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A Unified Library of Nonlinear
Solution Schemes
Nonlinear problems are prevalent in structural and continuum mechanics, and there is
high demand for computational tools to solve these problems. Despite efforts to develop
efficient and effective algorithms, one single algorithm may not be capable of solving any
and all nonlinear problems. A brief review of recent nonlinear solution techniques is first
presented. Emphasis, however, is placed on the review of load, displacement, arc length,
work, generalized displacement, and orthogonal residual control algorithms, which are
unified into a single framework. Each of these solution schemes differs in the use of a
constraint equation for the incremental-iterative procedure. The governing finite element
equations and constraint equation for each solution scheme are combined into a single
matrix equation, which characterizes the unified approach. This conceptual model leads
naturally to an effective object-oriented implementation. Within the unified framework,
the strengths and weaknesses of the various solution schemes are examined through
numerical examples. [DOI: 10.1115/1.4006992]

1 Introduction

Nonlinear problems are prevalent in structural and continuum
mechanics; however, one single nonlinear solution method may
not be capable of solving any general nonlinear problem. Depend-
ing on the problem and the severity of the nonlinearities, modifi-
cations to solution algorithms are necessary to recover the entire
equilibrium path. In an early work, Bergan et al. [1] stated:

“a computer program for nonlinear analysis should possess sev-
eral alternative algorithms for the solution of the nonlinear sys-
tem. These procedures should also allow for the possibility of an
extensive control over the solution process by parameters that are
input to the program. Such a scheme would lead to increased flexi-
bility, and the experienced user has the possibility of obtaining
improved reliability and efficiency for the solution of a particular
problem.”

This philosophy is the main motivating factor for the present
work, which provides a modern theoretical and computational
framework for the insightful statement by Bergan et al. [1].

Many authors have developed families of nonlinear solution
schemes, which can be adjusted by the user depending on the
problem. Mondkar and Powell [2] developed a library of algo-
rithms based on the Newton-Raphson method. Seven solution
schemes were formulated from 11 control parameters (stiffness
update type and frequency, convergence tolerance, etc.) and tested
on several nonlinear structural systems. Clarke and Hancock [3]
used the concept of load increment from the standard or modified
Newton-Raphson method to unify several nonlinear solution
schemes through a single load factor. The specific incremental-
iterative procedure depends on the chosen constraint equation,
which is used to calculate the unifying load factor. The constraint
equations are based on iterations at constant load, displacement,
work, arc length, or minimum residual. Yang and Sheih [4] and
Yang and Kuo [5] presented a similar library of nonlinear solvers
unified through a single load parameter, and included the general-

ized displacement control method. More recently Rezaiee-Pajand
et al. [6] unified five nonlinear solution schemes through a single
general constraint equation. The schemes were identified by five
different constraints, including minimizing error by means of its
length, area, or perimeter, and then the strengths and weaknesses
of each algorithm were evaluated.

The library of nonlinear solution schemes explored in this
review is similar to its predecessors in that several solution
schemes, defined by a constraint equation, are unified into a single
space by means of a load parameter. The methods include load
control, displacement control, work control, arc length control,
generalized displacement control, and the orthogonal residual pro-
cedure, which until now has not been incorporated into a collec-
tion of unified schemes. The unified schemes are formulated and
implemented such that (i) additional nonlinear solution schemes
are readily incorporated and (ii) integration into a finite element
analysis code is straightforward. The approach taken is aimed at
widespread dissemination of the work and follows an educational
philosophy. Moreover, a website with all of the components devel-
oped, including a tutorial, is provided to the interested reader.2

1.1 On Nonlinear Systems. Nonlinear behavior can arise
from either material or geometric nonlinearity. In the former, the
constitutive relation describing the material is itself nonlinear and
the structural response associated with physical phenomena such
as plasticity or strain-softening must be captured. In the latter,
nonlinearity is due to changes in geometry, arising from large
strains and/or rotations, which enter the formulation from a non-
linear strain-displacement relationship, and may occur even if the
constitutive relation is linear [7]. Furthermore, in geometric non-
linear problems, the applied loads will either have an effect on the
deformed configuration, or the configuration will have an effect
on the load (e.g., follower loads [8]).

Nonlinear problems arising from either geometric or material
nonlinearity feature critical points along the solution path. Critical1Corresponding author.
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points or stability points, shown in Fig. 1, are points on the solu-
tion path where the structure loses stability (e.g., buckling) or
where bifurcation occurs (i.e., solution switches to two or more
branches). Load limit points occur when a local maximum or min-
imum load is reached on the load versus displacement curve, as
shown at points A and D in Fig. 1. A horizontal tangent is present
at load limit points. Displacement limit points, shown at points B
and C in Fig. 1, occur at vertical tangents on the solution curve.
Displacement limit points are also commonly referred to as snap-
back points or turning points in the literature. Methods capable of
passing displacement limit points are said to capture snap-back
behavior.

In this context, stability is directly related to load limit points,
as shown in Fig. 1, where the region between the load limit points
is unstable. The unstable region following a load limit point corre-
sponds to a physical instability in the structural system, such as
buckling. Using the theory of stability in a conservative system, a
critical point occurs when the stiffness matrix is singular [9].
Some methods for tracing nonlinear load versus displacement
curves are not capable of capturing behavior beyond a load limit
point, and instead these methods yield snap-through behavior. The
unstable region of the equilibrium path, shown as the dashed line
in Fig. 2, is not traced; the curve snaps through and only the por-
tions with increasing loads are captured.

Tracing an equilibrium path beyond the simple linear region
and into a nonlinear region is an important task in structural analy-
sis. While in some cases it may seem unnecessary to trace a path

beyond the first load limit point, the full equilibrium path, includ-
ing critical points and regions of instability, gives more informa-
tion about the structural behavior than a simpler analysis [10].
Once a structure passes a load limit point, the nature of the
unloading may be of importance to the analyst, rather than just the
loading behavior. Additionally, information about the structural
response past a displacement limit point may be of importance.
For instance, if snap-back behavior was not captured in Fig. 1, the
structure would appear to have a sharp drop in the load at point B
and the nature of the unloading would be lost. For further discus-
sion on nonlinear systems the reader is referred to Refs. [11–16].

1.2 Purely Incremental and Incremental-Iterative
Methods. A nonlinear equilibrium path can be traced by means
of either a purely incremental procedure or an incremental-
iterative procedure. In an incremental procedure, shown in Fig. 3,
the load is applied at relatively small load steps and the structure
is assumed to respond linearly within each step. This method is
simple to implement; however, as the solution progresses, it
diverges considerably from the actual equilibrium path because
equilibrium is not guaranteed at every step [2,5]. Conversely, in
an incremental-iterative procedure, a series of iterations or correc-
tions are performed at each incremental step until a specified con-
vergence criterion is satisfied (see Fig. 4). Hence, the current
increment in Fig. 4 advances the equilibrium curve from point A
to point B, and the iterations occur within the increment, as indi-
cated by the dotted line. If convergence is achieved before a maxi-
mum number of iterations are reached then equilibrium is satisfied
for that step. Typically, convergence criteria is based on the ratio
of the norm of the unbalanced forces to the norm of the applied
loads at that incremental step. The incremental-iterative approach
is accurate, but it comes with a higher computational cost.
Incremental-iterative procedures are used for highly nonlinear
behavior, and they will be the focus of this review.

The notation used in Fig. 4 denoting increments and iterations
will be used in the remainder of this work: an increment is
denoted with the superscript i, and iterations within the ith incre-
mental step are denoted with the subscript j.

Due to the nature of the nonlinear problems, the internal forces,
qi

j � qðui
jÞ, are a function of the displacements, ui

j, and are not
necessarily in equilibrium with the externally applied forces, pi

j.
Thus, an unbalanced force or a residual ri

j ¼ pi
j � qðui

jÞ is
generated.Fig. 2 Snap through behavior

Fig. 3 Purely incremental procedure

Fig. 1 Critical points in nonlinear equilibrium paths
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The displacement and external loads are computed by adding
the contributions from the previously converged equilibrium con-
figuration, (i.e., increment i� 1) to the incremental updates at the
current, jth, iteration of the current, ith, increment. Thus:

ui
j ¼ ui�1 þ Dui

j (1)

pi
j ¼ pi�1 þ Dpi

j (2)

Similarly, the incremental updates at step i are computed by
adding the contributions from the previous, j� 1, iteration and
iterative updates from the current, jth, iteration, i.e.,

Dui
j ¼ Dui

j�1 þ dui
j (3)

Dpi
j ¼ Dpi

j�1 þ dpi
j (4)

where Dui
j and Dpi

j are the incremental displacement and force
vectors, respectively, and dui

j and dpi
j are the iterative displace-

ment and force vectors, respectively, in iteration j of step i. The
residual vector is given by

ri
j ¼ pi�1 þ Dpi

j � qðui�1 þ Dui
jÞ (5)

The governing system of nonlinear equations to be solved at the
jth iteration of the ith incremental step is given by

Ki
j�1dui

j ¼ pi
j � qi

j�1 (6)

where the tangent matrix, Ki
j�1, may either be computed in ac-

cordance with a standard update method or with a modified update
method. In the former method, the tangent matrix is calculated at
the beginning of each iteration (Fig. 5(a)), while in the latter, the
tangent matrix is only computed at the beginning of each incre-
mental step and held constant for each iteration, i.e., Ki

j�1 ¼ Ki
0

for j � 2 (Fig. 5(b)). The modified method has a lower computa-
tional cost at each iteration than the standard version, but conver-
gence is usually slower.

1.3 Paper Organization. First, a general review of nonlinear
solution procedures is provided in Sec. 2. The unified nonlinear
solution schemes are reviewed and cast into the N þ 1ð Þ dimen-
sional space in Sec. 3. The object-oriented implementation of the

unified schemes in the N þ 1ð Þ dimensional space is presented in
Sec. 4. The unified schemes are evaluated through a set of numeri-
cal “experiments,” which are shown and discussed in Sec. 5. Dis-
tribution of the code used to solve the example problems is
described in Sec. 5.3. We conclude with a summary and potential
research extensions in Sec. 6. Finally, the Appendix contains
details of the analytical solution of one of examples explored in
Sec. 5.1.

2 Related Work

To provide a comprehensive overview of the current state of
the art in nonlinear solution procedures, methods that are not
incorporated into the unified schemes are briefly reviewed here.

Fig. 5 (a) Standard and (b) modified updates to the tangent
matrix

Fig. 4 Incremental-iterative procedure
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The literature on nonlinear solution schemes and their applications
is extensive; therefore, the references in this section compose a
rather incomplete list. For a more extensive discussion, the reader
is directed to Refs. [17–21]. Different families of methods are
addressed here including: (i) methods based on Adomian decom-
position, (ii) methods based on Homotopy perturbation, (iii) varia-
tions of Newton’s method (iv) methods to compute the locations
of limit points, and (v) other libraries and toolkits.

(i) The Adomian decomposition method was originally
developed to solve nonlinear stochastic differential equa-
tions [22]. Adomian and Rach [23] generalized the method
to solve nonlinear systems of equations. The Adomian
method consists of expressing the solution of a nonlinear
equation as an infinite series. The nonlinear function used
to represent the solution can be decomposed by the so-
called Adomian polynomials. In a review by Adomian
[17], it was stated that the method provides solutions that
are more physically realistic than other methods because it
solves nonlinear problems rather than linearizing them.
Abbaoui and Cherruault [24] address difficulties associ-
ated with the Adomian decomposition method by comput-
ing Adomian polynomials and proving convergence of the
decomposition series. Recent modifications of the Ado-
mian decomposition technique have led to new methods
with accelerated convergence [25–29]. Alternative decom-
position methods have also been used to develop iterative
schemes [30].

(ii) Another class of methods is based on coupling of homo-
topy and perturbation techniques. The homotopy is con-
structed using an embedding parameter p 2 0; 1½ �, then the
perturbation technique is applied to arrive at an iterative
scheme. For a more detailed explanation of the method,
the reader is referred to the works by He [31–34]. Several
authors have expanded upon this method to create new
iteration schemes [35], or pass load limit points in nonlin-
ear geometric analysis [36], for example. The method has
also been used for various applications including nonlinear
wave equations [37–39], nonlinear heat transfer [40–42],
and calculating Adomian polynomials [43–45], to name a
few.

(iii) Many methods are derived based on variations of New-
ton’s method. For example, some methods have third-
order convergence, unlike the traditional Newton method
which is quadratically convergent, and they do not require
calculation of second derivatives. However, these methods
require evaluation of the function and first derivatives at
multiple points [21,46]. Different quadrature formulas
have been used to approximate the indefinite integral that
arises with Newton’s method to develop new incremental
iterative procedures [47–49]. Another third order method
was developed in Ref. [50] where Newton’s method is
used for the inverse function. While the previous methods
do not require computation of second derivatives,
Chebyshev-type methods approximate the second deriva-
tives using evaluations of the function and first derivatives
[51,52]. Families of higher order methods have been used
to further improve convergence of Newton-Raphson type
methods including a fourth- to eighth-order methods
[53–55].

(iv) Some methods are successful at tracing beyond load and
displacement limit points; however, many do not directly
compute the location of such points. In the following stud-
ies, a rigorous approach is used to determine the location
of stability points. Wriggers and Simo [56] appended the
linearized eigenproblem as a constraint to characterize the
presence of limit points to the nonlinear system of equa-
tions. The solution of the extended system therefore,
includes the type of limit point (i.e., bifurcation or dis-
placement limit point) in addition to the load factor and

displacement field. Other methods for detecting limit
points examine the determinant [57] or eigenvalues [58]
of the tangent stiffness matrix, or use a homotopy method
[59].

(v) In addition to individual solution schemes, libraries and
tool kits for solving systems modeled by partial differen-
tial equations have also been developed. The Portable, Ex-
tensible Toolkit for Scientific Computation (PETSc)
[60–62], for instance, is a suite of routines designed to
solve large-scale applications through utilization of paral-
lel linear and nonlinear solvers, including a parallel
Newton-based solver. The libMesh library [63], which is a
platform to perform numerical simulation of partial differ-
ential equations using arbitrary unstructured discretiza-
tions, utilizes the parallel solvers present in PETSc.
Similarly, the Library of Continuation Algorithms, LOCA
[64], was developed at Sandia National Laboratories in
Albuquerque, New Mexico, to perform stability analysis
on large scale problems by tracking multiple solution
branches and bifurcation points. The software, LOCA,
supports a variety of algorithms.

3 Unified Nonlinear Solution Schemes

Load control, displacement control, arc length control, work
control, generalized displacement control, and orthogonal residual
procedure schemes are presented in the context of the unified
approach. The solution schemes are inherently different in their
formulations and therefore feature unique constraint equations for
the incremental-iterative procedure. The governing finite element
equations and constraint equation are combined into a single ma-
trix equation, which will be used to characterize the unified
approach.

3.1 N 1 1 Dimensional Space Formulation. The formula-
tion of the N þ 1ð Þ dimensional space begins with the general
incremental-iterative procedure discussed in Sec. 1.2. The itera-
tive load parameter, dki

j, is introduced into Eqs. (2) and (4) by
replacing dpi

j with dki
jp, where p is a reference load vector [4],

i.e.,

pi
j ¼ pi�1 þ Dpi

j�1 þ dki
jp (7)

Equations (5), (6), and (7), are combined to give the following
system of equations:

Ki
j�1dui

j ¼ ri
j�1 þ dki

jp (8)

Equation (8) is a system of N þ 1ð Þ unknowns, N displacement
components ðdui

jÞ and one load parameter ðdki
jÞ, but only N equa-

tions. Therefore, an additional constraint equation must be added
to the system, given by [5]

ai
j � dui

j þ bi
jdki

j ¼ ci
j (9)

Equations (8) and (9) yield a system of N þ 1ð Þ equations and
N þ 1ð Þ unknowns

Ki
j�1 �p

ðai
jÞ

T bi
j

" #
dui

j

dki
j

( )
¼

ri
j�1

ci
j

( )
(10)

The augmented system matrix is no longer symmetric and has a
significantly increased bandwidth due to the added load parame-
ter. The solution of this system with a traditional method would
be computationally undesirable with respect to both storage and
efficiency. However, Batoz and Dhatt [65] presented a technique
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to overcome this problem, which consists of decomposing the iter-
ative displacement vector into two parts

dui
j ¼ dki

jdup
i
j þ dur

i
j (11)

then Eq. (8) becomes

Ki
j�1dup

i
j ¼ p

Ki
j�1dur

i
j ¼ ri

j�1

(12)

It is clear that Eqs. (12) and (8) are mathematically equivalent
by means of Eq. (11). Moreover, dup

i
j and dur

i
j, are computed

using the original system matrix, Ki
j�1, and the banded and sym-

metric properties of the original system remain intact [66].
Finally, the load parameter is needed to compute the total dis-
placement for the jth iteration of the ith incremental step. Solving
Eq. (9) for the load parameter and combining with Eq. (11) yields

dki
j ¼

ci
j � ai

j � dur
i
j

ai
j � dup

i
j þ bi

j

(13)

The constraint equation will be directly associated with a particu-
lar nonlinear solution scheme. Or, in other words, the formulation
of each nonlinear solution scheme into the ðN þ 1Þ space will
give rise to the constraint parameters, ai

j, bi
j, and ci

j.

3.2 Nonlinear Solution Schemes. The unified methods
include load control, displacement control, work control, arc
length control, generalized displacement control, and the orthogo-
nal residual procedure. Each of the methods is reviewed and cast
into the N þ 1ð Þ dimensional space in the following subsections.

3.2.1 Load Control Method (LCM). Traditionally, load con-
trol methods (LCM) or Newton-Raphson type methods have been
the most popular for solving nonlinear system of equations [2,67].
Furthermore, many advances in nonlinear solvers consist of varia-
tions of the basic Newton-Raphson method [68,69].

External loads are computed at the first iteration of each incre-
mental step and held constant throughout the remaining iterations
in the step, as illustrated in Fig. 6. Hence, the load factor is

dki
j ¼

prescribed value

0

for j ¼ 1

for j � 2

�
(14)

The constraint parameters are obtained by equating Eq. (14) and
Eq. (13), such that

ai
j ¼ 0 (15)

bi
j ¼ 1 (16)

ci
j ¼

Dk

0

for j ¼ 1

for j � 2

(
(17)

where Dk is a prescribed initial load factor. Because this method
imposes the load factor, the system has only N unknowns and the
decomposition of Eq. (8) is not needed. Instead, the system can be
solved from Eq. (8) directly, i.e.,

Ki
j�1dui

1 ¼ Dkp for j ¼ 1

Ki
j�1dui

j ¼ ri
j�1 for j � 2

(18)

This method is widely used and extremely robust, as indicated
by Caballero et al. [70], who use it in modeling fracture of quasi-
brittle material. This method has inherent weaknesses. Since the
externally applied loads are kept constant, this method has diffi-
culties near load limit points. Yang and Sheih [4] further showed
that the constraint parameters imposed by this method will yield
unbounded displacements near load limit points when the tangent
matrix is nearly singular.

3.2.2 Displacement Control Method (DCM). Analogous to
the LCM with a fixed load parameter, the displacement control
method (DCM) uses a fixed displacement component as the con-
trol parameter to trace the equilibrium path. In multidegree of
freedom systems, one displacement component is selected as the
control component, denoted by dui

jctrl
, such that

dui
jctrl
¼

prescribed value

0

for j ¼ 1

for j � 2

(
(19)

Equation (11) is solved for the control parameter with respect to
the control component, giving

dki
j ¼

dui
jctrl
� dur

i
jctrl

dup
i
jctrl

(20)

On the first iteration, the residual will be zero, so dur
i
j must also

be zero, as evident from Eq. (12). The expression for dki
j reduces

to the following:

dki
j ¼

dui
jctrl

dup
i
jctrl

for j ¼ 1

�
dur

i
jctrl

dup
i
jctrl

for j � 2

8>>>><
>>>>:

(21)

The constraint parameters are obtained by comparing Eq. (21) and
Eq. (13)

ai
j ¼

½0; 0; :::1; :::; 0�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
control displacement

(22)

bi
j ¼ 0 (23)

ci
j ¼

Du

0

for j ¼ 1

for j � 2

(
(24)

Fig. 6 Load control method
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Finally, the load factor is given by

dki
j ¼

Du

dup
i
jctrl

for j ¼ 1

�
dur

i
jctrl

dup
i
jctrl

for j � 2

8>>>><
>>>>:

(25)

where Du is the prescribed initial displacement. A schematic of
the DCM for a one dimensional problem is shown in Fig. 7. The
prescribed displacement dictates the constraint surface on the first
iteration in accordance with Eq. (25), then the direction of the
load parameter changes for subsequent iterations. Notice that the
ratio of the iterative load to the iterative displacement (i.e., Du for
j ¼ 1 and �dur

i
jctrl

for j � 2) remains fixed throughout the iterative
process (see Eq. (25)).

The displacement control method can capture load limit points;
however, it fails near displacement limit points. Yang and Sheih [4]
showed that the control displacement, dup

i
jctrl

, approaches zero at dis-
placement limit points, and the load parameter approaches infinity;
hence numerical instability occurs at displacement limit points.

Variable Displacement Control Method (Variable DCM): In the
standard DCM, the control parameter is selected intuitively or
empirically, and remains fixed during the whole path-tracing pro-
cess. To circumvent this drawback, Fujii et al. [71] devised a tech-
nique to systematically select the best control parameter. A
decreasing component of the displacement vector may suggest
that a displacement limit point is approaching in that component.
However, the largest component of the displacement vector is the
least likely component to experience a displacement limit point.
The best candidate for the control component is therefore the one
with the maximum absolute value of displacement. The sign of
this component should also be retained to ensure the correct direc-
tion of equilibrium tracing. With this minor modification, the vari-
able DCM can potentially capture displacement limit points. The
constraint parameters and load factor for the variable DCM are
the same as those of the standard DCM; however, the control dis-
placement is not necessarily fixed throughout the incremental-
iterative process. For example, the nonzero component of ai

j in
Eq. (22) may be different than the nonzero component of aiþ1

j .
Thus,

ai
j ¼

½0; 0; :::1; :::; 0�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
variable control displacement

Simons and Bergan [72] also developed an extension of the tra-
ditional displacement control method that potentially captures
snap-back. Unloading is steered via a reference displacement
which is based on a linear combination of the displacement vec-
tors of possible failure modes.

3.2.3 Arc Length Control Method (ALCM). The most typical
example of a nonlinear solution scheme which considers simulta-
neous iteration on both the load and displacement variables is the
arc length method (ALCM). The premise of the method is to con-
strain the solution path to an arc length, Dsi

j. The arc length is cal-
culated via a norm of the increment ðDui

j;Dki
jÞ. Several versions

of the arc length method, including cylindrical, spherical, and
elliptical can be represented by the general constraint equation

Dui
j � Dui

j þ gðDki
jÞ

2 ¼ ðDsi
jÞ

2
(26)

where g is a non-negative real parameter, which is unique for each
version of the arc length method. Figure 8 illustrates the
incremental-iterative procedure of the arc length method for a
one-dimensional problem. An initial arc length is determined in
accordance with Eq. (26), then subsequent iterations lie on the
constraint surface created by the arc. Iterations eventually con-
verge at the intersection of the arc and the equilibrium path.

Spherical Arc Length Control Method: The spherical arc length
method [10,73] sets the scaling parameter to one. The constraint
equation becomes

Dui
j � Dui

j þ ðDki
jÞ

2 ¼ ðDsi
jÞ

2
(27)

The constraint equation now represents a sphere in three dimen-
sional space, as shown in Fig. 9(a). Through several benchmark
problems, Bellini and Chulya [74] demonstrated that in areas of
very high slope, this method may have difficulties. The initial arc
length may be adjusted such that it becomes very small; however,
this increases the number of incremental steps to trace the entire
equilibrium path, thereby increasing computational time.

Fig. 7 Displacement control method Fig. 8 Arc length control method
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Cylindrical Arc Length Control Method: As indicated by Cris-
field [10], the cylindrical arc length method consists of setting g to
zero. Bellini and Chulya [74] illustrated the effectiveness of this
version in capturing sharp turns at load limit points. The constraint
equation represents a cylinder in three dimensional space,

Dui
j � Dui

j ¼ ðDsi
jÞ

2
(28)

as illustrated by Fig. 9(b).
Elliptical Arc Length Control Method: The most general form

is the elliptical arc length method, where g > 0 and g 6¼ 1. Figure
9(c) shows that the constraint equation represents an ellipsoid in
three dimensional space. Park [75] proposed a method where the
scaling parameter, g, is the current stiffness parameter, introduced
by Bergan et al. [1]. Bellini and Chulya [74] documented the suc-
cess of this particular version of the elliptical arc length method.

Linearized Arc Length Control Method: The linearized arc
length method was studied by Wempner [76] and Riks [67], and
investigated further by Riks [9] and Crisfield [10]. The main fea-
ture of this version is that the iterations are processed on a hyper-
plane, as illustrated in Fig. 10(a). These methods are also referred
to as orthogonal arc length methods because, in general, a norm
constraint is imposed at the first iterative step, then an orthogonal-
ity condition is met in subsequent iterations of that increment. The
orthogonality condition determines the type of linearized arc
length method. For example, in the Fixed Normal Plane version,
the iterative vectors ðdui

j; dki
jÞ are orthogonal to the initial incre-

mental vector ðDui
1;Dki

1Þ. In the Updated Normal Plane version,
the iterative vectors ðdui

j; dki
jÞ are orthogonal to the previous

incremental vector ðDui
j�1;Dki

j�1Þ. The linearized versions are
shown in Fig. 10(b).

The various versions of the ALCM are closely related, and Forde
and Stiemer [77] unified the formulations of the normal and updated
plane, and spherical versions through orthogonality relationships.

When the general nonlinear constraint equation of the arc
length method is adopted, a quadratic equation in terms of Dki

j is

obtained (i.e., Eq. (26)). It is necessary to adopt a set of rules to
treat either real or complex roots obtained from the quadratic
equation. For real roots, in general, the selected root is the one
that corresponds to the smallest change in the direction of the iter-
ative displacement vector compared to the previous displacement
vector [74,78]. Lam and Morley [79] presented a methodology to
avoid complex roots that can arise in the above mentioned quad-
ratic equation by introducing a line search technique to find the
real roots.

Ritto-Corrêa and Camotim [80] developed techniques to avoid
complex roots of the quadratic equation using corrections to the
incremental arc length size.

The constraint in Eq. (26) can be written with respect to the
iterations rather than the increments

dui
1 � dui

j þ gdki
1dki

j ¼ ðDsi
jÞ

2
(29)

Fig. 9 (a) Spherical, (b) cylindrical and (c) elliptical version of
the arc length control method

Fig. 10 (a) Schematic of the linearized arc length control
method, (b) updated and fixed normal plane versions
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Then the following constraint parameters are obtained:

ai
j ¼ dui

1 ¼ dki
1dup

i
1

(30)

bi
j ¼ gdki

1 (31)

ci
j ¼

ðDSÞ2

0

for j ¼ 1

for j � 2

(
(32)

where DS is the prescribed arc length to be assigned at the first
iteration. The load factor is then given by

dki
j ¼

6
DSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dup
i
1 � dup

i
1 þ g

q for j ¼ 1

�
dui

1 � dur
i
j

dui
1 � dup

i
j þ gdki

1

for j � 2

8>>>>><
>>>>>:

(33)

The sign of the load factor on the first iteration is not specified
explicitly; however, it should depend on whether the systems is
being loaded or unloaded. The load factor should be positive in
the case of loading and negative for unloading.

The ability of the ALCM to change the sign of the load factor
enables it to capture complex nonlinearities at load and displace-
ment limit points; however, some weaknesses of the method have
been identified in the literature. For instance, Carrera [81] docu-
mented the failure of several versions of the arc length method
related to factors including the constraint equation, linearization,
and computer precision and presented improved strategies. Ritto-
Corrêa and Camotim [80] and Feng et al. [82] investigated scenarios
where the ALCM converges incorrectly and presented a technique
to determine the forward direction of the equilibrium path. Several
authors have identified a potential shortcoming of this method
associated with the units of terms in the load parameter. For
example, dki

1 is a scalar, while the displacements du contain both
translations and rotations, which are of different orders of magni-
tude [83]. In areas near displacement limit points with very high
gradient, it is possible that dki

1 is so large that the sign of dki
j

depends only on the angle between dui
1 and dur

i
j. It follows that

the sign of dki
j may change incorrectly, causing numerical diver-

gence near displacement limit points [4]. It should be noted that
the load factor should only change sign at areas of load limit
points, not at displacement limit points. Al-Rasby [84] developed
a method using diagonal scaling matrices to remove inconsisten-
cies associated with mixed units (i.e., displacements, rotations,
forces and moments). The ALCM has been used in a variety of
applications including those associated with fracture [85–88],
delamination [89,90], etc., and to improve nonlinear capabilities
of numerical analysis techniques such as the Boundary Element
Method (BEM) [91–95].

3.2.4 Work Control Method (WCM). Versions of the work
control method (WCM) were studied by Simons and Powell [68],
Bathe and Dvorkin [96], and Yang and McGuire [83]. One of the
main motivations for this method was to overcome the issue of
inconsistent physical units, as discussed for the ALCM. This
method uses a constant work increment, dWi

j , through the itera-
tions of an incremental step

dWi
j ¼

prescribed value

0

for j ¼ 1

for j � 2

�
(34)

The constraint equation is given by

dWi
j ¼ dki

jp � dui
j (35)

The constraint parameters can be determined directly from Eq.
(35), i.e.,

ai
j ¼ dki

jp (36)

bi
j ¼ 0 (37)

ci
j ¼

DW

0

for j ¼ 1

for j � 2

(
(38)

where DW is the prescribed work increment. Equation (11) is
substituted into dui

j in Eq. (35), and dui
rj

is taken as zero on the
first iteration, which yields

dki
j ¼

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DW

p � dup
i
1

����
����

s
for j ¼ 1

�p � dur
i
1

p � dup
i
1

for j � 2

8>>>><
>>>>:

(39)

Unlike the arc length method, the sign of the load parameter is
easily determined. The term inside the square root, called the cur-
rent stiffness parameter [83], indicates whether the system is
being loaded or unloaded. The sign of this term should be applied
to the load parameter: if the term is positive, the system is being
loaded and the load parameter should increase; if it is negative,
the load is decreasing and the load parameter should be negative.

Some weaknesses of the work control method have been exam-
ined by Yang and Sheih [4]. A potentially problematic situation
occurs when there are a small number of degrees of freedom and
the displacement associated with the major forcing direction tends
to snap back (i.e., at a displacement limit point). The quantity
p � dup

i
1

will tend to zero, forcing the load parameter to infinity.
Thus, this method only has limited success near displacement
limit points. Additionally, the presence of the reference load vec-
tor in the expression for dki

j may have adverse effects because it is
somewhat arbitrary and does not necessarily represent the struc-
tural system.

Several authors have presented modifications for work control
type methods. Lin et al. [97] developed a method to address the
inconsistent units in the arc length method and weakness at snap-
back of the work-control method using the work weighted state
vector to control the incremental length throughout the solution
tracing process. Chen and Blandford [98] presented a quadrati-
cally convergent algorithm that uses the incremental work to
determine the size of the incremental step. A stabilized form of
the work control method was presented by Kouhia [99] who refor-
mulated the load parameter to be well defined even in areas of
snap-back.

3.2.5 Generalized Displacement Control Method (GDCM).
The generalized displacement control method (GDCM) was
investigated by Yang and Sheih [4] as a result of the limitations
discussed for other methods. Because the numerical stability of a
nonlinear solution scheme depends on the selection of the con-
straint parameters, the following values were adopted:

ai
j ¼ dki

1dup
i�1
1 (40)

bi
j ¼ 0 (41)

ci
j ¼

generalized displacement

0

for j ¼ 1

for j � 2

�
(42)

The constraint parameters are inserted into Eq. (13) such that

dki
j ¼

ci
j � dki

1 dup
i�1
1 � dur

i
j

� �
dki

1 dup
i�1
1 � dui

pj

� � (43)

which, simplifies to the following when j ¼ 1 because duri
1
¼ 0

and ci
1 ¼ c:
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dki
j ¼

c

dki
1dup

i�1
1 � dup

i
1

for j ¼ 1

�
dup

i�1
1 � dur

i
j

dup
i�1
1 � dui

pj

for j � 2

8>>><
>>>: (44)

Moreover, c is solved for by letting dup
1
1
¼ dup

0
1
, which results in

c ¼ ðdk1
1Þ

2 dup
1
1 � dup

1
1

� 	
(45)

where dk1
1 ¼ dk is the prescribed initial control factor. The

expression for dki
1 becomes

dki
1 ¼ 6dk

dup
1
1 � dup

1
1

dup
i�1
1 � dup

i
1

����
����


 �1
2

(46)

The GDCM adjusts the sign of the load parameter based on the
stiffness of the system. The generalized stiffness parameter
(GSP), defined below, will be positive for stiffening systems and
negative for softening systems. The behavior of the GSP, includ-
ing sign changes of the load parameter, is illustrated in Fig. 11.
By definition

GSP ¼
dup

1
1 � dup

1
1

dup
i�1
1 � dup

i
1

(47)

Thus the load parameter at the first iteration of each incremental
step is simply

dki
1 ¼ 6dk GSPj j

1
2 (48)

Use of this physical quantity to represent the stiffness of the
system makes this method computationally effective. The stiffness
of the structure is measured with respect to the first incremental
step, so stiffening and softening behavior are readily identified.
Furthermore, the GSP changes sign only immediately after load
limit points, meaning the direction of the load will only change at
load limit points, not at displacement limit points. It can also be
shown that the GSP remains bounded while tracing the equilib-
rium path.

The GDCM is successful at capturing complex nonlinear
behavior at both load and displacement limit points, and has been
used to study large deflection of trusses [100,101], and ultimate
load carrying capacity of structures considering both member and
structure instability [102]. The method has also been used to cap-
ture geometric and material nonlinearity associated with concrete-
filled steel composite columns [103]. Additionally, the GDCM
has been used by researchers modeling carbon nanotubes using

the truss rod model because of its accuracy and numerical stability
at load and displacement limit points [104,105].

Connections have also been made between the GDCM and vari-
ous versions of the ALCM. Cardoso and Fonseca [49] identified
this method as an orthogonal arc length method. The constraint
equation posed by the GDCM can be written as an orthogonal arc
length constraint where adjustments in the radius of the arc are de-
pendent on the value of the GSP. Additionally, a minor modifica-
tion to the expression for ai

j in Eq. (40) results in a version of the
ALCM. Assuming ai

j ¼ dki
1dup

i
1, and bi

j and ci
j are the same as in

Eq. (40), then the load factor becomes

dki
j ¼

c

dki
1dup

i
1 � dup

i
1

for j ¼ 1

�
dup

i
1 � dur

i
j

dup
i
1 � dui

pj

for j � 2

8>>><
>>>: (49)

On the first iteration j ¼ 1ð Þ of the first incremental step i ¼ 1ð Þ

c ¼ dk
� 	2

dup
1
1dup

1
1 (50)

Now the expression for dki
1 becomes

dki
1 ¼ 6dk

dup
1
1 � dup

1
1

dup
i
1 � dup

i
1

����
����


 �1
2

(51)

which means that the new GSP is

GSP ¼
dup

1
1
� dup

1
1

dup
i
1 � dup

i
1

(52)

Equation (51) can be rearranged as

dki
1

� 	2
dup

i
1
� dup

i
1
¼ dk
� 	2

dup
1
1
� dup

1
1

(53)

dki
1dup

i
1 � dki

1dup
i
1 ¼ dkdup

1
1 � dkdup

1
1 (54)

dui
1 � dui

1 ¼ du
1

1 � du
1

1 (55)

and since the incremental and iterative displacement at the first
iteration of every incremental step are the same dui

1 ¼ Dui
1

� 	
,

then the constraint can be rewritten as

Dui
1 � Dui

1 ¼ Du
1

1 � Du
1

1 ¼ Ds
1

1

� �2

(56)

Notice that Eq. (56) is identical to that of the cylindrical ALCM
presented in Eq. (28) for the first iteration j ¼ 1ð Þ. Then, on subse-
quent iterations j � 2ð Þ we impose dui

1 � dui
j ¼ 0. Thus, the minor

modification to the parameters of the GDCM results in the linear-
ized cylindrical ALCM.

3.2.6 Orthogonal Residual Procedure (ORP). The orthogonal
residual procedure (ORP), investigated by Krenk [106], adjusts
the load increment at each iterative step such that the current dis-
placement increment is orthogonal to the current residual. The
direction of the current displacement increment, Dui

j, is taken as
the best estimate of the direction of the actual displacement incre-
ment. The magnitude, however, will increase or decrease based on
the projection of the residual force on the current displacement in-
crement. The magnitude of the current displacement increment
should not change; therefore, the orthogonality between the resid-
ual and the current displacement increment should be enforced,
i.e.,

ui
j � Dri

j ¼ 0 (57)

as illustrated by Fig. 12(a).
Fig. 11 Generalized stiffness parameter used in the generalized
displacement control method [4]
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To justify why the residual should not change the magnitude of
the current displacement, consider the case where the residual and
current displacement increment are not orthogonal, as shown in
Fig. 12(b). First, note the order in which computations occur in
the jth iteration. The incremental displacement is calculated using
the tangent matrix and residual vector from the previous iteration

dui
j ¼ ðKi

j�1Þ
�1

ri
j�1 (58)

then the increment displacement is updated

Dui
j ¼ Dui

j�1 þ dui
j (59)

and finally the residual is calculated. The direction of the current
displacement increment should not change because it was calcu-
lated in the previous iteration and is taken as the best estimate of
the actual displacement direction. If the residual is not orthogonal
to the current displacement increment, then the iterative displace-
ment increment, dui

j, should have accounted for the induced dis-
placement by the residual when it was calculated in the previous
iteration. Changing the iterative displacement will also change the
current displacement increment through Eq. (45). If the magnitude
of the current displacement increment changes due to the residual,
then the calculation of the current displacement increment in the
previous iterative step was not optimal.

In the original ORP, a load factor, ni
j, is used to increment the

external load

pi
j ¼ pi�1 þ ni

jDp (60)

and the residual is given as follows:

ri
j ¼ pi�1 þ ni

jDp� qðui�1 þ Dui
jÞ (61)

The optimal load increment factor is obtained by inserting Eq.
(61) into the constraint in Eq. (57)

ni
j ¼ �

pi�1 � qðui�1 þ Dui
jÞ

h i
� Dui

j

Dp � Dui
j

(62)

The load increment factors, ni
j, used in ORP are calculated at

each iteration and are not dependent on any previous load incre-
ment factor. However, in the N þ 1ð Þ dimensional space each load
increment factor is dependent on the previous, i.e.,

Dki
j ¼ Dki

j�1 þ dki
j (63)

Figure 13 shows the dependence of Dki
j on previous iterations,

while ni
j is independent at each iteration.

To unify the ORP into the N þ 1ð Þ dimension space, the load
factor, dki

j, must be included in the constraint equation. The equiv-
alence between the load factors is evident from Fig. 13

pi�1 þ ni
jDp ¼ ki�1pþ Dki

j�1pþ dki
jp (64)

Equation (64) is inserted into Eq. (61) to obtain the residual,

ri
j ¼ ðk

i�1 þ Dki
j�1 þ dki

jÞp� qðui�1 þ Dui
jÞ (65)

The load factor is found by solving Eq. (65)

dki
j ¼

ri
j þ qðui�1 þ Dui

jÞ
h i

p
� ki�1 þ Dki�1

j

� �
(66)

Then the orthogonality constraint is used to remove the residual
term, and the resulting load factor is

dki
j ¼

q ui�1 þ Dui
j

� �h i
� Dui

j

p � Dui
j

� � � ki�1 þ Dki�1
j

� �
(67)

Equation (67) is implemented in the N þ 1ð Þ dimensional
space. At the first iteration of an incremental step (i.e., j ¼ 1), and
initial load factor, dk, prescribed by the user, is assigned to dki

j.
To improve the robustness of the ORP algorithm, certain condi-

tions are checked/imposed throughout the incremental-iterative
procedure. First, the direction of the displacement and load incre-
ments are reversed at load limit points. If the direction of the dis-
placement increment is reversed relative to the previously
converged displacement increment, then a load limit point has
been passed and the sign of the load and displacement increments
are changed. Secondly, maximum displacement and load factor
increments are imposed to ensure they do not become unbounded
near limit points. The maximum increments are computed as
follows:

If Dui
1

�� �� > Umax ) Dui
1 ¼

Umax

Dui
1

�� ��Dui
1 (68)

Fig. 12 (a) Orthogonality constraint for the orthogonal resid-
ual procedure, (b) error induced without the orthogonality
constraint

Fig. 13 Comparison of original ORP load factor and unified
approach load factor
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If dui
j

��� ��� > Umax ) dui
j ¼

Umax

dui
j

��� ��� dui
j (69)

where Umax is computed using a prescribed initial scale factor, b,
such that

Umax ¼ b Dui
1

�� �� (70)

Finally, convergence problems may be addressed through the
following modifications; however, they are not implemented here.
If convergence is not met within the maximum iterations pre-
scribed by the user, then the iterative procedure can be restarted
with half the initial displacement, load increment, and maximum
displacement, such that

Dp 1

2
Dp (71)

Dui
1  

1

2
Dui

1 (72)

Umax  
1

2
Umax

(73)

Information from the previous load increment may also be used
to overcome convergence problems in the current increment. The
load increment can be scaled by a ratio of the desired number of
iterations, denoted IteD, and the actual number of iterations used
to reach equilibrium in the last incremental step, denoted IteA

[74,78]

Dp
i ¼ IteD

IteA


 �a

Dp i�1 (74)

The exponent a is typically chosen to be in the range [0.5, 2.0].
Of course, this procedure is dependent on the behavior of the pre-
vious step; thus it may be ineffective for problems with very sud-
den changes. The original ORP has the potential to capture
complex nonlinearities at load and displacement limit points, and
it has recently been used in conjunction with the extended finite
element method (XFEM) to solve nonlinear equations associated
with cohesive crack growth [107,108].

Despite the reported success of the ORP, further investigation
by Krenk and Hededal [109] and later by Kouhia [99] indicated
that the original formulation has weaknesses around displacement
limit points. Krenk and Hededal [109] modified the procedure by
imposing a second orthogonality constraint that adjusts the dis-
placement iteration in addition to the first constraint that adjusts
the load increment. The original orthogonality constraint,
ri

j � Dui
j ¼ 0, and a modified Newton-Raphson approach with

quasi-Newton modifications of the stiffness matrix are combined
to obtain the second orthogonality condition between the current
displacement iteration and internal force increment Dqi

j � dui
j ¼ 0.

This version of the method was successfully used by researchers
investigating shell elements in a geometrically nonlinear analysis
[110].

Kouhia [99] presented a stabilized version of the original ORP
by relaxing the orthogonality constraint near displacement limit
points. Similar to the approach to unify the ORP into the N þ 1ð Þ
space, the load increment factors, ni

j, were modified such that they
would be additive within an incremental step. Near displacement
limit points the load factor is

dki
j ¼

Dui
j � ri

j�1

sign ui
j�1 � p

� �
ui

j�1

��� ��� pk k cosðDui
j;pÞ

��� ���þ s
(75)

where the following definition is used for the inner product:

cosða;bÞ ¼ a � b
ak k bk k (76)

and s is a dimensionless non-negative stabilization parameter that
can be related to the current stiffness parameter proposed by Ber-
gan et al. [1]. Hence, s should be large at displacement limit
points and small at load limit points. Kouhia [99] demonstrated
the improvement of the stabilized version over the original ORP
through numerical examples.

3.3 Incremental-Iterative Procedure in N 1 1 Space. The
incremental-iterative procedure is illustrated in Fig. 14. The flow
chart represents the operations performed on the jth iteration of
the ith incremental step. The diamond-shaped boxes are condi-
tional statements, and the computation of the load factor, indi-
cated by the shaded elliptical box, is unique for each algorithm, as
discussed in the previous sections.

4 Computational Implementation of the Unified

Schemes

Object oriented design principles and programming can be uti-
lized in the implementation of a unified solution scheme to pro-
vide a library that is flexible, extendible, and easy to understand.
Most existing nonlinear solution algorithms are associated with
large finite element software packages [62,111]. Modifying or
extending these packages for solving different nonlinear systems
of equations is not straightforward due the complexity of their
object oriented structure. Furthermore, the cost of the steep learn-
ing curve for new developers who wish to utilize these packages
tends to become discouragingly high with time. We aimed to
streamline that complexity presenting a simple and robust object-
oriented Cþþ library, called NLSþþ (Nonlinear Solver). The
library implements the nonlinear solution schemes discussed in
the previous section. Through the unified approach, the solvers
share a common interface and only vary in the computation of the
load parameter, which depends on the constraint equation of each
solver. This library is used to thoroughly test the solution schemes
and characterize their performance in capturing various
nonlinearities.

4.1 Class Hierarchy. The NLSþþ code is organized into
three distinct components: Model, Control, and LinearSolver. A
separate application class creates instances of these components
to execute the nonlinear analysis. Figure 15 shows the current
class organization adopted by the NLSþþ library.

4.1.1 Model Class. The purpose of Model class is to repre-
sent the problem to be solved. The primary function of the model
class is to compute information associated with the system of
equations, including the tangent matrix, and internal and external
load vectors.

The base class/derived class paradigm is used to interface with
the authors’ applications. One application is included in the code
distribution (see Sec. 5.3), and it includes model classes for bar
and beam elements and for a few nonlinear functions. This appli-
cation was used to generate the results presented in Sec. 5.

4.1.2 LinearSystem Class. The LinearSystem class is respon-
sible for solving a linear system of equations, i.e., Ax ¼ b. Hence,
the LinearSystem needs to be extensible in order to accommodate
different storage schemes (e.g., band, profile, sparse, etc.) and dif-
ferent numerical strategies (e.g., direct or iterative) for solving the
system of equations. Several algorithms and corresponding soft-
ware codes implementing linear solvers have appeared in recent
years; for example, PARDISO [112,113] and UMFPACK [114].
The user can easily extend LinearSystem by selecting the most
appropriate solver for his/her problem. Moreover, performance
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can be accelerated by using parallel processing, employing MPI-
based implementations; for example PETSc [60–62]. Finally, the
total runtime can be reduced for a sequence of linear systems that
change slowly by using iterative solvers based on recycling sub-
spaces of search spaces corresponding to previous solutions
[115,116].

4.1.3 Control Class. The Control class is the engine of the
NLSþþ code, in the sense that it is responsible for tracing the
equilibrium path by means of the incremental-iterative procedure.
Classes can be derived from the Control class to obtain the various
nonlinear solution schemes discussed in Sec. 3.2. The derived

class has one particular function that is not implemented in the
parent class, called Lambda, which computes the load factor for
each nonlinear scheme. Algorithm 1 shows the main steps of the
unified approach adopted here. For the sake of completeness, and
also to illustrate how the incremental load factor (dki

j) is obtained
(see Step 5 of Algorithm 1), the main steps of the Load Control
scheme are shown in Algorithm 2.

4.2 NLS11 Usage. The class hierarchy of NLSþþ was
designed in such way that the code would be executed by a simple
application class, requiring minimal work from the end user. That
application class of the NLSþþ client requires two input files: a
model file and an algorithm file. A finite element model file; for
example, contains the element type, finite element mesh (i.e.,
nodes, elements, connectivity), boundary conditions, applied loads
and displacements, and material properties. The algorithm file
contains the type of nonlinear solution scheme, initial control

Fig. 14 Incremental-iterative procedure of the unified scheme

Algorithm 1. Unified approach implemented in the Control class

1: for each iteration j of step i do

2: Get global tangennt stiffiness matrix (Ki
j) from Model class

3: Compute dui
pj

according to
dui

pj
 ðKi

j�1Þ
�1

p

4: Compute dui
rj

according to
dui

rj
 ðKi

j�1Þ
�1

ri
j�1

5: Compute dki
j according to the selected solution scheme

6: Update total load factor according to
ki  ki þ dki

j
7: Update external load vector according to

pi  pi þ dki
j�p

8: Update total displacement vector according to
ui  ui þ dki

jdui
pj
þ dui

rj

9: Get global internal force vector (q(ui)) from Model class
10: Compute unbalance load vector according to

ri
j  pi � qðuiÞ

11: if Convergence achieved then

12: Next step i / iþ 1
13: else

14: Next iteration j / jþ 1
15: end if

16: end for

Algorithm 2. Load factor implemented in the Load Control class

1: if (j¼¼ First Iteration) then

2: dki
j / Prescribed load increment

3: else

4: dki
j  0

5: end if

Algorithm 3. Application class implemented in the client of NLS11

1: Read model and algorithm input files
2: Create instance of Model class using data from model input file
3: Initialize instance of Model class
4: Create instance of LinearSystem class using data from algorithm input

file
5: Create instance of Control class using data from algorithm input file
6: Call solver function of Control class
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factor, additional algorithm inputs if necessary, maximum number
of steps and iterations, convergence tolerance, and type of linear
solver. Table 1 shows initial control factor required for each non-
linear solution scheme, and additional inputs required for a few of
the nonlinear solution schemes are given in Table 2.

After input files are read in the application class, new instances
of the above mentioned three classes (i.e., Model, LinearSystem,
and Control) are created, the incremental-iterative procedure is
called, and the analysis is executed. Algorithm 3 lists the steps of
the application class.

5 Numerical Results

The performance of the unified solution schemes in capturing
equilibrium paths of highly nonlinear problems is investigated.
The example problems, input parameters, and resulting nonlinear
equilibrium curves obtained with each scheme are given in the
next subsection. A range of input parameters for each scheme
(i.e., control factor, number of steps, scale factor) may result in
converging solutions for a particular problem. However, in gen-
eral, the input parameters reported in Sec. 5.1 are those that
adequately captured the entire equilibrium curves as they are
shown with the fewest number of steps. A qualitative evaluation
of the solvers is given in Sec. 5.2, which includes a discussion of
the sensitivity of the methods to the input parameters.

5.1 Applications and Examples. The ability of the solution
schemes to capture nonlinear behavior is tested with several
examples that feature a host of nonlinearities, including load and
displacement limit points and large fluctuations in stiffness. The
examples include two functions: one unidimensional and one two-
dimensional, and three structural systems: the von Mises truss,
twelve bar truss, and Lee frame.

Notice that the structural systems examined in this work are
comprised of discrete elements (e.g., bars and beams); for an
example, using continuum elements, the reader is referred to
Lages et al. [66] where an earlier version of the NLSþþ library
was used to solve a compression test problem involving strain
localization into a shear band. For additional examples of complex
nonlinear systems, see the texts by Reddy [7] and Belytschko
et al. [12], where in addition to structural systems, contact, fluid-
flow, and coupled problems are considered. Structural and
complex systems (involving smart structures) are analyzed and
compared to experimental results in the text by Pai [117]. Doyle
[118] places particular emphasis on stability of thin-walled struc-
tures, such as aircraft, ships, and containment vessels. Further-
more, numerical nonlinear analysis of composite materials,
including laminated plates and shells, is examined in the text by
Palazotto and Dennis [119].

Unless otherwise stated, all computation results were obtained
with a maximum of 40 iterations per step, a convergence tolerance
(see Fig. 14) of 10�4, and a standard, rather than modified, update
to the stiffness matrix. Additionally, the linearized version of the
ALCM was employed in all examples.

5.1.1 Unidimensional Function. The first example to test the
nonlinear solution schemes is a single-degree-of-freedom
problem. The function was used by Chen and Blandford [98]
to test their work increment control method. While the function
is very simple to incorporate into NLSþþ, it features some
complex nonlinearities including two load limit points and an
infinite slope; thus making it a good candidate to evaluate the
nonlinear solution schemes. The unidimensional function is
given by

f ðuÞ ¼ �3signðuÞjuj
1
3 þ 4uþ 1 (77)

where the sign function is defined as

signðxÞ ¼
�1 for x < 0

0 for x ¼ 0

1 for x > 0

8><
>: (78)

Fig. 15 NLS11 class organization

Table 1 Nonlinear solution scheme inputs

Algorithm Initial control factor

LCM Load increment, Dk
DCM Displacement increment, Du
ALCM Arc length increment, DS
WCM Work increment, DW
GDCM Load parameter, dk
ORP Iterative load increment, dk

Table 2 Additional inputs for selected nonlinear solution
schemes

Algorithm Additional parameter 1 Additional parameter 2

DCM Control degree of freedom Constant or variable
displacement

ALCM Constant or variable arc length n=a
ORP Initial incremental scale factor, b n=a
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The internal load is simply given by Eq. (77). The derivative of
Eq. (77) with respect to the degree of freedom, u, gives the tan-
gent stiffness, i.e.,

df

du
¼ � 1

juj
2
3

þ 4 (79)

Each solution scheme was applied to the unidimensional func-
tion; the results are shown in Fig. 16. As expected, the LCM does
not capture the full behavior at the load limit points. When the
load factor reaches the first local maximum of 2, the method con-
tinues to increase load, therefore snapping through the softening
behavior and only capturing stiffening behavior.

The remainder of the nonlinear solution schemes fully capture
the behavior, which is expected because all of the methods are ca-
pable of capturing load limit points. It should be noted that meth-
ods that have difficulty near displacement limit points (i.e.,
displacement control method and work control method) were able
to capture the full behavior of this example, because even though
there is a vertical tangent at u ¼ 0, there is no snap-back.

The parameters adopted in each algorithm and resulting behav-
ior are given in Table 3. It should be noted that a relatively small
control factor and large number of steps were required for the
ALCM. There is very small change in the displacement corre-
sponding to a very large change in the load near the vertical tan-
gent. Other methods that increment the load and displacement
independently (i.e., WCM, GDCM, ORP) can recover the curve
between the maximum and minimum load with very few steps.
However, the step size in the constant update arc length control

method is defined by an arc of the same radius at every step, so
the method cannot make large jumps in either load or displace-
ment in one step. The tolerance was also adjusted to 10�1 to allow
for the largest possible step size while still recovering the correct
solution path.

5.1.2 Two-Dimensional Function. The next example is a
function of two variables whose nonlinearity includes load and
displacement limit points in both degrees of freedom. The prob-
lem is given by a vector of external and internal forces [120],
shown below

p ¼ 40

15


 �
(80)

qðuÞ ¼
10u1 þ 0:4u3

2 � 5u2
2

0:4u3
1 � 3u2

1 þ 10u2

 !
(81)

The derivative of the internal force vector in Eq. (81) with respect
to the degrees of freedom, u1 and u2, gives the components of the
tangent stiffness matrix

Kij ¼
@qi

@uj
(82)

KðuÞ ¼
10 1:2u2

2 � 10u2

1:2u2
1 � 6u1 10

" #
(83)

The equilibrium curves traced by each of the nonlinear solution
schemes are shown in Fig. 17. The labels indicate the point where
the method failed to accurately capture the equilibrium path. As
expected, the LCM fails at the first load limit point, the DCM with
either degree of freedom as the control fails at the first displace-
ment limit point in the corresponding degree of freedom, and the
variable DCM, ALCM, and GDCM capture the full equilibrium
path. The WCM and ORP have difficulties in the first degree of
freedom when the behavior of the system changes rapidly via a

Fig. 16 Unidimensional function results

Table 3 Summary of the unidimensional function example

Method Max. steps Control factor Scale factor Behavior

LCM 50 0.08 n=a Snaps through
DCM 100 0.02 n=a Fully converged
ALCM* 325 0.02 n=a Fully converged
WCM 95 0.001 n=a Fully converged
GDCM 60 0.1 n=a Fully converged
ORP 55 1.0 0.1 Fully converged
Convergence
Tolerance¼ 0.1

Fig. 17 Solution to the two-dimensional function example;
labels indicate where the solution schemes failed. LCM fails at
the first load limit point, the DCM fails at the displacement limit
point in the degree of freedom corresponding to the control,
the WCM and ORP fail near the first displacement limit point,
and the variable DCM, ALCM, and GDCM capture the full equi-
librium path.
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load limit point followed immediately by a displacement limit
point; accordingly, both methods fail in this area.

In this example, more explanation will be given to the behavior
of the LCM and various versions of the DCM. First, the failure
point of the LCM is shown at the first load limit point in Fig. 17
because the equilibrium path is not accurately captured beyond
this point. The method actually snapped through at the first limit
points on each curve and diverged at the next load limit point
encountered, as shown in Fig. 18. The snap through behavior is
expected because the load continues to increase after the initial
load limit points; hence the solution scheme was able to converge
to the next points. Next, a displacement limit point occurs in the
second degree of freedom, however since the load is still increas-

ing, the load control method captured this behavior. Divergence
occurred at the next load limit point in the second degree of free-
dom. Snap through behavior could not have occurred because the
load only decreases after this point.

Each degree of freedom was selected as the control when the
DCM was employed, and the labels in Fig. 17 indicate the result-
ing failure points. When the first degree of freedom, u1, is the con-
trol, the equilibrium path is traced until the displacement limit
point in the first degree of freedom is reached. Notice that the dis-
placement limit point in the second degree of freedom is captured;
this is expected because the displacement is only incremented for
the first degree of freedom. When the second degree of freedom,
u2, is the control however, the solution scheme diverges much ear-
lier at first the displacement limit point in the second degree of
freedom.

The variable DCM captured the entire equilibrium path, shown
in Fig. 17, because the control degree of freedom changes auto-
matically when a displacement limit point is approaching in that
degree of freedom. The control displacements and snap-back loca-
tions are listed in Table 4 and correspond to the labels in Fig. 19.
From steps 1–73 the control displacement is u1, and a displace-
ment limit points is encountered at step 58 in degree of freedom
u2 (Label 1 in Fig. 19). At step 74, the control displacement
changes to u2, and snap-back is captured in degree of freedom u1

at step 158 (Label 2 in Fig. 19). The final change is control degree
of freedom occurs in step 217, after which point two snap-back
points are passed in degree of freedom u2 (Labels 3 and 4 in Fig.
19). These automatic changes in the control degree of freedom
allow the method to recover the entire solution path. Unless other-
wise noted, the variable DCM will be used in the remainder of the
numerical examples.

Table 5 shows the parameters used and behavior captured for
this two degree of freedom example. Notice in the table that the
number of steps used for the arc length control method and the
generalized displacement control method are similar, but the con-
trol factor for the arc length control method is five times greater.
However, recall from Table 1 that the control factors represent
different quantities for each scheme and cannot be directly com-
pared. In the generalized displacement control method the control
factor is only used once at the first iteration of the first step, and
the load factor is adjusted by the algorithm for all subsequent
steps and iterations. The control factor in the arc length control
method, however, is used once at every step.

5.1.3 von Mises Truss. The von Mises truss is a two-degree
of freedom system consisting of two prismatic bar (truss) elements
loaded indirectly through a spring of stiffness C, as shown in Fig.
20. It has been studied by several authors, including Bergan [121],
Bazant and Cedolin [122], and Yang and Sheih [4], among others.
Large displacements and rotations (geometric nonlinearity) are
accounted for through the Total Lagrangian (TL) formulation, in
which static and kinematic variables refer to the original unde-
formed configuration, with rotated engineering strain measure

Fig. 18 Solution to the two-dimensional function example
using the LCM. The method snaps through the first load limit
point and fails at the second load limit points.

Table 4 Summary of the variable DCM for the two-dimensional
function

Step Control displacement Snap-back

1–73 u1 Step 58 in u2 (Label 1 in Figure 18)
74–216 u2 Step 158 in u1 (Label 2 in Figure 4)
217–445 u1 Step 266 in u2 (Label 3 in Figure 4)

Step 398 in u2 (Label 4 in Figure 4)

Fig. 19 Solution to the two-dimensional function example
using the variable DCM. The labels indicate the locations where
the control degree of freedom changes automatically.

Table 5 Summary of the two-dimensional function example

Method
Max.
steps

Control
factor

Scale
factor Behavior

LCM 100 0.04 n=a Failed at load limit point
DCMs;1 200 0.05 n=a Failed at displacement limit point
DCMs;2 200 0.02 n=a Failed at displacement limit point
DCMv;1 445 0.1 n=a Fully converged
DCMv;2 190 0.1 n=a Fully converged
ALCM 700 0.05 n=a Fully converged
WCM 300 0.01 n=a Failed at displacement limit point
GDCM 650 0.01 n=a Fully converged
ORP 100 0.1 1.0 Failed at displacement limit point

Note: s;v Standard, Variable; 1,2 Fixed control coordinate: u1;u2.
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[14] given by e ¼ Ldeformed � Lð Þ=L. Two constitutive relations
are considered in the problem. The first is the linear Hooke’s law;
thus material nonlinearity is not present; in the second, material
nonlinearity is considered by adopting an elastic/perfect plasticity
model (see Appendix). Although very simple, this example can be
used to demonstrate the ability of the nonlinear solution algo-
rithms to capture both load and displacement limit points, as well
as sudden changes of direction in the equilibrium paths. In both
cases the following values are used (consistent units are assumed):

Fig. 20 von Mises truss schematic

Fig. 21 Equilibrium paths for the von Mises truss with varying
spring stiffness, C

Fig. 22 Solution to the von Mises truss without snap-back;
labels indicate where the solution schemes failed. LCM failed at
the first load limit point, WCM failed at the first displacement
limit point, and the variable DCM, ALCM, GDCM, and ORP cap-
tured the full equilibrium path.

Fig. 23 Solution to the von Mises truss with snap-back; labels
indicate where the solution schemes failed. LCM failed at the
first load limit point, WCM failed at the first displacement limit
point, and the variable DCM, ALCM, GDCM, and ORP captured
the full equilibrium path.

Fig. 24 Solution to the von Mises truss example with snap-
back using the DCM with u1 as the control displacement. The
method snaps through at the displacement limit point and does
not capture the full behavior.

Table 6 Summary of the von Mises truss example

Method C
Max.
steps

Control
factor

Scale
factor Behavior

LCM 0.02 100 0.001 n=a Fails at load limit point
DCMs;1 0.02 100 0.1 n=a Snaps through displacement

limit point
DCMv;1 0.02 100 0.3 n=a Fully converged
ALCM 0.02 100 0.17 n=a Fully converged
WCM 0.02 100 0.002 n=a Fails at displacement

limit point
WCM 0.04 50 0.001 n=a Fully converged
GDCM 0.02 100 0.0025 n=a Fully converged
ORP 0.02 190 0.0025 0.5 Fully converged
ORP 0.04 65 0.005 1.0 Fully converged

Note: s;v Standard, Variable; 1,2 Fixed control coordinate: u1; u2.
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H ¼ 5:0, L ¼ 10:0, external load¼f1:0; 0:0gT
. The reader is

directed to Ref. [123] for more information on the derivation of
the finite element equations for this and the remaining examples.

von Mises Truss: Elastic Case: The elastic material properties
of the von Mises truss are EA ¼ 1:0, where consistent units are
assumed. The behavior of this structure depends strongly on the
stiffness of the spring, C, (see Fig. 21), as snap-back behavior will
only occur if it is below the critical value, Ccr ¼ 0:030940 in this
case (see Appendix for derivation). The critical spring stiffness
can be obtained through a straight forward calculation using the
stationary potential energy of the system. C was chosen to be 0.02
to obtain snap-back behavior, and 0.04 for no snap-back in the fol-
lowing numerical examples.

Figures 22 and 23 show the nonlinear behavior captured by
each of the solution schemes for the system without and with
snap-back, respectively. In both cases, the LCM fails at the load
limit point, while the variable DCM, ALCM, GDCM, and ORP
capture the full path. The WCM traces the entire equilibrium path,
but fails when at the displacement limit point when snap-back is

present. This behavior is expected from the WCM because the
snap-back occurs in the major forcing direction. The external load
vector contains only one load, and since snap-back occurs in the
loading direction, the displacement increment in that direction is
zero. The denominator of the load parameter in Eq. (29) becomes
unbounded and the method diverges.

Analogous to the snap-through behavior with respect to increas-
ing load seen with the LCM in unidimensional and two-
dimensional examples, the standard DCM exhibits snap-through
behavior with respect to increasing displacement. When snap-
back is present, the standard DCM can only capture the full equi-
librium path when degree of freedom u2 is the control because
there is no snap-back in this degree of freedom. When u1 is cho-
sen as the control displacement, the method snaps through at the
displacement limit point and does capture the snap-back behavior,
as illustrated in Fig. 24.

Although the ORP captures the full equilibrium paths for both
the snap-back and no snap-back scenarios, the parameters are
quite different between the two cases. The method proves to be

Fig. 25 Deformed shape of the von Mises truss with material and geometric nonlinearity
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sensitive to input parameters and to the system configuration
because a smaller control factor, smaller scale factor, and large
number of steps are required in the system with snap-back behav-
ior than the system without. Table 6 provides a summary of all
parameters and the resulting behavior of each algorithm.

von Mises Truss: Elasto-Plastic Case: Material nonlinearity is
considered in the von Mises truss by adopting an elasto-plastic

constitutive model [124], with elastic modulus, E, and initial flow
stress, rY . We consider the case of perfect plasticity, in which the
flow stress is varied to explore different structural responses.

The solution has four stages, which are derived analytically in
the Appendix and are shown in Fig. 25 for the case of C¼ 0.02
and rY ¼ 0:05. The first stage is equal to the elastic solution; it
starts at the undeformed configuration (Fig. 25(c)) and stops when
the flow stress is reached in compression (Fig. 25(d)). The load
versus displacement and stress versus strain trajectories for stage
one are shown as the solid lines from labels “0” to “1” in Figs.
25(a) and 25(b), respectively. The second stage is a plateau (plas-
tic) and it continues from the last point in stage one until u2 ¼ H
(Figs. 20 and 25(e)). The load versus displacement and stress

Fig. 26 Analytical solution and solution obtained with the GDCM for the elasto-plastic case of
the von Mises truss: (a) C 5 0.04 and rY ¼ 0:05; (b) C 5 0.04 and rY ¼ 0:1; (c) C 5 0.02 and
rY ¼ 0:05; (d) C 5 0.02 and rY ¼ 0:1

Fig. 27 Solution to the elasto-plastic case of the von Mises
truss; labels indicate with the solution schemes failed.
rY ¼ 0:05, C ¼ 0:02.

Table 7 Summary of the von Mises truss: Elasto-plastic case
with rY ¼ 0:05 and C ¼ 0:02

Method Max. steps Control factor Scale factor Behavior

LCM 100 0.001 n=a Fails at load limit point
DCMv;1 150 0.3 n=a Fully converged
ALCM 350 0.2 n=a Fully converged
WCM 80 0.001 n=a Fully converged
GDCM 180 0.005 n=a Fully converged
ORP 775 0.0025 0.5 Fully converged

Note: v Variable; 1 Fixed control coordinate: u1.
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versus strain trajectories for stage two are shown as the dashed
lines from labels “1” to “2” in Figs. 25(a) and 25(b), respectively.
The third stage is elastic and it continues from the last point in
stage two until the flow stress is reached again, this time in tension
(Fig. 25(g)). The load versus displacement and stress versus strain
trajectories for stage three are shown as the solid lines from labels
“2” to “4” in Figs. 25(a) and 25(b), respectively. Notice that the
deformed configuration shown in Fig. 25(f) occurs during stage
three. The fourth stage is again a plateau and it continues from the
last point in stage three. The deformed configuration shown in
Fig. 25(h) corresponds to the load and displacements at label “5”
in Fig. 25(a). In this final stage, the equilibrium trajectories (u1

versus P and u2 versus P) are limited by the flow stress; hence
there is a horizontal asymptote at P ¼ 2ArY (see Fig. 26). In order
to ensure that the first plasticity stage occurs, the initial flow stress
must be less than the stress that that occurs at the beginning of
stage three (i.e., when u2 ¼ H), otherwise the behavior will be
entirely elastic until the flow stress is reached in tension. Addi-
tionally, depending on the value of the flow stress, the first plastic
stage will either occur before or after the first load limit point of
the elastic stage.

For the numerical study, the material properties are varied to
illustrate different behavior of the von Mises truss with the elasto-
plastic constitutive relation. The spring stiffness is either 0.04 or
0.02 to achieve no snap-back and snap-back in the elastic solution,
respectively. The flow stress is either 0.05 or 0.1 so that the first
plastic stage is reached before or after the load limit point of the
elastic solution, respectively. The analytical solution and the solu-
tion obtained with the GDCM for C¼ 0.04 and rY ¼ 0:05 are

shown in Fig. 26(a), for C¼ 0.04 and rY ¼ 0:1 in Fig. 26(b), for
C¼ 0.02 and rY ¼ 0:05 in Fig. 26(c), and for C¼ 0.02 and
rY ¼ 0:1 in Fig. 26(d). It should be noted that every third con-
verged point obtained with the GDCM is plotted in Fig. 26. This
figure demonstrates good agreement between the analytical solu-
tion and the solutions obtained with the unified schemes, where
the GDCM is used as a representative scheme. The other methods
were also tested for all cases, and good agreement with the analyt-
ical solution was achieved. Results for all methods are shown for
the case where C¼ 0.02 and rY ¼ 0:05 in Fig. 27. All methods
except the LCM captured the entire equilibrium path; as expected,
the LCM failed at the first load limit point. A summary of the
input parameters used to obtain the results in Fig. 27 is shown in
Table 7.

5.1.4 Twelve-Bar Truss. This example consists of a 12-bar
truss structure as illustrated in Fig. 28(a). It has been studied by

Fig. 28 Twelve-bar truss schematic (a) 3D view, (b) x-z view, (c)
y-z view

Fig. 29 Twelve bar truss results: Markers indicate where the
solution schemes failed. LCM failed at the first load limit point,
WCM failed at the first displacement limit point, and the variable
DCM, ALCM, GDCM, and ORP captured the full equilibrium
path. (a) DOF u1, (b) DOF u2, (c) DOF u3.
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Yang and Leu [125], Yang et al. [126], and Krenk and Hededal
[109], who described the deformation behavior of the structure in
detail, among others. This example features highly nonlinear
behavior: the load changes direction eight times and the structure

experiences several very large changes in stiffness through the
load history.

The material properties of the twelve bar truss are assigned as
EA ¼ 1:0, and the external load vector is given by the reference
load vector, f0:0; 0:75; 0:25gT

. Like the von Mises truss example,
the nonlinear prismatic bar elements, the TL formulation, and the
rotated engineering strain are used to include effects of geometric
nonlinearity. The constitutive relationship is linear; thus material
nonlinearity is not considered here. For the present work, double
symmetry has been considered and; therefore, the deformations of
the structure can be described by three displacement components
(u1, u2, and u3) as shown in Figs. 28(b) and 28(c).

The computational results are shown in Fig. 29. The LCM
failed at the first load limit point, the WCM failed near snap-back
points in the loading directions, and the ALCM, GDCM and ORP
captured the full behavior. From the displacement-displacement
curves shown in Fig. 30, it is clear that no linear combination of
the displacement components increases monotonically; therefore,
a traditional displacement control method could not capture the
full behavior [109]. The variable DCM, however, can and does
capture the full equilibrium path, as indicated in Fig. 29. A sum-
mary of the parameters and resulting behavior for each method is
shown in Table 8.

5.1.5 Lee Frame. The Lee frame is a well-known example
for evaluating nonlinear solvers, for which an analytical solution
exists [127]. Schweizerhof and Wriggers [128] compared updated
and spherical plane path following schemes using the Lee frame
discretized with beam elements. Parente and Vaz [129] used this
example discretized with quadratic isoparametric 8-node elements
for shape design sensitivity analysis for nonlinear structures.

Deformation of the structure is characterized by large rigid
body displacements and rotations resulting in instability. The
behavior is highly nonlinear with two load limit points and snap-
back behavior (i.e., displacement limit point). The Lee frame,
shown in Fig. 31, was discretized with 10 beam elements, each
with the following properties (consistent units are assumed):
EA ¼ 4320, GJ ¼ 2160, EI ¼ 1440. The deformed shape at dif-
ferent points during the incremental-iterative is illustrated in
Fig. 32. The TL formulation is used to describe the nonlinear

Fig. 30 Displacement-displacement curves for the twelve bar
truss (a) u2 versus u1, (b) u1 versus u3, (c) u2 versus u3

Table 8 Summary of the twelve bar truss example

Method
Max.
steps

Control
factor

Scale
factor Behavior

LCM 100 0.001 n=a Failed at load limit point
DCMv;1 465 0.01 n=a Fully converged
ALCM 165 0.05 n=a Fully converged
WCM 100 0.0002 n=a Failed at displacement limit point
GDCM 115 0.025 n=a Fully converged
ORP 650 0.0025 2 Fully converged

Note: v Variable, 1 Fixed control coordinate: u1.

Fig. 31 Lee frame schematic
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beam elements, which are capable of resisting longitudinal and
transverse loads applied between supports as well as large rota-
tions. Only geometric nonlinearity is considered, as a linear con-
stitutive relationship is assumed.

The equilibrium paths for the Lee frame example are shown in
Fig. 33, and the results are also summarized in Table 9. The non-
linear solution schemes generally behave as expected and as they
did in the previous examples. The LCM only captured behavior
up to the first load limit point. The WCM failed at the snap-back
point in degree of freedom u2, which is also the loading direction.
The variable DCM, ALCM, GDCM, and ORP captured the full
behavior. A summary of the input parameters used in this example
is given in Table 9.

5.2 Evaluation of Solution Schemes. The robustness and
sensitivity to input parameters of the methods is investigated in
the section. The parameters for all of the schemes were varied

then applied to the problems examined in the previous subsection.
The resulting behavior is summarized and the schemes are quali-
tatively evaluated here.

First, it is well known that the LCM cannot capture the equilib-
rium path beyond load limit points. The method is inherently sen-
sitive to the control parameter, which is the load increment. When
the load parameter exceeds the first local external load maximum
the method will either diverge or snap through the unstable
behavior.

The variable DCM successfully captured the equilibrium solu-
tion with a control factor of 0.001, 0.01, or 0.1 for all examples in
the previous section. However, this method will not be successful
for problems with a single degree of freedom experiencing snap-
back, and will have difficulty for problems where snap-back
occurs in multiple degrees of freedom simultaneously.

The ALCM generally captures the entire equilibrium curve for
the problems studied here when the control factor was selected
between 0.001 and 1.0, and the value of the control factor may

Fig. 32 Deformed shape of the Lee frame corresponding to (b) label 1, (c) label 2, (d) label 3, (e)
label 4, (f) label 5 in (a) load factor versus displacement curve for DOFs u1 and u2 (see Fig. 31)
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even increase for problems with relatively high maximum dis-
placements. For example, the maximum displacement in the 12-
bar truss problem is about 2.2 and the ALCM captured the entire
solution path with a control factor between 0.001 and 0.1. How-
ever, in the Lee frame problem the maximum displacement is
around 95, and the control factor for the ALCM could be as high
as 5.

The WCM is able to capture the entire solution path for prob-
lems that do not feature snap-back behavior; however, a fairly
small control factor is required. The method consistently diverges
at displacement limit points, despite modifications to the input
parameter.

The GDCM generally captures the entire equilibrium curve for
the problems studied here when the control factor was selected
between 0.001 and 0.01. It should be noted that the GDCM takes
a fewer number of steps for a given control factor compared to
other schemes. For example, the GDCM required 234 steps to
capture the equilibrium curve of the von Mises truss example with
a control factor of 0.001. The variable DCM and the ALCM
required 30,000 and 35,000 steps, respectively, for the same value
of the control factor. When the control factor for the von Mises
truss problem was chosen as 0.1 the variable DCM and the
ALCM required 285 and 350 steps, respectively, but the GDCM
could not accurately capture the solution path because too few
steps were taken. Therefore, a smaller control is generally prefera-
ble for this method, but this does not imply that a large number of
steps is required.

The ORP is the most sensitive of the unified schemes to the
input parameters for the problems investigated in this work. Scale
factors values ranging between 0.01 and 1.0 and control factors
ranging between 0.001 and 1.0 were tested for all problems in the
previous section. Generally, a smaller control factor and scale
factor yields converged results; however, the number of steps
required increases proportionally as the factors decrease. Addi-
tionally this trend was not uniform across all examples run in
the previous section. To illustrate the sensitivity of the ORP to
the input parameters, the Lee frame example is revisited.
Figure 34 shows the different results obtained for the ORP
depending on the selection of input parameters, given in Table
10. The final converged solution was obtained with a relatively
small control factor and larger scale factor, which is not a trend
that is observed for different problems. Additionally, 51,000
steps were required to capture the equilibrium path, which is 600
times more steps than was required with the ALCM, for
example.

5.3 Distribution of NLS11 Source Code. The entire
NLSþþ library and a tutorial are available for download3. A
screen shot of the website is shown in Fig. 35.

For Microsoft Visual Studio users, the code and Visual Studio
project (*.prj) and solution (*.sln) files are available for download.
In addition, the stand-alone source and library files are also avail-
able. The tutorial includes a detailed explanation of the code orga-
nization, which is meant to be supplementary to the information
provide in Sec. 4. Next, step-by-step instructions for compiling
and running the code using Visual Studio are provided. The input
files used to generate the results in the previous section are distrib-
uted, along with a guide for the user to create his/her own set of
input files. Finally, simple MATLAB codes, which plot the load ver-
sus displacement curves, are available.

Table 9 Summary of Lee frame example

Method
Max.
steps

Control
factor

Scale
factor Behavior

LCM 100 0.05 n=a Failed at load limit point
DCMv;1 100 0.1 n=a Fully converged
ALCM 80 5 n=a Fully converged
WCM 300 0.004 n=a Failed at first displacement limit point
GDCM 80 0.3 n=a Fully converged
ORP 51,000 0.005 0.1 Fully converged

Note: v Variable, 1 Fixed control coordinate: u1.

Fig. 34 Lee frame results using the ORP with different values
for the control factor, dk, and scale factor, b, which are indicated
by the marker labels

Table 10 Behavior of the ORP applied to the Lee frame
example

Control factor Scale factor Behavior

0.1 0.1 Failed at first load limit point (750 steps)
0.1 0.01 Failed at first displacement

limit point (13,676 steps)
0.01 0.2 Failed at second displacement

limit point (9,235 steps)
0.005 0.1 Fully converged (51,000 steps)

Fig. 33 Lee frame results: Markers indicate where the solution
schemes failed. LCM failed at the first load limit point, WCM
failed at the first displacement limit point, and the variable
DCM, ALCM, GDCM, and ORP captured the full equilibrium
path.

3See www.ghpaulino.com/NLS_tutorial.html for download information.
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6 Conclusions

In this paper, we review the formulation and application of nonlin-
ear solution schemes with an emphasis on those schemes unified into
the object-oriented library called NLSþþ. A variety of schemes are
cast into the N þ 1ð Þ dimensional space then tested and evaluated
with functions and structural systems exhibiting strong nonlinearities.
The entire NLSþþ library and a tutorial are available for download.4

A brief review of other nonlinear solution techniques is also pre-
sented, however the references in this area are not exhaustive.

The full potential of NLSþþ to capture highly nonlinear behav-
ior can be achieved by integrating it into a general finite element
analysis package. The software, TopFEM, is an object oriented fi-
nite element analysis code that utilizes TopS [130], a topological
data structure for representing finite element meshes. At present it
can represent large scale problems and can be used for complex
analysis including topology optimization and dynamic fracture simu-
lation. Integration of NLSþþ into TopFEM would therefore greatly
improve the capabilities of both object-oriented analysis codes.

Another area of further investigation lies in implementing an
efficient linear solver, which is utilized in the incremental-
iterative procedure. Iterative solvers, which use successive
approximations beginning from an initial estimate, may be the
most efficient and robust in the context of the NLSþþ. The con-
jugate gradient method for example, is very efficient for large
problems; however, it is only applicable to symmetric, positive-
definite systems [131]. Other optimization based solvers applica-

ble to nonsymmetric matrices, such as the biconjugate gradient
method or the generalized minimum residual method [132], may
be explored for NLSþþ in order to represent a larger class of
problems [116,133].
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Appendix

In this Appendix, we present key equations in the derivation of
the analytical solution for the von Mises truss explored in Sec.
5.1.3.

A.1 Equilibrium Equations of the von Mises Truss. We
use the principle of virtual work to obtain the analytical solution
of the von Mises truss

dWint ¼ dWext (A1)

2ALrdeþ C u1 � u2ð Þ du1 � du2ð Þ ¼ Pdu1 (A2)

Fig. 35 Screen shot (shot of www.ghpaulino.com=NLS_tutorial.html)

4See www.ghpaulino.com/NLS_tutorial.html.
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The strain measure chosen for these examples is the so-called
rotated engineering strain [14]

e ¼ Ldeformed � L

L
(A3)

where

Ldeformed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 2Hu2 þ u2

2

q
(A4)

and

de ¼ u2 � H

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 2Hu2 þ u2

2

p du2 (A5)

Then the equilibrium equations are

2Ar
u2 � Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � 2Hu2 þ u2
2

p � C u1 � u2ð Þ ¼ 0 (A6)

and

C u1 � u2ð Þ ¼ P (A7)

To trace the equilibrium paths, P versus u1 and P versus u2, these
curves can be parametrized by u2. The equilibrium equations are
combined, which yields

P ¼ 2Ar
u2 � Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � 2Hu2 þ u2
2

p (A8)

and

u1 ¼
P

C
þ u2 (A9)

A.2 Elastic Case of the von Mises Truss. For the elastic
case of the von Mises truss, the equilibrium equation (Eq. (91)) is
obtained using the relation

r ¼ Ee (A10)

A.2.1 Critical Spring Stiffness of the von Mises Truss. The
stiffness of the spring in the von Mises truss dictates the overall
behavior of the system. Stiffness below a critical value results in
snap back behavior in the u1 component, while values above do
not. The critical case is realized when the tangent line to the P
versus u1 is vertical (i.e., @u1=@P ¼ 0), and when u1 ¼ u2 ¼ H,
and P ¼ 0. Then the expression for the critical value of the spring
stiffness is

Ccr ¼ 2
EA

L

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � H2
p � 1


 �
(A11)

and values from Sec. 5.1.3 give the critical spring stiffness for the
configuration under investigation, Ccr ¼ 0:03094.

A.3 Elastic-Plastic Case of the von Mises Truss. The ana-
lytical solution of the von Mises truss is based on the equilibrium
equations derived in Sec. A.1. The stages of the solution and limit-
ing/critical values of the flow stress material property are derived
and discussed in the following subsections.

A.3.1 Stages of the Elasto-Plastic Solution. The stress-strain
behavior of the elasto-plastic von Mises truss is comprised of two
straight (linear) stages and two plateau stages (see Fig. 25(b)). A
subscript in parentheses references the stage.

Stage 1: Elastic Compressive Stage: The first stage is equal to
the elastic solution; therefore the r ¼ Ee. Stage 1 starts at the
undeformed configuration (i.e., u1 ¼ u2 ¼ 0) and stops when
the flow stress is reached in compression (i.e., when r ¼ �rY).
The limit on u2 for stage 1 must be less than H, and is

u
ð1Þ
2max ¼ H 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L

H


 �2 rY

E

� �
2� rY

E

� �s2
4

3
5 (A12)

Stage 2: Plateau Compressive Stage: The second stage is a pla-
teau and the bars are in compression; therefore r ¼ �rY . Stage 2
continues from the last point in stage 1 until the structure is flat, i.e.,

u
ð2Þ
2max ¼ H (A13)

Stage 3: Elastic Unloading/Reloading stage: The third stage is
again elastic, and the stress is r ¼ E e� eminð Þ � rY , where emin is
strain at the end of stage 2, i.e., when u2 ¼ H

emin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

L


 �2
s

� 1 (A14)

Stage 3 continues from the last point in stage 2 until the flow
stress is reached again, this time in tension. The limit on u2 for
stage 3 is found by equating r ¼ E e� eminð Þ � rY with r ¼ rY ,
which results in

u
ð3Þ
2max ¼ H þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2rY

rY

E
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

L


 �2
s" #
E

vuuuut
(A15)

Stage 4: Plateau Tensile Stage: The fourth stage is a plateau,
but now the bars are in tension, so r ¼ rY . In this final stage there
is a horizontal asymptote at Pmax ¼ 2ArY .

A.3.2 Limits on the Flow Stress. The flow stresses of the
elasto-plastic von Mises truss in Sec. 5.1.3 are selected such that
the material will reach the flow stress while the bars are in com-
pression (i.e., before the structure reaches the plane configura-
tion). Hence, the flow stress must be less than the maximum stress
of the elastic stage, which occurs when u2 ¼ H.

rY;max ¼ E 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� H

L


 �2
s2

4
3
5 (A16)

For the values given in Sec. 5.1.3, rY;max ¼ 0:1340. Addition-
ally, depending on the value of the flow stress, the first plateau
stage will start before or after the load limit point of the elastic so-
lution, respectively. Therefore, the critical flow stress is equal to
the stress at the load limit point

rcr ¼ E 1� L2 � H2ð ÞL½ �
1
3

L

8<
:

9=
; (A17)

For the values given in Sec. 5.1.3, rcr ¼ 0:0914.

References
[1] Bergan, P. G., Horrigmoe, G., Brakeland, B., and Soreide, T. H., 1978,

“Solution Techniques for Non-Linear Finite Element Problems,” Int. J.
Numer. Methods Eng., 12(11), pp. 1677–1696.

[2] Mondkar, D. P., and Powell, G. H., 1978, “Evaluation of Solution Schemes for
Nonlinear Structures,” Comput. Struct., 9(3), pp. 223–236.

[3] Clarke, M. J., and Hancock, G. J., 1990, “A Study of Incremental-Iterative
Strategies for Non-Linear Analyses,” Int. J. Numer. Methods Eng., 29(7), pp.
1365–1391.

040803-24 / Vol. 64, JULY 2011 Transactions of the ASME

Downloaded 31 Oct 2012 to 130.126.242.107. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://dx.doi.org/10.1002/nme.1620121106
http://dx.doi.org/10.1002/nme.1620121106
http://dx.doi.org/10.1016/0045-7949(78)90106-2
http://dx.doi.org/10.1002/nme.1620290702


[4] Yang, Y.-B., and Shieh, M.-S., 1990, “Solution Method for Nonlinear Prob-
lems With Multiple Critical Points,” AIAA J., 28(12), pp. 2110–2116.

[5] Yang, Y.-B., and Kuo, S.-R., 1994, Theory and Analysis of Nonlinear Framed
Structures, Prentice-Hall PTR, Englewood Cliffs, NJ.

[6] Rezaiee-Pajand, M., Tatar, M., and Moghaddasie, B., 2009, “Some Geometri-
cal Bases for Incremental-Iterative Methods,” Int. J. Eng. Trans. B: Appl.,
22(3), pp. 245–256.

[7] Reddy, J. N., 2004, An Introduction to Nonlinear Finite Element Analysis,
Oxford University Press, New York.

[8] Zakharov, Y. V., Okhotkin, K. G., and Skorobogatov, A. D., 2004, “Bending
of Bars Under a Follower Load,” J. Appl. Mech. Tech.. Phys., 45(5), pp.
756–763.

[9] Riks, E., 1979, “An Incremental Approach to the Solution of Snapping and
Buckling Problems,” Int. J. Solids Struct., 15(7), pp. 529–551.

[10] Crisfield, M. A., 1981, “A Fast Incremental/Iterative Solution Procedure That
Handles Snap-Through,” Comput. Struct., 13(1–3), pp. 55–62.

[11] Bathe, K. J., 1996, Finite Element Procedures, Prentice-Hall, Upper Saddle
River, NJ.

[12] Belytschko, T., Liu, W., and Moran, B., 2000, Nonlinear Finite Elements for
Continua and Structures, John Wiley & Sons, Inc., West Sussex, England.

[13] Bonet, J., 1997, Nonlinear Continuum Mechanics for Finite Element Analysis,
Cambridge University Press, New York.

[14] Crisfield, M. A., 1991, Non-Linear Finite Element Analysis of Solids and
Structures. Volume 1: Essentials, John Wiley & Sons, Inc., West Sussex,
England.

[15] Crisfield, M. A., 1997, Non-Linear Finite Element Analysis of Solids and
Structures. Volume 2: Advanced Topics, Wiley, John & Sons, Inc., West Sus-
sex, England.

[16] Mang, H. A., Hofinger, G., and Jia, X., 2011, “On the Interdependency of Pri-
mary and Initial Secondary Equilibrium Paths in Sensitivity Analysis of Elas-
tic Structures,” Comput. Methods Appl. Mech. Eng., 200(13–16), pp.
1558–1567.

[17] Adomian, G., 1988, “A Review of the Decomposition in Applied Math-
ematics,” J. Math. Anal. Appl., 135(2), pp. 501–544.

[18] He, J.-H., 2000, “A Review on Some New Recently Developed Nonlinear An-
alytical Techniques,” Int. J. Nonlinear Sci. Numer. Simul., 1(1), pp. 51–70.

[19] He, J.-H., 2006, “Some Asymptotic Methods for Strongly Nonlinear Equa-
tions,” Int. J. Mod. Phys. B, 20(10), pp. 1141–1199.

[20] He, J.-H., 2006, “Addendum New Interpretation of Homotopy Perturbation
Method,” Int. J. Mod. Phys. B, 20(18), pp. 2561–2568.

[21] Babajee, D. K. R., and Dauhoo, M. Z., 2006, “An Analysis of the Properties of
the Variants of Newton’s Method With Third Order Convergence,” Appl.
Math. Comput., 183(1), pp. 659–684.

[22] Adomian, G., 1983, Stochastic Systems, Academic Press, New York.
[23] Adomian, G., and Rach, R., 1985, “On the Solution of Algebraic Equations by

the Decomposition Method,” J. Math. Anal. Appl., 105(1), pp. 141–166.
[24] Abbaoui, K., and Cherruault, Y., 1994, “Convergence of Adomian’s Method

Applied to Nonlinear Equations,” Math. Comput. Model., 20(9), pp. 69–73.
[25] Babolian, E., and Biazar, J., 2002, “Solution of Nonlinear Equations by Modi-

fied Adomian Decomposition Method,” Appl. Math. Comput. 132(1), pp.
167–172.

[26] Abbasbandy, S., 2003, “Improving Newton-Raphson Method for Nonlinear
Equations by Modified Adomian Decomposition Method,” Appl. Math. Com-
put., 145(2–3), pp. 887–893.

[27] Chun, C., 2006, “A New Iterative Method for Solving Nonlinear Equations,”
Appl. Math. Comput., 178(2), pp. 415–422.

[28] Darvishi, M. T., and Barati, A., 2007, “Super Cubic Iterative Methods to Solve
Systems of Nonlinear Equations,” Appl. Math. Comput., 188(2), pp.
1678–1685.

[29] Darvishi, M. T., and Barati, A., 2007, “A Third-Order Newton-Type Method
to Solve Systems of Nonlinear Equations,” Appl. Math. Comput., 187(2), pp.
630–635.

[30] Noor, M. A., and Noor, K. I., 2006, “Three-Step Iterative Methods for Nonlin-
ear Equations,” Appl. Math. Comput., 183(1), pp. 322–327.

[31] He, J.-H., 1999, “Homotopy Perturbation Technique,” Comput. Methods
Appl. Mech. Eng., 178(3–4), pp. 257–262.

[32] He, J.-H., 2000, “A Coupling Method of a Homotopy Technique and a Pertur-
bation Technique for Non-Linear Problems,” Int. J. Nonlinear Mech., 35(1),
pp. 37–43.

[33] He, J.-H., 2003, “Homotopy Perturbation Method: A New Nonlinear Analyti-
cal Technique,” Appl. Math. Comput., 135(1), pp. 73–79.

[34] He, J.-H., 2008, “An Elementary Introduction to Recently Developed Asymp-
totic Methods and Nanomechanics in Textile Engineering,” Int. J. Mod. Phys.
B, 22(21), pp. 3487–3578.

[35] Golbabai, A., and Javidi, M., 2007, “A New Family of Iterative Methods for
Solving System of Nonlinear Algebric Equations,” Appl. Math. Comput.,
190(2), pp. 1717–1722.

[36] Jorabchi, K., and Suresh, K., 2011, “A Robust Continuation Method to
Pass Limit-Point Instability” Finite Elem. Anal. Design, 47(11), pp.
1253–1261.

[37] Liao, S.-J., and Cheung, K. F., 2003, “Homotopy Analysis of Nonlinear Pro-
gressive Waves in Deep Water,” J. Eng. Math., 45(2), pp. 105–116.

[38] He, J.-H., 2005, “Application of Homotopy Perturbation Method to Nonlinear
Wave Equations,” Chaos, Solitons Fractals, 26(3), pp. 695–700.

[39] Sadighi, A., and Ganji, D. D., 2007, “Solution of the Generalized Nonlinear
Boussinesq Equation Using Homotopy Perturbation and Variational Iteration
Methods,” Int. J. Nonlinear Sci. Numer. Simul., 8(3), pp. 435–443.

[40] Abbasbandy, S., 2006, “The Application of Homotopy Analysis Method to Non-
linear Equations Arising in Heat Transfer,” Phys. Lett. A, 360(1), pp. 109–113.

[41] Ganji, D. D., and Sadighi, A., 2007, “Application of Homotopy-Perturbation
and Variational Iteration Methods to Nonlinear Heat Transfer and Porous
Media Equations,” J. Comput. Appl. Math., 207(1), pp. 24–34.

[42] Domairry, G., and Nadim, N., 2008, “Assessment of Homotopy Analysis
Method and Homotopy Perturbation Method in Non-Linear Heat Transfer
Equation,” Int. Commun. Heat Mass Transfer, 35(1), pp. 93–102.

[43] Ghorbani, A., and Saberi-Nadjafi, J., 2007, “He’s Homotopy Perturbation
Method for Calculating Adomian Polynomials,” Int. J. Nonlinear Sci. Numer.
Simul., 8(2), pp. 229–232.

[44] Ozis, T., and Yildirim, A., 2008, “Comparison Between Adomian’s Method
and He’s Homotopy Perturbation Method,” Comput. Math. Appl., 56(5), pp.
1216–1224.

[45] Ghorbani, A., 2009, “Beyond Adomian Polynomials: He Polynomials,” Chaos,
Solitons Fractals, 39(3), pp. 1486–1492.

[46] Kou, J., Li, Y., and Wang, X., 2006, “A Modification of Newton Method With
Third-Order Convergence,” Appl. Math. Comput., 181(2), pp. 1106–1111.

[47] Weerakoon, S., and Fernando, T. G. I., 2000, “A Variant of Newton’s Method
With Accelerated Third-Order Convergence,” Appl. Math. Lett., 13(8), pp. 87–93.

[48] Frontini, M., and Sormani, E., 2003, “Some Variant of Newton’s Method
With Third-Order Convergence,” Appl. Math. Comput., 140(2–3), pp.
419–426.

[49] Cardoso, E. L., and Fonseca, J. S. O., 2007, “The GDC Method as an Orthogo-
nal Arc-Length Method,” Commun. Numer. Methods Eng., 23(4), pp.
263–271.

[50] Homeier, H. H. H., 2005, “On Newton-Type Methods With Cubic Con-
vergence,” J. Comput. Appl. Math., 176(2), pp. 425–432.

[51] Jisheng, K., Yitian, L., and Xiuhua, W., 2006, “A Uniparametric Chebyshev-
Type Method Free From Second Derivatives,” Appl. Math. Comput., 179(1),
pp. 296–300.

[52] Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., Karami, A., and Barati, A.,
2010, “Analysis of Two Chebyshev-Like Third Order Methods Free From
Second Derivatives for Solving Systems of Nonlinear Equations,” J. Comput.
Appl. Math., 233(8), pp. 2002–2012.

[53] King, R., 1973, “A Family of Fourth Order Methods for Nonlinear Equations,”
SIAM J. Numer. Anal., 10(5), pp. 876–879.

[54] Sharma, J. R., and Guha, R. K., 2007, “A Family of Modified Ostrowski Meth-
ods With Accelerated Sixth Order Convergence,” Appl. Math. Comput.,
190(1), pp. 111–115.

[55] Bi, W., Wu, Q., and Ren, H., 2009, “A New Family of Eighth-Order Iterative
Methods for Solving Nonlinear Equations,” Appl. Math. Comput., 214(1), pp.
236–245.

[56] Wriggers, P., and Simo, J. C., 1990, “A General Procedure for the Direct Com-
putation of Turning and Bifurcation Points,” Int. J. Numer. Methods Eng.,
30(1), pp. 155–176.

[57] Planinc, I., and Saje, M., 1999, “A Quadratically Convergent Algorithm for
the Computation of Stability Points: The Application of the Determinant of
the Tangent Stiffness Matrix,” Comput. Methods Appl. Mech. Eng., 169(1–2),
pp. 89–105.

[58] Fujii, F., and Okazawa, S., 1997, “Pinpointing Bifurcation Points and Branch-
Switching,” J. Eng. Mech., 123(3), pp. 179–189.

[59] Fujii, F., and Ramm, E., 1997, “Computational Bifurcation Theory:
Path-Tracing, Pinpointing and Path-Switching,” Eng. Struct., 19(5), pp.
385–392.

[60] Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F., 1997, “Efficient
Management of Parallelism in Object Oriented Numerical Software
Libraries,” Modern Software Tools in Scientific Computing, E. Arge, A. M.
Bruaset, and H. P. Langtangen, eds., Birkhäuser Press, New York, pp.
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