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Traditional methods for the inverse identification of elastic properties and local cohesive zone model
(CZM) of solids utilize only global experimental data. In contrast, this paper addresses the inverse iden-
tification of elastic properties and CZM of a range of materials, using full-field displacement through an
optimization technique in a finite element (FE) framework. The new experimental–numerical hybrid
approach has been applied to fiber-reinforced cementitious composites (FRCC). PVA microfibers are used
at four volume fractions: 0.5%, 1%, 2% and 3%. Digital image correlation (DIC) technique is used to mea-
sure surface displacement fields of the test specimens. Four-point bend tests are carried out for the mea-
surement of the modulus of elasticity, E, and the Poisson’s ratio, m, while single edge-notched beams
(SENB) are used for measurement of mode-I CZM parameters. A finite element update inverse formula-
tion, which is based on minimization of the difference between measured and computed displacement
field, is used for both identification problems. For the identification of E and m, linearized form of the
Hooke’s tensor in plane stress condition has been derived for two-dimensional linear elasticity in FE
frame, and Newton–Raphson solver is employed for the inverse problem. For the identification of the
CZM, generic spline curves have been used for the parameterization of any CZM thus avoiding the need
of an assumption of the CZM shape, while derivative-free Nelder–Mead optimization with CZM shape
regularization is employed as the solution method, which reduces the complexity of numerical imple-
mentation and improves robustness. The computed E and m are consistent with published results. The
computed CZMs of the FRCCs with different fiber volume fractions reveal a strain-hardening character-
istic. The computed CZM is used in direct problem simulation, the results of which are consistent with
the experimental global response.

� 2011 Elsevier Ltd All rights reserved.
1. Introduction

The nonlinear fracture behavior of fiber-reinforced cement
composites (FRCC) can be simulated by using the finite element
method (FEM). One of the most widely used fracture models is
the cohesive zone model (CZM), which is well-suited for FEM
implementation [1,2]. CZM is an idealized model to describe the
relation between crack surface traction and separation [1,2]. The
crack surface separation is also termed crack opening displacement
(COD). The traction–separation relation of CZM completely charac-
terizes the local level damage process and the energy dissipation
for crack propagation. In many applications, fracture energy and
cohesive strength have been regarded as the only two parameters
that are needed for a CZM. However, with the fracture energy and
ll rights reserved.

: +1 217 265 8041.
).
the cohesive strength fixed, the softening branch may be repre-
sented by various shapes, e.g., the most popularly used are linear,
bi-linear or power-law softening curves. Moreover, a few recent
studies using FEM have shown that the softening model, i.e., the
shape, of the CZM may significantly affect the response of the frac-
ture simulation [3–6]. Therefore, inverse techniques have been
developed in order to obtain good estimation of the CZM [7–11],
particularly the shape of the CZM.

The traditional inverse techniques for concrete CZM all feature a
cost function defining the difference between the measured and
the computed load versus crack mouth opening displacement
(P-CMOD) curves. A certain shape of the CZM is predefined with
a fixed number of model parameters. The CZM parameters are then
computed by iteratively updating the CZM parameters until the
cost function converges to a minimum. The basic characteristic of
this approach is that the global response is used to infer the local
constitutive parameters. A recent approach applied to a high explo-
sive (a composite consisting of high volume fraction of energetic
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particles in polymeric binder matrix) used the digital image corre-
lation (DIC) to measure the deformation field near the crack sur-
face, multiplied by the bulk elastic modulus, to estimate the
cohesive stress. Then by statistically correlating the COD with the
cohesive stress, the mode-I cohesive zone model of the local level
can be estimated [12]. Although this approach estimates the CZM
at a local level, it has been shown in their paper that the data
derived for the estimation of the CZM is not smooth due to high
noise level in the DIC computed strain.

DIC is a non-contact optical technique that is able to measure
two-dimensional as well as three-dimensional surface deforma-
tions [13–17]. Essentially, by matching two digital images of the
specimen surface, one undeformed and the other deformed, the
DIC computes the displacement and/or strain fields. The full field
by DIC has been used in fracture mechanics [12,18,19] or in inter-
nal defect identification problems [20,21]. It has also been used in
the study of the fracture of cementitious materials. For example, it
has been used to measure the deformation data of concrete under
fracture [22], to study the fracture of quasi-brittle cement paste
under compression [23], and to examine the bond between carbon
fiber reinforced polymers (CFRP) and concrete substrates [24].
However, it has not been used together with FEM to compute the
CZM.

Recently, motivated by the studies reviewed above, the authors
of the current paper developed an inverse scheme, which combines
the full-field displacement by DIC and inverse analysis in an FEM
framework [5,6]. This scheme is used in current study to extract
the mode-I CZM for micro fiber-reinforced cement composites
(FRCC). With proper material selection and fabrication, FRCC has
demonstrated significant enhancement in strength and toughness
comparing to pure cement paste, which normally is a brittle mate-
rial. The strength and toughness enhancement is primarily due to
fiber bridging action across cracks forming within the cement ma-
trix. When micro fibers are used in the FRCC, there is a large
amount of fibers bridging the crack and the action of the discrete
fibers can be smeared into a continuous cohesive stress profile at
the crack. Therefore, the CZM can be well applied for the fracture
of FRCC.

It may not be apparent that the bulk material properties, partic-
ularly the modulus of elasticity, have more pronounced effect on
the global response than the shape of the CZM. Fig. 1 shows the
P-CMOD responses of three single edge-notched beam (SENB)
specimens with the same CZM (shown by the insert) but different
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Fig. 1. Effect of the bulk stiffness on the global P-CMOD response (from numerical
modeling).
bulk elastic moduli. It can be seen that the stiffer the bulk material,
the higher the peak load and the steeper the softening curve.
Therefore, accurate input of the bulk properties for the finite ele-
ment model is also important. Usually the basic bulk elastic prop-
erties are known or measured by experiments directly. They can
also be identified through advanced inverse techniques combined
with full-field displacement or strain data [20,21,25]. With full-
field displacement data measured by DIC, the finite element model
update (FEMU) [21] method is adapted in this study to compute
the modulus of elasticity and Poisson’s ratio simultaneously.

In the following sections, first the inverse problems for identifi-
cation of elastic moduli and for the computation of mode-I CZM
will be defined. Next, the experimental details and procedures
are described. Then the results and discussion for the two inverse
problems are presented in two consecutive sections. Finally, some
concluding remarks are drawn.

2. Inverse identification problems

The FEM representation of the field equations for the general
elastostatic problem, based upon the principle of virtual work, isZ

X
de : H : edX�

Z
C
s � dudC ¼ 0; ð1Þ

where X is the domain of the solid, C is the boundary with known
tractions, e is the strain tensor, s is the vector of tractions, u is the
vector of displacement, and H is the Hooke’s tensor. The Galerkin
discretization procedure that uses FEM shape functions can be ap-
plied, which leads to the standard FEM system of equations in the
form

KbðHÞu ¼ f; ð2Þ

where Kb is the bulk stiffness matrix, which is a function of H, u
here is the generalized global displacement vector and f is the gen-
eralized global force vector. Usually H is known, and solving Eq. (2)
for u constitutes a direct problem.

For the case of nonlinear fracture using CZM, one additional
term is added to the direct problem statement of Eq. (1) [26]:Z

X
de : H : edX�

Z
C
s � dudC�

Z
Ccoh

Tcoh � dDudCcoh ¼ 0; ð3Þ

where Ccoh represents the cohesive surface where the cohesive trac-
tion Tcoh and the crack opening displacement (COD) Du are present.
Eq. (2) is then updated

½KbðHÞ þ Kcða;uÞ�u ¼ f; ð4Þ

where Kc is the cohesive stiffness matrix accounting for the contri-
bution from the cohesive traction and depends on the particular
CZM defined, a is the vector that defines the CZM. In a fracture sim-
ulation, {H; a} is known and the problem is solved for u. Notice that
the direct problem of (2) is linear, while (4) is nonlinear because the
total stiffness matrix now implicitly depends on u.

When the whole or part of the field of u can be measured
through experiments, e.g., the DIC in this study, the identification
of either H or a becomes inverse problems. In the following, the
identification problems for Hooke’s tensor and the CZM are devel-
oped separately in Sections 2.1 and 2.2.

2.1. Identification of the Hooke’s tensor

The FRCC beams tested in this study can be regarded as a two-
dimensional (2D) under plane stress condition. It is also appropri-
ate to approximate the FRCC as an isotropic, homogeneous and
linear elastic body. The following developments of the inverse
problems are based on these assumptions.
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2.1.1. Linearization of Hooke’s tensor
Starting from a general description, we assume that the Hooke’s

tensor H, depends on N constitutive parameters in vector form
h = {h1, . . ., hN}, and thus H = H(h). Usually the Hooke’s tensor can
be decomposed as a linear combination of all the independent sca-
lar moduli

H ¼
XN

i¼1

hiHi: ð5Þ

The standard FEM system of equations for elastic problems can now
be expressed as

KbðHðhÞÞu ¼ f: ð6Þ

With the decomposed Hooke’s tensor, the global stiffness matrix
can be set in the form

KbðHðhÞÞ ¼ Kb

X
hiHi

� �
¼ hi

eKiðHiÞ: ð7Þ

Apparently,

eKiðHiÞ ¼
@Kb

@hi
; ð8Þ

which is the sensitivity of Kb with regard to hi. The convenient form
of (7) will facilitate the inverse identification procedure.

Now consider the case of a homogeneous, isotropic material,
the elastic properties can be described in terms of the Lamé con-
stants k and l, in the linearized form as

rij ¼ kekkdij þ 2leij; in X; ð9Þ

which is a specific case of Eq. (5). The Lamé’s first parameter, k, can
be expressed by

k ¼ Em
ð1þ mÞð1� 2mÞ ; ð10Þ

and the Lamé’s second parameter by

l ¼ E
2ð1þ mÞ ; ð11Þ

which is the shear modulus. It may not be apparent that the linear-
ized form described by Eq. (9) can only directly apply to 3-D condi-
tion. For plane stress condition, the form is different, which is
derived as the follows.

For plane stress condition, there is r23 = r31 = r33 = 0. From
r33 = 0 and Eq. (9), one obtains

e33 ¼ �
kðe11 þ e22Þ

kþ 2l : ð12Þ

Therefore, the Hooke’s law for isotropic material in plane stress con-
dition can be written explicitly as [5]

r11

r22

r12

8><
>:

9>=
>; ¼ 2l

2 1 0
1 2 0
0 0 1

2
64

3
75� 4l2

kþ 2l

1 1 0
1 1 0
0 0 0

2
64

3
75

0
B@

1
CA

e11

e22

e12

8><
>:

9>=
>;: ð13Þ

According to Eq. (5), one can define

h1 ¼ 2l; h2 ¼ �4l2=ðkþ 2lÞ;

and

H1 ¼
2 1 0
1 2 0
0 0 1

2
64

3
75; H2 ¼

1 1 0
1 1 0
0 0 0

2
64

3
75:
2.1.2. Newton–Raphson optimization
In using the displacement-based optimization approach [5,6,

21], a widely used cost function is defined as
UðhÞ ¼ 1
2
ðu�ðhÞ � �uÞTðu�ðhÞ � �uÞ: ð14Þ

where u� is the computed displacement vector, which is obtained
from the direct problem defined by Eq. (2), assuming that the
parameters h of Hooke’s tensor are known, and �u is the displace-
ment field measured from DIC. The minimization of (14) yields esti-
mates of h. The Newton–Raphson algorithm can be applied with its
standard form for minimization:

r2Uðh0ÞDh ¼ �rUðh0Þ; ð15Þ

where h0 is the initial guess of h, Dh is the update,rU and r2U are
the gradient and Hessian of U, respectively. Starting from a good
initial guess h0, the iteratively updated h0 will eventually converges
to the correct estimation. With the linearized form (5), the gradient
and Hessian of U(h) can be derived analytically:

rU ¼ ru�ðu� � �uÞ; ð16Þ

r2U ¼ ðr2u�Þðu� � �uÞ þ ðru�Þðru�ÞT : ð17Þ

where each component ofru�, i.e., @u�=@hi, can be derived using (2)
and (5), i.e.,

@u�

@hi
¼ @K�1f

@hi
¼ �K�1 eKiK

�1f ¼ �K�1 eKiu�: ð18Þ

Furthermore, each component of r2u�, explicitly as o 2u�/ o hi o hj,
can also be derived

@2u�

@hi@hj
¼ K�1 eKjK

�1 eKiu� þ K�1 ~KiK
�1 eKju�: ð19Þ
2.2. Identification of the CZM model parameters

Fig. 2 shows the finite element model implementing the CZM
for a SENB specimen, where fe

c is the elemental equivalent cohesive
nodal force vector due to cohesive traction, N is the vector of shape
functions, t is the specimen thickness and g is the isoparametric
coordinate. According to Fig. 2, now the finite element formulation
for the CZM, Eq. (4), can be rewritten as

Kbu ¼ f � fcð�u;aÞ; ð20Þ

where fc is the global force vector contributed by the cohesive trac-
tion only. The use of fc rather than Kc is to facilitate the computation
of the displacement vector u�:

u�ðaÞ ¼ K�1
b ½f � fcð�u; aÞ�: ð21Þ

The bulk material moduli h computed from elastic test can be
readily used in the inverse problem for the identification of the
CZM model parameters. The same cost function as (14) can be used

UðaÞ ¼ 1
2
ðu�ðaÞ � �uÞTðu�ðaÞ � �uÞ; ð22Þ

but now the CZM parameters, a, are sought. Notice that H is ignored
in Eqs. (20)–(22) because it is known in the inverse problem. The
nonzero terms in fc are only those DOFs associated with the nodes
at the crack surface, which is a small fraction of the total DOFs of fc.
Therefore, the updating of fc each time a is updated is not compu-
tationally expensive.

2.2.1. Parameterization of the CZM
A unique feature of the proposed inverse scheme is that the

CZM is defined using flexible linear or cubic splines with nearly
arbitrary number of control points. Fig. 3 shows the parameteriza-
tion of the CZM curve through a spline, where Pi are the control
points, di are the CODs and ri are the tractions. The CZM model
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parameters are then associated with the control points of the
spline:

fr1; d1; � � � ;rn; dng: ð23Þ

Apparently, in the feasible region for (23) the COD must be positive
and the traction must be tensile. Another requirement is that the
control points’ COD ordinate must be sequential, i.e., 0 = d1 <
d2 < � � � < dn, so that the curve can be constructed. The spline repre-
sentation allows no presumption of the shape of the CZM for the in-
verse problem, i.e., the model definition is generic. Such definition
of CZM allows the application of the inverse scheme to a variety
of materials. One superior advantage of the spline construction of
CZM shape is that, theoretically, arbitrary number of control points
can be employed depending on the complexity of the expected CZM
shape. However, numerically, as the number of control points, i.e.,
proportionally the number of variables, increases, it will be more
and more difficult to solve for the variables. If a robust and tolerant
inverse algorithm is employed, more control points can be used for
the CZM spline and still be solved.

2.2.2. Nelder–Mead optimization
Newton-like optimization methods can be used for Eq. (22),

which require the computation of at least the gradient of the cost
function. In addition, different from the identification of the elastic
moduli h, usually it is hard to have a good initial guess of CZM.
Many Newton-like methods fail when an initial guess is too far
from the final solution. Due to these reasons, the derivative-free
Nelder–Mead (N–M) nonlinear optimization method is adapted
[27–29].

The derivative-free feature of N–M method means that only the
values of the cost function is needed for the progression of the
algorithm. This facilitates the implementation of the inverse prob-
lem formulated by (22). However, because the N–M method is also
an unconstrained optimization method, the feasibility of the CZM
parameters has to be enforced. These can be done by introducing
the barrier terms into the cost function

UðaÞ ¼ 1
2
ðu�ðaÞ � �uÞTðu�ðaÞ � �uÞ þ b1ðaÞ þ b2ðaÞ; ð24Þ

where b1(a) and b2(a) are the barrier terms defined as follows:

b1ðaÞ ¼
X

i

10Nbðhb�riÞ=hb ; ð25Þ

where 0 < hb� 1, and Nb� 1 is used to penalize U(a) if ai 6 0.

b2ðaÞ ¼
X

i

10Nbf½ni�ð1�hbÞ�=hbg; ð26Þ

where

ni ¼
dn;i � ðdn;i�1 þ dn;iþ1Þ=2
ðdn;iþ1 � dn;i�1Þ=2

����
����; ð27Þ

is the normalized horizontal distance of point i from the midpoint of
the adjacent two points i � 1 and i + 1 (see Fig. 4). When ni < 1, con-
dition dn,i-1 < dn,i < dn,i+1 is satisfied. When ni > 1 � hb, a numerical
penalty appears. Thus the requirement that d1 < d2 < � � � < dn can be
ensured during optimization. One example of the barrier term
b1(a) is illustrated in Fig. 5. The barrier term b2(a) has the same
effect as b1(a) and is not shown.

The regularization of the CZM shape is realized by monitoring
the CZM shape during the optimization iterations. Several criteria
are defined to detect if the CZM shape computed shows clustered,
spike or tail points. Once detected, the optimization can be halted.
The locations of control points are redistributed so that those
situations are removed but the major curve shape is maintained.
The optimization is then restarted with a set of better-estimated
and well-conditioned initial guess. For the details of this regulari-
zation, the readers are referred to [5,30].

2.2.3. Formation of cohesive zone
To solve for cohesive parameters a from Eq. (22), a complete

cohesive zone must be assured at the load level when the displace-
ment �u is measured by DIC, so that every parameter in a is active
for the computation of u�. Intuitively, one might think the com-
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plete cohesive zone forms at or around peak load. However, it has
been demonstrated by Park et al. [31] that the complete cohesive
zone for a fiber-reinforced concrete SENB specimen may not form
at peak load level but rather at a post-peak load level. In their
study, a bilinear softening CZM is used for the mode I fracture of
concrete. To estimate the critical load levels where the complete
cohesive zone forms for the examples in this study, the cohesive
stress distribution can be plotted along the crack path and direct
inspection can provide the estimation. In the following, qualitative
estimations for the threshold load levels are made by FEM simula-
tion for the model shown in Fig. 6, where two CZMs are investi-
gated: one with a hardening behavior and one with a linear
softening behavior.

Fig. 7 illustrates the formation of cohesive zone for the softening
CZM case. In the figure, the cohesive stress profiles are plotted
along the crack at pre-peak load, peak load, and post-peak load lev-
els. The crack is located from x = 5.5 mm to x = 25.5 mm. Fig. 8
illustrates the formation of cohesive zone for the hardening CZM
case. When the COD at initial crack tip reaches the critical separa-
tion, dc, the corresponding traction at initial crack tip drops to zero.
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At this moment, a complete cohesive zone first forms behind the
initial crack tip. From both figures, it can be seen only at load level
‘‘C’’ does the complete cohesive zone forms. For linear CZM, this
point corresponds to 70% of the post-peak load level, while for
hardening CZM, the threshold is at about 80% of the post-peak load
level. Therefore, displacement data at a post-peak load level shall
be used in the inverse analysis.
3. Experimental program

The procedure described in [32] is used to prepare the FRCC
specimens for bending and fracture tests, as well as DIC measure-
ment. The nominal specimen dimensions for both the bending and
fracture test specimens are 26 � 13 � 140 mm (height �width
� length). For the single edge-notched beam (SENB) specimen for
fracture testing, the nominal notch size is 6 mm. Four different
fiber volume fractions are used: 0.5%, 1%, 2% and 3%. The mix
proportions for the specimens are presented in Table 1.

Black and white enamel-based paints are used to prepare the
speckle pattern for DIC. A Paasche� Single Action – External Mix
– Siphon Feed Airbrushes is used to first spray white paint on
the specimen as background. The amount of white paint sprayed
is just enough to uniformly and fully cover the specimen. Then
black paint is sprayed to generate the random speckle pattern.
Fig. 9 shows a typical speckle pattern generated for DIC.

The setup of four-point pure bending test is shown in Fig. 10.
The region defined by the dashed line indicates the region of inter-
est (ROI) where the displacement is computed by DIC.

The setup of the fracture testing is similar to the setup of the bend
test, except the SENB specimen is used instead and CMOD is used as
Table 1
Mix proportions of FRCCs with different fiber volume fraction.

Cement (wt.) Fly ash class F (wt.) Water (wt.)

0.573 0.427 0.210
0.215
0.220
0.225

a Effective weight of superplasticizer (Grace Advance Flow).
b HPMC: hydroxypropyl methylcellulose.
the control channel. Due to heterogeneity, the FRCC SENB specimen
may not show straight crack paths. Thus, a shallow straight groove
on both sides of the specimens is introduced to confine the crack
path within the groove (Fig. 11). The grooves are made by a specially
tailored thin band saw. All groove depth from the surface are be-
tween 1 and 1.5 mm. The initial notch size, a0, is 6 ± 0.3 mm.
4. Identification of the elastic moduli

While conventional experimental methods usually determine
one or two elastic properties from a single experiment using the
global response data, the theory presented in Section 2.1 shows
that the complete Hooke’s tensor, i.e., all elastic properties, can
be computed utilizing full-field displacement data in a single load
test. This section presents the results computed from the hybrid
DIC-FEM inverse technique.

The loading of the FRCC 4-point bending test is displacement
(crosshead) controlled at a rate of 0.2 mm/min. The load versus
crosshead displacement curves for the four FRCCs are shown in
Fig. 12, all show initial linear response followed by nonlinear re-
sponses after cracking occurs. Depends on the amount of fibers,
the post-cracking response can be softening only (0.5% FRCC), or
hardening (1–3% FRCC). Notice for 2% and 3% FRCCs, the ratios of
the limit of linearity to the ultimate/peak strength are relatively
small, which indicates that the fibers are carrying significant
post-cracking load. Multiple DIC images are taken for each speci-
men. However, only the DIC images taken before cracking can be
used to measure the elastic moduli due to the continuous assump-
tion of the DIC algorithm. The load levels when the DIC images ta-
ken shall not be too small, so that sufficient elastic deformation can
Fiber (vol.%) Superplasticizera (wt.) HPMCb/water (wt.)

0.5 0.002 0.04
1
2
3
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Fig. 10. Bending test setup, the rectangle is the region of interest (ROI) where the DIC displacement is computed.

L =  120 mm

U =  60 mm

t=13mm

H
 =

 2
6 

m
m

PP

Notch

Groove

a0

a0

Fig. 11. Fracture test setup (upper: schematic, lower: actual image). The rectangle is the region of interest (ROI) where the DIC displacement is computed – notice the profile
of the groove and notch.

Fig. 9. A typical speckle pattern used in DIC.

578 B. Shen, G.H. Paulino / Cement & Concrete Composites 33 (2011) 572–585
be accurately measured. In addition to the reference image taken at
zero loading, two images at different elastic load levels are used for
each specimen. The load levels corresponding to the images used
for DIC are listed in Table 2.
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Table 2
Loadings when specimen images are taken for DIC, in N (note: FRCC-0.5 means the
FRCC has 0.5% fiber volume fraction, same for the remaining specimen IDs).

Reference point Deform 1 Deform 2

FRCC-0.5 0 440 585
FRCC-1 0 480 723
FRCC-2 0 597 866
FRCC-3 0 596 992
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Fig. 13. Surface plot of displacement field ux and uy b

Table 3
The inverse computation of isotropic elastic properties.

Initial guess Load level (N) Converge

E (GPa) m E (GPa)

FRCC-0.5 10.0 0.2 440 17.9
585 18.1

FRCC-1 10.0 0.2 480 17.6
723 17.7

FRCC-2 10.0 0.2 597 18.5
866 18.3

FRCC-3 10.0 0.2 596 19.0
992 20.4

B. Shen, G.H. Paulino / Cement & Concrete Composites 33 (2011) 572–585 579
The full-field DIC is used to measure the displacement field
within the region of interest (Fig. 10). A typical displacement field
is shown in Fig. 13, with DIC resolution equals 17.6 lm/pixel. No-
tice the very small displacement variation over the region of inter-
est: 1.9 pixels over a width of 3414 pixels for ux and 1.3 pixels over
a height of 1480 pixels. The corresponding maximum compression
or tension strain at top or bottom fibers is 0.56 � 10�3. Using 0.05
pixel as the conservative estimation for the resolution of DIC used
in this study, the estimated relative error for the strain measure-
ment will be ±0.05/1.9 = ±2.6% for ex, and ± 0.05/1.3 = ±3.8% for ey.
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y DIC for FRCC-3 bending specimen at P = 992 N.

d results U(h(0)) U(h(n)) # of iterations

m

0.150 0.0015 0.000212 11
0.141 0.0033 0.000376 16
0.148 0.0019 0.000293 10
0.142 0.0043 0.000540 15
0.149 0.0029 0.000411 9
0.144 0.0068 0.000798 14
0.147 0.0032 0.000446 8
0.141 0.0106 0.000825 12
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Fig. 14. The computed Young’s modulus and Poisson’s ratio versus fiber volume
fraction.
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This bound of relative error estimates will translate to the final er-
ror of the computed elastic properties.

Initial guess of E = 10 GPa and m = 0.2 are assumed for the New-
ton–Raphson procedure described previously. The inversely com-
puted properties can be obtained in a few iterations. The computed
properties, as well as the initial and final values of the cost func-
tion, and the number of iterations for convergence are summarized
in Table 3. The computed Young’s moduli and Poisson’s ratios are
also shown in Fig. 14. For each specimen, the computed E and m
are accurate: the difference computed at the two different loads
for the same specimen is less than 7% for E and 6% for m. The Pois-
son’s ratios computed from higher load data are consistently lower
than those computed from lower load data. The value of the lower
Poisson’s ratio may be more accurate because higher deformation
at higher loads reduces the relative DIC measurement errors. The
presence of PVA fibers does not affect the bulk elastic properties,
which is expected. The PVA fiber has a Young’s modulus of
39 GPa1, while the ordinary cement paste modulus is in the range
of 10–20 GPa [33,34].

Ref. [35] has reported a 2% PVA FRCC with a 20.3 GPa Young’s
modulus and Ref. [36] has reported 18.7 GPa for a 2.8% PVA ECC.
However, both references do not provide the measurement for
Poisson’s ratio. It has been generally accepted that concrete has a
Poisson’s ratio between 0.15 and 0.2 [33,34], depending on the
mix proportion. The FRCC is primarily composed of cementitious
matrix, thus the lower-end Poisson’s ratio, 	0.15, shall be expected
for FRCC. This correlates very well with the computed Poisson’s
ratios.

The convergence rate of Newton–Raphson algorithm is very
fast. An illustration of a typical evolution of the E and m during opti-
mization is shown in Fig. 15, for the FRCC-3 specimen at the higher
load. As can be seen, the convergence of m is slower than the con-
vergence of E. The horizontal displacement is almost solely sensi-
tive to E while the variation of vertical displacement is sensitive
only to m.

In the subsequent computation of the FRCC cohesive properties,
the average of E and m computed at two loads for each FRCC are
used. As will be shown, the dominant deformation of an FRCC SENB
specimen under fracture is the rigid body rotation. Thus the
computation of CZM may be sensitive to the accuracy of the bulk
E and m.
1 http://www.kuraray-am.com/pvaf/fibers.php.
5. Identification of the CZM

The global response of the fracture test on the FRCC SENB spec-
imens, load P versus CMOD and load P versus displacement, are
shown in Figs. 16 and 17, respectively. In both figures, all the
curves show multiple vertical short drops. Those are the points
when the testing is paused for taking the DIC images. Since the
loading is CMOD rate controlled, the P versus CMOD curves are
smoother than the P versus d curves. The short load drops are
due to the self-readjustment of the fractured specimens under a
sustained loading. The DIC images are taken when the load reading
is stable, which corresponds to the lower point of the drops. The
corresponding load level when the images are taken are recorded
and used in the FEM–DIC inverse analysis as the key force bound-
ary conditions. It is noted that the facture of the FRCCs is primarily
dominated by fibers pulled out, while there are limited number of
fiber fracture based on microscope observation.

As discussed in Section 2.2.3, the deformation fields measured
at post-peak range are appropriate for the inverse analysis. In addi-
tion, three points are used at different load levels for each speci-
men, as indicated by the circles in Fig. 16.

The fracture energy can be estimated from area under the load
versus load-line displacement curves (Fig. 17). The testing frac-

http://www.kuraray-am.com/pvaf/fibers.php


Table 4
FRCC fracture energy estimated from load versus load–line curves.

FRCC-0.5 FRCC-1 FRCC-2 FRCC-3

GF (N/mm) 0.44 0.87 1.90 3.58

B. Shen, G.H. Paulino / Cement & Concrete Composites 33 (2011) 572–585 581
tured the specimen completely, however, the area under the unre-
corded part of the P versus d curve shall be negligible. In addition,
due to the missing part of the curve, the fracture energy estimated
will be the lower bound of the actual fracture energy. The com-
puted fracture energies for all specimens are listed in Table 4. This
fracture energy will be used to construct the initial CZM guess for
the inverse computation. In addition, it can also be a reference of
comparison for the computed CZM, which shall have slightly high-
er fracture energy.
5.1. Displacement fields

A typical post-peak DIC image is shown in Fig. 18. The distance
between the two loading point is 60 mm, or 3400 pixels. This cor-
responds to a camera resolution of 17.7 lm/pixel. Visually the elas-
tic deformation of the specimen cannot be noticed due to the very
low cohesive strength to elastic modulus ratio of the FRCC speci-
men. The figure also illustrates the effectiveness of the groove in
constraining the crack path.

An illustration of the displacement fields measured by DIC for
the FRCC-1 specimen at the three load levels indicated in Fig. 16
is shown in Fig. 19. As can be seen, the parallelism of the field iso-
lines to the direction of the displacement to be measured shows
that the displacement field is dominated by the rigid-body compo-
nents. As FRCC matrix is very brittle, the post-peak crack tip loca-
tion does not change significantly, at least it is not indicated from
the measurement. To further illustrate the dominance of the rigid-
body motion of FRCC bulk material under fracture, the displace-
ment field (horizontal displacement only) of an adhesive bonded
polymethylmethacrylate (PMMA) SENB specimen after post-peak
[30] is shown in Fig. 20 for comparison. The same experimental
procedures, including test setup and DIC computation, have been
carried out for these two different materials. From Fig. 20, the high
gradient of the displacement field near the crack indicates appar-
ent stress concentration. In addition, compressive strain can also
be derived in the upper part of the PMMA specimen. The phenom-
P P

Fig. 18. Typical DIC image of the FRCC SENB taken at a post-peak point. The in
enological observation of Fig. 20 cannot be derived for the FRCC
displacement fields shown in Fig. 19.

5.2. Inverse computation of the CZM

Eight control points are used for the spline that construct the
CZM traction–separation curve. Cubic Hermite interpolation is
used for the interpolation of the spline. The initial guess of the trac-
tion–separation curve for the inverse computation is constructed
using the same procedure as described in [30]. Displacement field
measured at each load level is used as an individual set to compute
the CZM, thus there are three sets of computed traction–separation
curves corresponding to the three displacement field measure-
ments. The computed CZM traction–separation curves are shown
in Fig. 21 for the FRCC with 0.5%, 1%, 2% and 3% PVA fibers,
respectively.

All computed FRCC CZM traction–separation curves show an
initially hardening curve followed by an approximately linear soft-
ening behavior. The traction–separation curves computed from the
two higher loads are more consistent in the computed shape while
the one computed at the lowest load deviates from the former two.
This may be due to the higher relative error in the DIC computed
displacement at lower load levels as the deformation at lower load
levels is smaller. The P-CMOD curves shown in Fig. 16 shows an
initially linear, then a hardening response before reaching the peak
load. The hardening portion of the P-CMOD curve may possibly due
to the corresponding hardening behavior of the CZM, which is
shown in the computed traction–separation relations (Fig. 21).
Numerical examples in [5] compared P-CMOD responses of three
SENB fracture specimens with a linear softening, a power-low soft-
ening, and a hardening CZMs, respectively. Only the SENB with
hardening CZM shows an apparent hardening behavior in the glo-
bal P-CMOD response. Furthermore, recently, Yang and Fischer
[37] observed a hardening relation between fiber bridging stress
and crack opening through a direct uniaxial tension test. It was also
found that the appropriate CZM for an engineered cementitious
composite required a hardening behavior [38]. Therefore, the char-
acteristic of shapes of the computed CZM traction–separation
curves conform to these recent studies.

The computed CZM traction–separation curves shown in Fig. 21
can be further smoothed using polynomial least-square fitting. A
4th degree polynomial provides the best fitting for the individual
curve. However, the fitting does not provide additional insight
to the physics. For the ease of simplicity and comparison, the
sert on the left-hand-side indicates the region captured in the photograph.
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Fig. 19. Displacement field measured by DIC for the FRCC-1 specimen at three post-peak load levels; left: horizontal displacement, right: vertical displacement; measurement
unit: pixel.
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computed traction–separation curves are averaged using a curve
composed of two linear segments, one for the hardening portion
and one for the softening portion. To do so, first define a few char-
acteristic parameters. The critical stress rcr is defined at d = 0 mm
in the computed curves. The cohesive strength rmax is defined as
the peak stress of the computed traction–separation curves, and
its corresponding COD is defined as dp. The critical COD, dcr, is de-
fined as the separation when the cohesive stress drops to zero. For
each of these four parameters, take the average from the three
computed traction–separation curves for each FRCC. The averaged
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Table 5
Critical cohesive stress, critical separation and fracture energy computed CZM; also
listed is the fracture energy computed from the global curve.

FRCC-0.5 FRCC-1 FRCC-2 FRCC-3

rcr (MPa) 1.277 1.970 3.102 4.421
rmax (MPa) 2.137 3.840 5.834 8.117
Dnp (mm) 0.033 0.069 0.134 0.146
Dnc (mm) 0.247 0.408 0.580 0.800
GF, from CZM (N/mm) 0.261 0.860 1.834 3.563
GF, from P–d curves (N/mm) 0.27 0.87 1.90 3.58
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Fig. 23. FRCC critical stress versus fiber volume fraction.
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parameters for each FRCC specimen can be used to construct the
averaged CZM traction–separation curves by connecting points
(0, rcr), (rmax, dp) and (dcr, 0). The averaged CZM traction–separa-
tion curves for all FRCC specimens are shown in Fig. 22.

The averaged parameters that characterize the CZMs and the
fracture energy are also listed in Table 5. The critical stress of the
FRCC has a linear relation with respect to fiber volume fraction
(Fig. 23). This is expected as the tensile strength of FRCC is con-
trolled by the volume fraction of the fibers. On the other hand,
the fracture resistance also increases with increasing fiber volume
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Fig. 24. Fracture energy versus fiber volume fraction.
fraction. Such effect is reflected in the averaged CZM model as the
increased critical stress. The increase of critical separation with fi-
ber volume fraction conforms to the increased ultimate CMOD
measured (Fig. 16). Table 5 also shows the fracture energy com-
puted from global response curve, P versus d. The fracture energies
computed from two very different methods are close (Fig. 24), ex-
cept for FRCC-0.5. It has been explained that the fracture energy
from computed traction–separation curve shall be higher than
the one computed from P versus d curve. If only the traction–sep-
aration relation computed from the highest load is used to com-
pute the fracture energy, the value will be slightly higher and
may be more reasonable. The fracture energy is also proportional
to the fiber volume fraction, which is expected as the cement ma-
trix has negligible fracture energy comparing to the fracture energy
contributed by the PVA fibers.
5.3. Direct simulation using the computed CZM

The computed CZMs is verified by means of its use in direct sim-
ulations to obtain the global response and compared with the
experimental measurements. Since only a few snapshots of the
experimental points are used, but not the global response, e.g., P
versus CMOD, in the computation of the CZMs, thus verification
by comparing to the global response is somewhat justified. The
simulated P versus CMOD curves are plotted together and shown
in Fig. 25.

It can be seen from Fig. 25 that the computed results conform
well to the experimental results. Notice the particular good match
of the curves for the softening part of the curves. The initial portion
of the curves is only elastic, and the FEM simulations match well
with the experiments, which indicate that the identified Young’s
modulus and Poisson’s ratio are good estimates.
6. Conclusions

The identification of elastic moduli (Young’s modulus and Pois-
son’s ratio) and CZM of homogeneous PVA microfiber reinforced
cementitious composites is carried out in this study. Both identifi-
cation problems use the full displacement field computed by DIC as
the input to an FEM based inverse problem formulation. The robust
FEM Update method is used for the optimization.

For the identification of the elastic moduli, four-point bend tests
are used. The linearized Hooke’s tensor is derived for isotropic
material at plane stress condition. An efficient Newton–Raphson
solver is used. The computed elastic moduli for the FRCCs with dif-
ferent fiber volume fractions (0.5–3%) are between 17.6 and
20.4 GPa, while the computed Poisson’s ratios are within the range
from 0.141 to 0.150. The computed elastic moduli are consistent
with data reported in the literature. The presence of PVA fibers
slightly affects the modulus of elasticity while it does not affect
the Poisson’s ratio apparently.

For the identification of the CZM, SENB specimens are used. DIC
displacements are obtained from three post-peak load levels. The
CZMs computed at these different load levels are consistent. The
shapes of computed CZMs for the FRCCs all show an initial harden-
ing followed by an approximately linear softening behavior. This is
because, after the cement matrix cracks, the PVA fibers govern the
crack opening process and the fiber bridging action contributes to
the increase of cohesive stress and fracture energy. The fracture
toughness is contributed primarily by the PVA fibers. It is found
that the cohesive strength and the fracture energy have a linear
relation to the fiber volume fraction. It is also found that the com-
puted critical separation also increases with the increase of fiber
volume fraction. The fracture energy computed from the CZM is
consistent with those computed from the global load versus
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Fig. 25. Comparison of experiment and FEM simulation of the P versus CMOD curves (FEM simulation use the inverse computed CZMs).
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load–line displacement. The direct simulation using the computed
CZMs yields consistent global responses in comparison with the
experimental measurements.
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