tion of previously reported projection method (Guest et al.
2004; Almeida et al. 2009) to achieve minimum length scale
and mesh independency. Our projection method uses design
variables associated with design variable mesh to compute
element densities which belong to density element mesh.
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Fig. 3 Some MTOP element
types: a Honeycomb
Watchpress H6/n24 element, b
T3/n16 element, c B8/n125
element, d TET4/n64 element

c    d
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i
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   b
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ρ
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ρ
ρ

Here dn denotes the design variable associated with the
design variable mesh, while ρi represents the density of ele-
ment i associated with the density element mesh. Assume
that the change of material density occurs over a minimum
length of rmin, as shown in Fig. 5. The element density ρi is
obtained from the design variables dn as follows

ρi = f (dn) (17)

where f(.) is the projection function. For example, if a lin-
ear projection is employed, the uniform density of a density
element is computed as the weighted average of the design
variables in the neighborhood as follows

ρi =
∑

n∈Si
dnw (xn − xi )

∑
n∈Si

w (xn − xi )
(18)

Fig. 4 Isoparametric element:
a Initial, b parent domain

 e

iA

 0

a   b

d ρi
i

(−1, 1)

0
iA(−1,1) (1,1)

(1, 1)−

di

i

−

ρ

Ω
Ω

ξ

η



A computational paradigm for MTOP 531

Fig. 5 Projection function from
the design variables to the
density element

  Displacement  

 Design variable 

 Density element

w(r)  

1

rni

rmin

S

rmin

rni

i
n

Si

Fig. 6 Twenty five density
elements of one displacement
element

Integration point

Fig. 7 The MTOP approach for
the super-element: a FE mesh, b
Density/design variable mesh

a b
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48

16

F=1

Fig. 8 2D cantilever beam

where Si is the sub-domain corresponding to density ele-
ment i , xn is the position of the point associated with
design variable dn . The corresponding weight function is
defined as

w (xn − xi ) =
⎧
⎨

⎩

rmin − rni

rmin
if rni ≤ rmin

0 otherwise
(19)

where rni is the distance from the point associated with
design variable dn to the centroid of density element i , and
the physical radius rmin (see Fig. 5) is independent of the
mesh.

a FE mesh size 48×16 (for both approaches)  

b Element-based approach using Q4 elements (C=205.57)

c MTOP approach using Q4/n25 elements (C=208.23) 

Fig. 9 Topologies with the same FE mesh size 48 × 16 (volfrac = 0.5,
p = 4, rmin = 1.2)

a FE mesh size 240×80, element-based approach with 
Q4 elements (C=210.68) 

b FE mesh size 48×16, MTOP Q4/n25 elements (C=208.23) 

Fig. 10 Topologies with the same resolutions (volfrac = 0.5, p = 4,
rmin = 1.2)

The sensitivities of the element density in (18) with
respect to design variables are derived as

∂ρi

∂dn
= w (xn − xi )∑

m∈Si
w (xm − xi )

. (20)

Using the projection function with a minimum length scale,
the mesh independent solution is obtained.

3.4 Reduced number of integration points

During the optimization process, we may have regions
with uniform material distribution, e.g. void region or solid
regions. For these regions, the material distribution within
elements is uniform, thus we can use regular integration
for the element stiffness to further reduce the computational
cost. For example, instead of using the 25 integration points,

20 40 60 80 100
0

400

800

1200

1600

2000

Iteration

C
om

pl
ia

nc
e

MTOP (48x16 Q4/n25)
Element-based (240x80 Q4)
Element-based (48x16 Q4)

Fig. 11 Convergence history after 100 iterations
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a MTOP 48×16 Q4/n4 elements 

b MTOP 48×16 Q4/n9 elements 

c MTOP 48×16 Q4/n16 elements 

Fig. 12 Multiresolution designs using MTOP (volfrac = 0.5, p = 4,
rmin = 1.2)

we can perform the integration with fewer integration points
such as 4 or 9 Gauss points. The locations of the Gauss
points and the corresponding weights in the integration can
be found in the literature (Cook et al. 2002). Figure 6 shows
densities inside a typical displacement element with smooth
change of density. Since the stiffness matrix integrand is
evaluated at the Gauss points, the densities at these Gauss
points are directly computed from the design variables using
projection function.

3.5 Selection of displacement, density and design
variable meshes

Our proposed MTOP approach generalizes some of the
topology optimization methods such as element-based
approach and super-element approach. For example, the
element-based approach as shown in Fig. 1b can be obtained
using an MTOP approach with Q4/n1 elements where each
element density is represented by one design variable. In
addition, the super-element approach (Paulino et al. 2008a,
b) can be represented by our MTOP approach when special
displacement, density element and design variable meshes,
as shown in Fig. 7, are chosen. This mesh combination will
result in the Q4 super-element which consists of several
adjacent displacement elements having the same material
density/design variable.

4 Two-dimensional numerical examples

This section illustrates the MTOP approach with 2D appli-
cations. A cantilever beam and the Michell truss benchmark
examples are investigated. In all examples, SIMP model is
employed to interpolate the stiffness tensor of the interme-
diate material density. The method of moving asymptotes
(MMA; Svanberg 1987) is used as the optimizer. For sim-
plicity, all the quantities are dimensionless. In addition,
Young’s modulus is chosen as 1 and Poison’s ratio as 0.3
for all examples. Instead of using prescribed volume Vs

constraint in (1), we use volume fraction volfrac which is
defined as the ratio of the prescribed volume Vs and the total
volume of the domain.

Fig. 13 Element-based
approach and MTOP with
different minimum length scales

Element-based (C=226.87) MTOP (C=224.70)

a  Element-based and MTOP approach with rmin=1.5 

Element-based (C=199.50) MTOP (C=188.54)

b Element-based and MTOP approach with rmin=0.75 
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a Domain for Michell truss (mesh size 180×120) 

b Analytical solution of Michell truss  
(Taken from Sigmund 2000)

c MTOP optimal topology solution  
(volfrac = 0.25, p = 4, rmin = 1.2)

Fig. 14 Michell truss with a circular support

4.1 Cantilever beam

Figure 8 shows a 2D cantilever beam with length of 48,
height of 16, and unit width. The beam is fixed at the
left edge and a unit point load is applied downward at the
midpoint of the right end. A volume fraction constraint vol-
frac is taken as 50%. The penalization p is set equal to 4
and projection radius rmin of 1.2 is used for calculations.
The element-based approach Matlab code (Sigmund 2001;
Bendsøe and Sigmund 2003), modified to utilize the MMA
optimizer and the projection method instead of the sensitiv-
ity filter, was used as a reference for the results of the MTOP
approach.

4.1.1 Two designs with the same displacement mesh size

The cantilever domain is discretized into mesh size of
48 × 16 using 768Q4 elements with unit-length as shown
in Fig. 9a. The results obtained from element-based and
MTOP approaches are shown in Fig. 9b and c, respectively.
These figures show that for the same displacement mesh
size, the topology obtained from MTOP has a much better
resolution than that of the element-based approach.

4.1.2 Two designs with the same resolution

We investigate the displacement mesh requirements for
the two abovementioned approaches to achieve topol-
ogy designs with the same resolution. The element-based
approach is performed on a displacement mesh of 240 × 80
as shown in Fig. 10a while the MTOP approach employs
Q4/n25 elements with the coarse mesh size 48 × 16 as
shown in Fig. 10b. These data show that the topology
obtained from the MTOP approach on a coarse displace-
ment mesh has the same resolution with that obtained from
the element-based approach on a fine mesh.

4.1.3 Convergence history and computational cost

The convergence histories of the MTOP and the element-
based approaches are compared in Fig. 11. During the opti-
mization process, compliance convergence histories from
the MTOP and element-based approaches for both coarse
finite element mesh and fine finite element meshes are very
similar. After 100 iterations, MTOP with a coarse mesh
obtained a compliance of 208.23 while the element-based
approach obtained 205.57 and 210.68 for a coarse mesh and
a fine mesh, respectively.

  

L 
L 

L 

L 

fixed 

L 
L 

L 

fixed 

Fig. 15 Geometry of the 3D cross-shaped section
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Fig. 16 Topologies from
MTOP using 5,000 B8/n125
elements (volfrac = 0.2, p = 4,
rmin = 1.0)

To obtain the same resolution for the cantilever beam,
MTOP computation is much more efficient than the
element-based approach. MTOP’s lower computational cost
is mainly attributed to a much lower number of finite ele-
ments in a coarse mesh. For example, the number of finite
elements of the MTOP coarse mesh in Fig. 10b is 25 times
less than that of the fine mesh in Fig. 10a. The efficiency of
MTOP over conventional topology optimization is clearer
when 3D large-scale problems, in which the finite element
analysis cost is a dominant part of the total computational
cost, are considered.

4.1.4 Multiresolution designs by varying number of density
elements per displacement element

We further investigate the influence of the number of density
elements per displacement element in the resolution design.
Figure 12 shows that the increase of the number of den-
sity elements from 4 to 16 improves the resolution of the
topology design. Therefore, multiresolution designs can be
obtained with the same finite element mesh. However, if the
number of density elements is too large, the computational
cost for optimization may increase significantly resulting in
high total computational cost.

4.1.5 Influence of the minimum length scale in resolution
design

To investigate the influence of length scale, we vary the
minimum length scale from 1.5 to 0.75 for both above-
mentioned approaches while keeping the same displacement
mesh size of 48 × 16. Figure 13 shows that for a length scale
larger than the displacement element size (rmin > 1.0), the
topology obtained from MTOP has better resolution than
that from the element-based approach. When the minimum
length scale is equal to or smaller than the displacement ele-
ment size, the element-based approach produces checker-
board solutions. However, for MTOP approach with Q4/n25
element, instabilities were only observed with rmin < 0.75.

These results indicate that the MTOP approach can uti-
lize a length scale smaller than the element size, while
the element-based approach can only employ a length scale
larger than the element size.

4.2 Michell truss with a circular support

Michell truss has been used as a verification bench-
mark for topology optimization (Suzuki and Kikuchi 1991;
Sigmund 2000) because the analytical solution is available.
For example, a single load transferring to a circular support
was investigated by Sigmund (2000), as shown in Fig. 14a.
The theoretical optimal solution consisting of orthogonal
curve system is shown in Fig. 14b. We investigate this
example using the MTOP approach with the domain dis-
cretization of 180 × 120 Q4/n25 elements. The obtained
optimal topology shown in Fig. 14c is very close to the
theoretical solution provided by Sigmund (2000).

5 Three-dimensional numerical examples

This section illustrates the application of our MTOP
approach to 3D examples including a cross-shaped section,

L
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fixed 
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Fig. 17 Geometry of the cube with lateral loading
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Fig. 18 Topology of the cube
using MTOP 8,000 B8/n125
elements (volfrac = 0.1, p = 3,
rmin = 1.0)

a cube and a bridge design. The computations of these rela-
tively large problems are performed on a single PC with an
Intel R© Core(TM)2 Duo 2.00 GHz 32-bit processor, 3 GB
RAM of memory, Windows OS, and the code developed in
Matlab. Similar to the 2D examples, all the quantities are
dimensionless, Young’s modulus of 1, and Poison’s ratio of
0.3 are employed for computation.

5.1 Cross-shaped section

This example is adapted from the study by Borrvall and
Petersson (2001) in which a 3D large-scale problem was
solved with parallel computing. A cross-shaped domain,
which has fixed boundaries on the left and right ends, is sub-
jected to two downward loads applied on its back and front
ends as shown in Fig. 15. The dimension of the domain is
L × 3L × L with L = 10. We seek for the optimal design
with the volume fraction constraint of 20%. Borrvall and
Petersson (2001) discretized the domain into 40 × 120 ×
120 B8 elements which results in a total of 320,000 ele-
ments and solved this problem with parallel computing. We
discretized the domain into 10 × 30 × 30 elements resulting

in a total of only 5,000 B8/n125 elements. Instead of using
powerful computing resources, such as parallel computing,
with large number of finite elements to solve this problem,
we perform the computation in a single PC using MTOP
approach with only 5,000 B8/n125 elements and obtain high
resolution solution as shown in Fig. 16. Moreover, this
optimal topology is similar to the result by Borrvall and
Petersson (2001).

5.2 Cube with lateral loading

Figure 17 shows a 3D cube which is fixed at the centers of
the top and bottom faces. This cube is also subjected to four
tangential unit loads at the centers of side faces. The cube
domain is discretized into 20 × 20 × 20 B8/n125 elements
resulting in a total of 8000 elements. The volume frac-
tion constraint of 10%, minimum length scale rmin = 1.0,
and penalization p = 3 are applied. Figure 18 shows the
obtained topology design. The orthogonal curves of the
topology indicate that the solution is somewhat similar to
the Michell type optimal solution for space truss subjected
to torsion loading (Rozvany 1996).

Fig. 19 Domain for topology
optimization of the bridge

6L

q

L

2L/3

L

L

L

non-designable layer 



A computational paradigm for MTOP 537

Fig. 20 Optimal topology
of the bridge by MTOP

Fig. 21 An existing bridge
design (taken from
http://www.sellwoodbridge.org)

http://www.sellwoodbridge.org
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5.3 Bridge design

Figure 19 presents a 3D bridge topology optimization exam-
ple with simple supports, cantilevers and a non-designable
layer at mid-section. A uniform deterministic unit load q is
applied on the top of the non-designable layer of the bridge.
The domain is discretized into 10 × 120 × 30 B8/n125
elements. The non-designable layer has a thickness of 1
unit. The volume fraction constraint of 12.0%, the mini-
mum length scale rmin = 1.0, and penalization p = 3
are employed. The optimal topology as shown in Fig. 20
resembles an existing bridge design shown in Fig. 21.

6 Conclusions

In this study, we propose a computational paradigm for mul-
tiresolution topology optimization (MTOP). It leads to high
resolution designs by employing three different meshes: the
displacement mesh, the density mesh, and the design vari-
able mesh. By using design variable and density meshes
from coarse to fine, we can obtain multiresolution designs
with the same finite element mesh. Furthermore, a pro-
jection scheme is introduced to compute element densities
from design variables and to control the length scale of
the density. Specifically, we employ a coarser displacement
mesh and finer density and design variable meshes to obtain
high resolution designs with relatively low computational
costs. The proposed MTOP approach is demonstrated by
various 2D and 3D numerical examples. The MMA is used
as the optimizer. Moreover, similar results to the ones pre-
sented in this paper were also obtained with the optimality
criteria (OC).

This study has shown the advantages of the MTOP
approach to obtain high resolution design over conventional
topology optimization approaches. Topics for further inves-
tigation include the performance of a new projection scheme
or smoothening effect. Moreover, the multiresolution topol-
ogy optimization method may be explored in several fields.
For instance, it may have potential advantages in the design
of meta-materials and periodic composites with prescribed
properties (Paulino et al. 2009), in the solution of multi-
scale and multiphysics problems (Carbonari et al. 2009),
in problems involving other element types such as honey-
comb Wachspress elements (Talischi et al. 2009), and in
manufacturing constraints (Paulino et al. 2008a, b).
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Nomenclature

d vector of design variables
C compliance
Vs prescribed volume
V volume
x position of a point in the domain, coordinate vector
volfrac volume fraction
Ni (.) shape function
D0 constitutive matrix corresponds to the solid

material
D constitutive matrix
B strain-displacement matrix of shape function

derivatives
K global stiffness matrix
Ke stiffness matrix of displacement element e
K0

e stiffness matrix of element e corresponding to the
solid material

n number of density elements per displacement
element

E Young’s modulus
E0 Young’s modulus corresponds to solid material
ρi density of element i
dn design variable n
rmin minimum length scale
p penalization parameter
f(.) projection function
u global displacement vector
f global load vector
Ai area/volume of the density element i in the initial

domain
A0

i area/volume of the density element i in the
reference domain
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