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Introduction

Functionally Graded Materials �FGMs� are characterized by spa-
tially varied microstructures created by nonuniform distributions
of the reinforcement phase with different properties, sizes and
shapes, as well as, by interchanging the role of reinforcement and
matrix materials in a continuous manner �Suresh and Mortensen
1998�. They are usually engineered to produce property gradients
aimed at optimizing structural response under different types of
loading conditions �thermal, mechanical, electrical, optical, etc.�
�Cavalcante et al. 2007�. These property gradients are produced in
several ways, for example by gradual variation of the content of
one phase �ceramic� relative to another �metallic�, as used in ther-
mal barrier coatings, or by using a sufficiently large number of
constituent phases with different properties �Miyamoto et al.
1999�. Designer viscoelastic FGMs �VFGMs� can be tailored to
meet design requirements such as viscoelastic columns subjected
to axial and thermal loads �Hilton 2005�. Recently, Muliana
�2009� presented a micromechanical model for thermoviscoelastic
behavior of FGMs.
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Apart from engineered or tailored FGMs, several civil engi-
neering materials naturally exhibit graded material properties.
Silva et al. �2006� have studied and simulated bamboo, which is a
naturally occurring graded material. Apart from natural occur-
rence, a variety of materials and structures exhibit nonhomoge-
neous material distribution and constitutive property gradations as
an outcome of manufacturing or construction practices, aging,
different amount of exposure to deteriorating agents, etc. Asphalt
concrete pavements are one such example, whereby aging and
temperature variation yield continuously graded nonhomogeneous
constitutive properties. The aging and temperature induced prop-
erty gradients have been well documented by several researchers
in the field of asphalt pavements �Garrick 1995; Mirza and Witc-
zak 1996; Apeagyei 2006; Chiasson et al. 2008�. The current
state-of-the-art in viscoelastic simulation of asphalt pavements is
limited to either ignoring non-homogeneous property gradients
�Kim and Buttlar 2002; Saad et al. 2006; Baek and Al-Qadi 2006;
Dave et al. 2007� or considering them through a layered ap-
proach, for instance, the model used in the American Association
of State Highway and Transportation Officials �AASHTO�
Mechanistic Empirical Pavement Design Guide �MEPDG� �ARA
Inc., EC. 2002�. Significant loss of accuracy from the use of the
layered approach for elastic analysis of asphalt pavements has
been demonstrated �Buttlar et al. 2006�.

Extensive research has been carried out to efficiently and ac-
curately simulate functionally graded materials. For example,
Cavalcante et al. �2007�, Zhang and Paulino �2007�, Arciniega
and Reddy �2007�, and Song and Paulino �2006� have all reported
on finite-element simulations of FGMs. However, most of the
previous research has been limited to elastic material behavior. A
variety of civil engineering materials such as polymers, asphalt
concrete, Portland cement concrete, etc., exhibit significant rate
and history effects. Accurate simulation of these types of materi-

als necessitates the use of viscoelastic constitutive models.
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The current work presents a finite element �FE� formulation
tailored for analysis of viscoelastic FGMs and in particular, as-
phalt concrete. Paulino and Jin �2001� have explored the elastic-
viscoelastic correspondence principle �CP� in the context of
FGMs. The CP-based formulation has been used in the current
study in conjunction with the generalized iso-parametric formu-
lation �GIF� by Kim and Paulino �2002�. This paper presents the
details of the finite-element formulation, verification, and an as-
phalt pavement simulation example. Apart from simulation of as-
phalt pavements, the present approach could also be used for
analysis of other engineering systems that exhibit graded vis-
coelastic behavior. Examples of such systems include metals and
metal composites at high temperatures �Billotte et al. 2006; Koric
and Thomas 2008�; polymeric and plastic based systems that un-
dergo oxidative and/or ultraviolet hardening �Hollaender et al.
1995; Hale et al. 1997� and graded fiber reinforced cement and
concrete structures. Other application areas for the graded vis-
coelastic analysis include accurate simulation of the interfaces
between viscoelastic materials such as the layer interface between
different asphalt concrete lifts or simulations of viscoelastic glu-
ing compounds used in the manufacture of layered composites
�Diab and Wu 2007�.

Functionally Graded Viscoelastic Finite-Element
Method

This section describes the formulation for the analysis of vis-
coelastic functionally graded problems using FE framework and
the elastic-viscoelastic CP. The initial portion of this section es-
tablishes the basic viscoelastic constitutive relationships and the
CP. The subsequent section provides the FE formulation using the
GIF.

Viscoelastic Constitutive Relations

The basic stress-strain relationships for viscoelastic materials
have been presented by, among other writers, Hilton �1964� and
Christensen �1982�. The constitutive relationship for quasi-static,
linear viscoelastic isotropic materials is given as

�ij�x,t� = 2�
t�=−�

t�=t

G�x,��t� − ��t�����ij�x,t�� −
1

3
�ij�kk�dt�

+�
t�=−�

t�=t

K�x,��t� − ��t����ij�kkdt� �1�

where �ij =stresses; �ij =strains at any location x. The parameters
G and K=shear and bulk relaxation moduli; �ij =Kronecker delta;
and t�=integration variable. Subscripts �i , j ,k , l=1,2 ,3� follow
Einstein’s summation convention. The reduced time � is related to
real time t and temperature T through the time-temperature super-
position principle

��t� =�
0

t

a�T�t���dt� �2�

For a nonhomogeneous viscoelastic body in quasi-static condi-
tion, assume a boundary value problem with displacement ui on
volume �u, traction Pi on surface �� and body force Fi, the
equilibrium and strain-displacement relationships �for small de-

formations� are as shown in Eq. �3�
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�ij,j + Fi = 0, �ij =
1

2
�ui,j + uj,i� �3�

respectively, where, ui=displacement and � • �,j =�� • � /�xj.

CP and Its Application to FGMs

The CP allows a viscoelastic solution to be readily obtained by
simple substitution into an existing elastic solution, such as a
beam in bending, etc. The concept of equivalency between trans-
formed viscoelastic and elastic boundary value problems can be
found in Read �1950�. This technique been extensively used by
researchers to analyze variety of nonhomogeneous viscoelastic
problems including, but not limited to, beam theory �Hilton and
Piechocki 1962�, finite-element analysis �Hilton and Yi 1993�,
and boundary element analysis �Sladek et al. 2006�.

The CP can be more clearly explained by means of an ex-
ample. For a simple one-dimensional �1D� problem, the stress-
strain relationship for viscoelastic material is given by
convolution integral shown in Eq. �4�.

��t� =�
0

t

E�t − t��
���t��

�t�
dt� �4�

If one is interested in solving for the stress and material properties
and imposed strain conditions are known, using the elastic-
viscoelastic correspondence principle the convolution integral can
be reduced to the following relationship using an integral trans-
form such as the Laplace transform:

�̃�s� = sẼ�s��̃�s� �5�

Notice that the above functional form is similar to that of the
elastic problem, thus the analytical solution available for elastic
problems can be directly applied to the viscoelastic problem. The

transformed stress quantity, �̃�s� is solved with known Ẽ�s� and
��s�. Inverse transformation of �̃�s� provides the stress ��t�.

Mukherjee and Paulino �2003� have demonstrated limitations
on the use of the correspondence principle in the context of func-
tionally graded �and nonhomogenous� viscoelastic boundary
value problems. Their work establishes the limitation on the func-
tional form of the constitutive properties for successful and proper
use of the CP.

Using correspondence principle, one obtains the Laplace trans-
form of the stress-strain relationship described in Eq. �1� as

�̃ij�x,s� = 2G̃�x, �̃�s���̃ij�x,s� + K̃�x, �̃�s���ij�̃kk�x,s� �6�

where s=transformation variable and the symbol tilde ��� on top
of the variables represents transformed variable. The Laplace
transform of any function f�t� is given by

L�f�t�� = f̃�s� =�
0

�

f�t�Exp�− st�dt �7�

Equilibrium �Eq. �3�� for the boundary value problem in the trans-
formed form becomes

�̃,j�x,s� = 2G̃�x,s��̃,j
d�x,s� + 2G̃,j�x,s��̃d�x,s� + K̃�x,s��̃,j�x,s�

+ K̃,j�x,s��̃�x,s� �8�

where superscript d indicates the deviatoric component of the
quantities.

Notice that the transformed equilibrium equation for a nonho-

mogeneous viscoelastic problem has identical form as an elastic
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nonhomogeneous boundary value problem. This forms the basis
for using CP-based FEM for solving graded viscoelastic problems
such as asphalt concrete pavements. The basic FE framework for
solving elastic problems can be readily used through the use of
CP, which makes it an attractive alternative when compared to
more involved time integration schemes. However, note that due
to the inapplicability of the CP for problems involving the use of
the time-temperature superposition principle, the present analysis
is applicable to problems with nontransient thermal conditions. In
the context of pavement analysis, this makes the present proce-
dure applicable to simulation of traffic �tire� loading conditions
for given aging levels. The present approach is not well-suited for
thermal-cracking simulations, which require simulation of con-
tinuously changing and nonuniform temperature conditions.

FE Formulation

The variational principle for quasi-static linear viscoelastic mate-
rials under isothermal conditions can be found in Gurtin �1963�.
Taylor et al. �1970� extended it for thermoviscoelastic boundary
value problem

	 =�
�u

�
t�=−�

t�=t �
t�=−�

t�=t−t� 1

2
Cijkl�x,�ijkl�t − t�� − �ijkl� �t���

�
��ij�x,t��

�t�

��kl�x,t��
�t�

dt�dt�d�u

−�
�u

�
t�=−�

t�=t �
t�=−�

t�=t−t�
Cijkl�x,�ijkl�t − t�� − �ijkl� �t���

�
��ij

� �x,t��
�t�

��kl
� �x,t��
�t�

dt�dt�d�u

−�
��

�
t�=−�

t�=t

Pi�x,t − t��
�ui�x,t��

�t�
dt�d�� = 0 �9�

where �u=volume of a body; ��=surface on which tractions Pi

are prescribed; ui=displacements; Cijkl=space and time depen-
dent material constitutive properties; �ij =mechanical strains and
�ij

� =thermal strains; while �ijkl=reduced time related to real time t
and temperature T through time-temperature superposition prin-
ciple of Eq. �2�.

The first variation provides the basis for the FE formulation

� 	 =�
�u

�
t�=−�

t�=t

�
t�=−�

t�=t−t� 
Cijkl�x,�ijkl�t − t�� − �ijkl� �t���
�

�t�
��ij�x,t��

− �ij
� �x,t���

���kl�x,t��
�t�

�dt�dt�d�u

−�
��

�
t�=−�

t�=t

Pi�x,t − t��
��ui�x,t��

�t�
dt�d�� = 0 �10�

The element displacement vector ui is related to nodal displace-

ment degrees of freedom qj through the shape functions Nij
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ui�x,t� = Nij�x�qj�t� �11�

Differentiation of Eq. �11� yields the relationship between strain
�i and nodal displacements qi through derivatives of shape func-
tions Bij

�i�x,t� = Bij�x�qj�t� �12�

Eqs. �10�–�12� provide the equilibrium equation for each finite
element

�
0

t

kij�x,��t� − ��t���
�qj�t��

�t�
dt� = f i�x,t� + f i

th�x,t� �13�

where kij =element stiffness matrix; f i=mechanical force vector;
and f i

th=thermal force vector, which are described as follows:

kij�x,t� =�
�u

Bik
T �x�Ckl�x,��t��Blj�x�d�u �14�

f i�x,t� =�
��

Nij�x�Pj�x,t�d�� �15�

f i
th�x,t� =�

�u

�
−�

t

Bik�x�Ckl�x,��t� − ��t���
��l

��x,t��
�t�

dt�d�u

�16�

�l
��x,t� = ��x�	T�x,t� �17�

where �=coefficient of thermal expansion and 	T=temperature
change with respect to initial conditions.

On assembly of the individual finite element contributions for
the given problem domain, the global equilibrium equation can be
obtained as

�
0

t

Kij�x,��t� − ��t���
�Uj�t��

�t�
dt� = Fi�x,t� + Fi

th�x,t� �18�

where Kij =global stiffness matrix; Ui=global displacement vec-
tor; and Fi and Fi

th=global mechanical and thermal force vectors
respectively. The solution to the problem requires solving the con-
volution shown above to determine nodal displacements.

Hilton and Yi �1993� have used the CP-based procedure for
implementing the FE formulation. However, the previous re-
search efforts were limited to use of conventional finite elements,
while in the current paper graded finite elements have been used
to efficiently and accurately capture the effects of material non-
homogeneities. Graded elements have benefit over conventional
elements in context of simulating non-homogeneous isotropic and
orthotropic materials �Paulino and Kim 2007�. Kim and Paulino
�2002� proposed graded elements with the GIF, where the consti-
tutive material properties are sampled at each nodal point and
interpolated back to the Gauss-quadrature points �Gaussian inte-
gration points� using isoparametric shape functions. This type of
formulation allows for capturing the material nonhomogeneities
within the elements unlike conventional elements which are ho-
mogeneous in nature. The material properties, such as shear
modulus, are interpolated as

GInt. Point = �
i=1

m

GiNi �19�

where Ni=shape functions; Gi=shear modulus corresponding to

node i; and m=number of nodal points in the element.
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A series of weak patch tests for the graded elements have been
previously established �Paulino and Kim 2007�. This work dem-
onstrated the existence of two length scales: �1� length scale as-
sociated with element size, and �2� length scale associated with
material nonhomogeneity. Consideration of both length scales is
necessary in order to ensure convergence. Other uses of graded
elements include evaluation of stress-intensity factors in FGMs
under mode I thermomechanical loading �Walters et al. 2004�,
and dynamic analysis of graded beams �Zhang and Paulino 2007�,
which also illustrated the use of graded elements for simulation of
interface between different material layers. In a recent study
�Silva et al. 2007� graded elements were extended for multiphys-
ics applications.

Using the elastic-viscoelastic CP, the functionally graded vis-
coelastic finite element problem could be deduced to have a func-
tional form similar to that of elastic problems. Laplace transform
of the global equilibrium shown in Eq. �18� is

K̃ij�x,s�Ũj�s� = F̃i�x,s� + F̃i
th�x,s� �20�

Notice that the Laplace transform of hereditary integral �Eq. �18��
led to an algebraic relationship �Eq. �23��, this is major benefit of
using CP as the direct integration for solving hereditary integrals
will have significant computational cost. As discussed in a previ-
ous section, the applicability of correspondence principle for vis-
coelastic FGMs imposes limitations on the functional form of
constitutive model. With this knowledge, it is possible to further
customize the FE formulation for the generalized Maxwell model.
Material constitutive properties for generalized Maxwell model is
given as

Cij�x,t� = �
h=1

n

�Cij�x��h Exp�−
t

�
ij�h
� �no sum� �21�

where �Cij�h=elastic contributions �spring coefficients�; �
ij�h

=viscous contributions from individual Maxwell units, commonly
called relaxation times; and n�number of Maxwell unit.

Fig. 1 illustrates simplified 1D form of the generalized Max-
well model represented in Eq. �21�. Notice that the generalized
Maxwell model discussed herein follows the recommendations
made by Mukherjee and Paulino �2003� for ensuring success of
the correspondence principle.

For the generalized Maxwell model, the global stiffness matrix
K of the system can be rewritten as

Kij�x,t� = Kij
0 �x� Exp
−

t


ij
� = Kij

0 �x�Kij
t �t� �no sum� �22�

where Kij
0 =elastic contribution of stiffness matrix and Kt=time

dependent portion.
Using Eqs. �20� and �22�, one can summarize the problem as

K0 �x�K̃t �s�Ũj�s� = F̃i�x,s� + F̃th�x,s� �no sum� �23�

( )�� � ( )�� � ( )�� �

�τ
�τ �τ� � �

Fig. 1. Generalized Maxwell model
ij ij i
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The FE formulation described in the previous section was imple-
mented and applied to two-dimensional plane and axisymmetric
problems. This section provides the details of the implementation
of formulation along with brief description method chosen for
numerical inversion from Laplace domain to time domain.

The implementation was coded in the commercially available
software Matlab. The implementation of the analysis code is di-
vided into five major steps as shown in Fig. 2.

The first step is very similar to the FE method for a time
dependent nonhomogeneous problem, whereby local contribu-
tions from various elements are assembled to obtain the force
vector and stiffness matrix for the system. Notice that due to the
time dependent nature of the problem the quantities are evaluated
throughout the time duration of analysis. The next step is to trans-
form the quantities to the Laplace domain from the time domain.
For the generalized Maxwell model, the Laplace transform of the
time-dependent portion of the stiffness matrix, Kt, can be directly
�and exactly� determined using the analytical transform given by

Kij
0 �x�K̃ij

t �s�Ũj�s� = F̃i�x,s� + F̃i
th�x,s� �no sum for Kij

0 �x�K̃ij
t �s��

�24�

Laplace transform of quantities other than the stiffness matrix can
be evaluated using the trapezoidal rule, assuming that the quanti-
ties are piecewise linear functions of time. Thus, for a given time

dependent function F�t�, the Laplace transform F̃�s� is estimated
as

F̃�s� = �
i=1

N−1
1

s2	t
�s	t�F�ti�Exp�− sti� − F�ti+1�Exp�− sti+1��

+ 	F�Exp�− sti� − Exp�− sti+1��� �25�

where 	t=time increment; N=total number of increments; and
	F=change in function F for the given increment.

Once the quantities are calculated on the transformed domain
the system of linear equations are solved to determine the solu-
tion, which in this case produces the nodal displacements in the

transformed domain, Ũ�s�. The inverse transform provides the

������ �	
���
 �� ��
���

��� ��������� �
�� ����
	 ���� ��� ���������


��	�� �

�
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 ������� �	����
	
 �
 �������� ��
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Fig. 2. Outline of finite-element analysis procedure
solution to the problem in the time domain. It should be noted that
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the formulation as well as its implementation is relatively straight
forward using the correspondence principle based transformed ap-
proach when compared to numerically solving the convolution
integral.

The inverse Laplace transform is of greater importance in the
current problem as the problem is ill posed due to absence of a
functional description in the imaginary plane. Comprehensive
comparisons of various numerical inversion techniques have been
previously presented �Beskos and Narayanan 1983�. In the current
study, the collocation method �Schapery 1962; Schapery 1965�
was used on basis of the recommendations from previous work
�Beskos and Narayanan 1983; Yi 1992�.

For the current implementation the numerical inverse trans-
form is compared with exact inversion using generalized Maxwell
model �c.f. Eq. �21�� as the test function. The results, shown in
Fig. 3, compare the exact analytical inversion with the numerical
inversion results. The numerical inversion was carried out using
20 and 100 collocation points. With 20 collocation points, the
average relative error in the numerical estimate is 2.7%, whereas
with 100 collocation points, the numerical estimate approaches
the exact inversion.

Verification Examples

In order to verify the present formulation and its implementation,
a series of verifications were performed. The verification was di-
vided into two categories: �1� verification of the implementation
of GIF elements to capture material nonhomogeneity, and �2�
verification of the viscoelastic portion of the formulation to cap-
ture time and history dependent material response.

Verification of Graded Elements

A series of analyzes were performed to verify the implementation
of the graded elements. The verifications were performed for
fixed grip, tension and bending �moment� loading conditions. The
material properties were assumed to be elastic with exponential
spatial variation. The numerical results were compared with exact
analytical solutions available in the literature �Kim and Paulino
2002�. The comparison results for fixed grip loading, tensile load-
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Fig. 3. Numerical Laplace inversion using collocation method
ing, and bending were performed. The results for all three cases
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show a very close match with the analytical solution verifying the
implementation of the GIF graded elements. Comparison for the
bending case is presented in Fig. 4.

Verification of Viscoelastic Analysis

Verification results for the implementation of the correspondence
principle based viscoelastic functionally graded analysis were
performed and are provided. The first verification example repre-
sents a functionally graded viscoelastic bar undergoing creep de-
formation under a constant load. The analysis was conducted for
the Maxwell model. Fig. 5 compares analytical and numerical
results for this verification problem. The analytical solution
�Mukherjee and Paulino 2003� was used for this analysis. It can
be observed that the numerical results are in very good agreement
with the analytical solution.

The second verification example was simulated for fixed grip
loading of an exponentially graded viscoelastic bar. The numeri-
cal results were compared with the available analytical solution
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Fig. 4. Comparison of exact �line� and numerical solution �circular
markers� for bending of FGM bar �insert illustrates the boundary
value problem along with material gradation�
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Fig. 5. Comparison of exact and numerical solution for the creep of
exponentially graded viscoelastic bar
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�Mukherjee and Paulino 2003� for a viscoelastic FGM. Fig. 6
compares analytical and numerical results for this verification
problem. Notice that the results are presented as function of time,
and in this boundary value problem the stresses in y-direction are
constant over the width of bar. Excellent agreement between nu-
merical results and analytical solution further verifies the veracity
of the viscoelastic graded FE formulation derived herein and its
successful implementation.

Application Examples

In this section, two sets of simulation examples using the graded
viscoelastic analysis scheme discussed in this paper are presented.
The first example is for a simply supported functionally graded
viscoelastic beam in a three-point bending configuration. In order
to demonstrate the benefits of the graded analysis approach, com-
parisons are made with analysis performed using commercially
available software �ABAQUS�. In the case, of ABAQUS simula-
tions, the material gradation is approximated using a layered ap-
proach and different refinement levels. The second example is
that of an aged conventional asphalt concrete pavement loaded
with a truck tire.

Simply Supported Graded Viscoelastic Beam

Fig. 7 shows the geometry and boundary conditions for the
graded viscoelastic simply supported beam. A creep load, P�t�, is
imposed at midspan

���

���

���

���	
��
�	 ��	�����

�� )���	�

���

���

���

�
�
��

�
�
��
�
�
��
	
�

�

�


�

�

�

�����

��

��
��

��
�

��
�

��
�

�

���

���

���

�
��
�
�

��

( ) [ ] [ ]�

�

�

�

� ��� ��� �

�'()�	


�

����


���

� � � � � �

�

�

β τ

β
τ

= −

=
=

=
=

-

�� �� �� ��
���� 
����

Fig. 6. Comparison of exact and numerical solution for the exponen-
tially graded viscoelastic bar in fixed grip loading

� ( ) ( )�� � � � �=

�

�� * ��

�� * �

�� ��

Fig. 7. Graded viscoelastic beam problem configuration
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P�t� = P0t �26�

The viscoelastic relaxation moduli on the top �y=y0� and bottom
�y=0� of the beam are shown in Fig. 8. The variation of moduli is
assumed to vary linearly from top to bottom as follows:

E�y,t� = 
 y

y0
�ETop�t� + 
 y0 − y

y0
�EBottom�t� �27�

The problem was solved using three approaches namely, �1�
graded viscoelastic analysis procedure �present paper�; �2� com-
mercial software ABAQUS with different levels of mesh refine-
ments and averaged material properties assigned in the layered
manner; and �3� assuming averaged material properties for the
whole beam. In the case of the layered approach using commer-
cial software ABAQUS, three levels of discretization were used.
A sample of the mesh discritization used for each of the simula-
tion cases is shown in Fig. 9. Table 1 presents mesh attributes for
each of the simulation cases.

The parameter selected for comparing the various analysis op-
tions is the mid span deflection for the beam problem discussed
earlier �c.f. Fig. 7�. The results from all four simulation options
are presented in Fig. 10. Due to the viscoelastic nature of the
problem, the beam continues to undergo creep deformation with
increasing loading time. The results further illustrate the benefit
of using the graded analysis approach as a finer level of mesh

Table 1. Mesh Attributes for Different Analysis Options

Simulation case
Number of
elements

Number of
nodes

Total degrees
of freedom

FGM/average/6-layer 720 1,573 3,146

9-layer 1,620 3,439 6,878

12-layer 2,880 6,025 12,050
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Fig. 8. Relaxation moduli on top and bottom of the graded beam
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Fig. 9. Mesh discretization for various simulation cases �1/5th beam
span shown for each case�
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refinement is required in order for the layered approach to begin
to converge with the graded approach. The results also demon-
strate the drawback of using averaged properties which yield sig-
nificantly poorer results when compared to graded and layered
approaches. Also, it is worthy to note that in the case of graded
viscoelastic problems, it is important to consider the results over
the complete time history. In the current problem, the severity of
the material gradation increases with time. This effect is apparent
in the results, where the deviation between graded and layered
approaches increases with increasing time.

Aged Conventional Asphalt Concrete Pavement

An asphalt pavement simulation example is presented in this sec-
tion to illustrate the application of the graded viscoelastic FE
analysis procedure. The simulation was also conducted for the
same problem using the layered approach, and results from
layered and graded approaches are compared. A conventional as-
phalt pavement section was simulated. Section details are shown
in Fig. 11 along with the FE mesh.

The pavement was assumed to be highly aged, and hence the
asphalt concrete layer was simulated as a graded viscoelastic ma-
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Fig. 10. Normalized midspan deflection for the beam

Fig. 11. Pavement section and FE mesh for simulation example
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terial. Apeagyei et al. �2006; 2008� have recently studied the ef-
fects of antioxidant treatment on asphalt binders and mixtures.
They have performed viscoelastic characterization of short-term
and long-term aged asphalt mixtures. Short term and long-term
aged properties from Apeagyei et al. 2008 were used for simula-
tion of aged asphalt concrete pavement in this example. The shear
relaxation modulus is assumed to be varying linearly through the
pavement thickness, going from a long-term aged condition on
surface to a short-term aged condition on the bottom of the as-
phalt concrete layer. This is illustrated in Fig. 12. The bulk modu-
lus is assumed to be constant with time. In the case of the layered
simulation, the asphalt concrete layer was divided into six layers,
where each layer was assigned average properties.

Boundary conditions for the simulation problem are given in
Fig. 11. The imposed load was applied to simulate a single 40 kN
�9,000 lb� tire with 700 kPa �100 psi� pressure. Contact pressure
was assumed to be vertically oriented �no horizontal loading�. The
asphalt concrete temperature was assumed to be uniform through
the thickness, with value of −10°C.

In the case of asphalt pavements, stresses in the horizontal
direction are often of interest to the pavement engineer, as they
are taken as critical response parameters at low and intermediate
temperatures. These stresses are commonly linked to fatigue
cracking in pavements, which is one of the most devastating
pavement damage mechanisms. The horizontal stresses directly
under the tire load are compared for layered and graded viscoelas-
tic approaches. The results are shown in Fig. 13 for stresses at a
loading time of 100 s. Notice that in order to exaggerate the
difference between layered and graded approaches, the nodal
stresses are presented for the graded approach, whereas for the
layered approach, the nodal stresses are averaged in a layered
fashion. Hence, the discontinuities are observed at layer inter-
faces. It is interesting to note that the extent of tensile stresses
is relatively low as compared to the compressive stresses near the
surface. This trend is not unexpected for the aged pavement sys-
tem, as the material closer to surface is stiffer, and thus accumu-
lates greater stresses, while unaged material near the bottom is
compliant and exhibits a greater degree of stress relaxation.

Summary, Conclusions, and Future Directions

A functionally graded viscoelastic FE formulation based on cor-
respondence principle has been proposed. The formulation is
implemented to solve 2D plane and axisymmetric problems. The
GIF has been extended for graded �nonhomogeneous� viscoelastic
elements. The collocation method was selected for performing the
inverse Laplace transformation. The implementation has been
verified for cases involving material nonhomogeneities as well as
viscoelastic effects.

Two application examples were presented. The first example
provided a comparison between graded, averaged homogeneous
and layered approaches. Also, a comparison between the predic-
tions made using the present approach versus those made by com-
mercially available software was provided. A second example was
provided to illustrate responses for an aged graded asphalt con-
crete pavement system.

Based on the findings from this study following conclusions
could be drawn:
1. The FE framework for solving nonhomogeneous viscoelastic

problems is very similar to non-homogeneous elastic prob-

lems when developed using CP-based formulation.
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2. The graded viscoelastic analysis proposed herein yields sig-
nificant accuracy benefits over the layered analysis, but with
the same computational cost. More accurate results with a
coarser mesh were obtained using the graded viscoelastic
approach, which will be of particular benefit for larger simu-
lations, particularly when extending the approach to 3D.

3. Response predictions at layer interfaces will be unrealistic
when using layered analysis approaches for nonhomoge-
neous viscoelastic problems. Application of graded analysis
technique circumvents this issue. This is of particular interest
when trying to simulate the interface conditions between the
asphalt layers.

Fig. 12. Relaxation modulus of asph
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Fig. 13. Stresses in horizontal direction �x-direction� directly under
the tire load
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4. For viscoelastic graded systems, the predictions from layered
systems may impose a varying degree of inaccuracy with
time. This makes it difficult to predict the degree of error in
layered approximation, thus further reinforcing benefits of
using a graded viscoelastic analysis procedure, such as the
one developed herein.

During the course of this study, the following future directions
were identified:
1. The technique developed here should be extended to 3D

analysis. This is particularly important to obtain realistic
pavement responses from complex and combined tire load-
ings.

2. The present research should be applied for realistic simula-
tion of the layer interface conditions. The effects of graded
interfaces on pavement performance prediction should be
studied.

3. The present analysis technique should be used to evaluate a
variety of aged asphalt pavement and overlay systems and to
study pavement distresses, such as thermal, reflective and
topdown cracking.

4. The current analysis procedure should be integrated with as-
phalt aging models to study performance variation of asphalt
pavements during the course of service life.

5. The approach presented herein should be used in conjunction
with comprehensive field studies to validate its benefits over
the currently available layered analysis and design approach.

6. The present formulation is applicable to static temperature
conditions due to the inapplicability of the correspondence
principle for problems involving the time-temperature super-
position principle. Other techniques, such as time-integration
formulations, should be studied to develop techniques ca-
pable of simulating transient and nonuniform temperature

crete �variation with depth and time�
alt con
conditions.
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