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Abstract: A structural analysis framework called the finite particle method (FPM) for structure failure simulation is presented in this paper.
The traditional finite-element method is generated from continuum mechanics and the variational principle; vector mechanics form the basis
of FPM. It discretizes the domain with finite particles whose motions are described by Newton’s second law. Instead of imposing a global
equilibrium of the entire continuous system, FPM enforces equilibrium on each particle. Thus, particles are free to separate from one another,
which is advantageous in the simulation of structural failure. One of the features of this approach is that no iterations to follow nonlinear laws
are necessary, and no global matrices are formed or solved in this method. A convected material frame is used to evaluate the structure
deformation and internal force. The explicit time integration is adopted to solve the equation of motion. To simulate the truss structure
failure, a failure criterion on the basis of the ideal plastic constitutive model and a failure modeling algorithm are proposed by using
FPM. According to the energy conservation study of a two-dimensional (2D) truss, the energy is decomposed and balanced during the
failure process. Also, a more complicated three-dimensional (3D) structure failure simulation is given. The comparison of the simulation
results and the practical failure mode shows the capability of this method. DOI: 10.1061/(ASCE)ST.1943-541X.0000321.© 2011 American
Society of Civil Engineers.
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Introduction

Structural progressive failure behavior attributable to unexpected
loads, such as a typhoon, an earthquake, and impact loads, has been
an area of great interest for a long time. However, it is complicated
and costly to investigate such phenomena by means of theoretical
studies and experiments. Therefore, the numerical simulation
becomes an essential complementary way to analyze structural
progressive failure.

The finite-element method (FEM) derived from the variational
principle and continuum mechanics has been widely used in an
extensive range of engineering problem analyses in the past few
decades. However, progressive failure behavior involves strong
nonlinearities and discontinuities; and thus, viable alternatives to
the standard FEM need to be considered. The FEM generated from
the variational principle imposes a global equilibrium from the
entire continuous system and reduces the force residual at nodes.

These unbalanced nodal forces may introduce some nonzero
work under rigid body motion and may cause inaccuracies in
the solution or even failure of the computation because of the
singularity of the stiffness matrix. However, the FEM, with special
treatments and modifications, has been applied to progressive fail-
ure simulations. For instance, Lynn and Isobe (Lynn and Isobe
2007a) implemented the ASI-Gauss technique into finite-element
codes and simulated the impact collapse of framed structures.
By introducing extrinsic cohesive model and topological data struc-
ture into the FEM, dynamic fracture and crack microbranching
processes were successfully simulated (Zhang et al. 2007). An
arbitrary Lagrangian-Eulerian formulation, such as the particle
finite-element method (PFEM) (Onate et al. 2004) or the least
squares finite-element method (LSFEM) (Oliver and Hermann
2005), could solve fluid-structure interaction problems.

On the other hand, the mesh-free approaches, benefiting from
the discrete analytical model, do not have the limitations in the sim-
ulation of failure problems as the conventional FEM. The discrete-
element method (DEM) (Cundall and Strack 1979) discretized a
material by using rigid elements of simple shapes that interacted
with one another. It could model and simulate the nonlinear and
discrete behavior of particulate material such as sand and concrete
(Tavarez and Plesha 2007). Particle methods such as smoothed
particle hydrodynamics (SPH) (Monaghan 1992) and the moving
particle semi-implicit (MPS) method (Koshizuka et al. 1998),
which can model fluids and other geomaterials, have also been
applied to simulate fragmentation, structural large deformations,
and failures. However, these mesh-free methods require detailed
models for the analysis domain and are usually computationally
expensive. Therefore, these methods are more suitable for particu-
late materials behavior analysis rather than truss structure failure
simulation.
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In contrast to the FEM and other mesh-free methods, the finite-
particle method (FPM) (Yu 2010) is derived from vector mechanics
(Ting et al. 2004)This method models the domain composed by
finite particles instead of a continuous mathematical body and uses
Newton’s second law to describe the motions of all particles. It does
not derive the equilibrium equations for stresses from variational
principles as does FEM. Instead, it enforces the equilibrium at
each particle, making the nodal internal force and external force
balanced all the time.

The FPM can be qualified as a particle method because particles
carry structural variables such as mass, density, stress, and velocity.
But particles do not have physical volumes, and they are connected
by elements. By using the convected material frame (Shih et al.
2004), the internal force of a particle is obtained from the defor-
mation of the corresponding elements with which it is connected.
The explicit time integration is adopted for solving the particle mo-
tion equation. Recently, Ting’s mechanical concept and theory has
been successfully applied to the motion analysis of planar framed
structures (Wu et al. 2006), kinematically indeterminate bar assem-
blies (Yu and Luo 2009a), deployable structures (Yu and Luo
2009b), planar solids (Wu et al. 2008), and three-dimensional (3D)
membrane structures (Wu and Ting 2008).

The motivation of this work is to establish a general finite-
particle method (FPM) framework for solving truss structural fail-
ure problems. As a particle method, it is possible to add or delete
particles and elements in the FPM analysis domain, which is
important in the simulation of structural failure. Furthermore, every
item in the basic equation of motion is clearly expressed, and the
unknown displacement is solved explicitly. No iterations are nec-
essary to follow nonlinear laws, and no global matrices are formed.

The remainder of this paper is organized as follows. The fun-
damentals of FPM are described, including the discretization of the
structure, the basic particle motion equations, the internal force cal-
culation, the explicit time integration, and solution procedures. The
nonlinear and dynamic behaviors of a star dome truss are analyzed
to prove the accuracy and generality of the FPM. A failure criterion
on the basis of the ideal plastic constitutive model is proposed.
Moreover, the modeling of truss structural failure in the FPM is
explained, followed by an energy conservation study of the pro-
gressive failure of a simple two-dimensional (2D) truss structure.
Also, a more complicated 3D truss structure example is described.
Finally, some concluding remarks of this work are provided.

Finite-Particle Method

Taking the 3D bar element as an example, the fundamentals of
the FPM are described in this section, including the discretization
of structure, the basic particle motion equations, the internal force
calculation, the nonlinear constitutive model, the explicit time
integration, and solution procedures. A verification example is also
presented in this section.

Discretization of Structure

In FPM, a truss structure, such as the one shown in Fig. 1(a), can be
discretized with particles and elements, as shown in Fig. 1(b). It is
assumed that the structural mass concentrates at particles, whereas
elements have no mass and are in static equilibrium during motion.
So the particle force can be obtained from the deformations of the
corresponding elements with which it is connected. If the element is
represented by a couple of forces, the structure can be modeled, as
shown in Fig. 1(c).

Particle Motion Equations

An arbitrary particle, α, undergoes a discrete motion path,
t0; t1; t2;…; tn, with the position vector changing from
x0; x1; x2;…; to xn, as shown in Fig. 2. The time interval is very
small, so variables such as stress and strain can be regarded as fixed
for the duration of the time step and only changed at the boundary
of the time step.

The motion of Particle α in a general structure follows Newton’s
second law:

mα
€d ¼ Fext � Fint ð1Þ

where mα = mass of α; d = displacement vector; €d = acceleration
vector; and Fext = summation of the external forces acting on
Particle α, which can be either physical forces or equivalent forces
defined by mathematical concepts. The even distribution of mass
from each member to the node is used in the determination of
particle force, mα. The term Fint denotes the summation of the
internal nodal forces exerted by the elements connected with the
Particle α. The formulations for internal forces of the element will
be derived in the following subsection.

If the damping force is considered, the motion equation can be
expressed as

mα
€d ¼ Fext � Fint � Fdmp ð2Þ

where the damping force Fdmp ¼ μmα
_d; μ = damping factor, which

is the same as the definition in the dynamic relaxation method
(Lewis 1984). Only the structure damping is considered. From
Eq. (2), every particle is found to be in a dynamic equilibrium state
under internal, external, and damping forces.

Considering the truss structure modeled by a 3D bar element,
as shown in Fig. 1, each particle has only three translation degrees
of freedom. The motion equation of Particle α can be expressed as

mα

€dx
€dy
€dz

2
664

3
775 ¼

f extx

f exty

f extz

2
64

3
75�

f intx

f inty

f intz

2
64

3
75�

f dmp
x

f dmp
y

f dmp
z

2
664

3
775 ð3Þ

Internal Force Calculation

To calculate internal forces, consider the 3D bar element shown in
Fig. 3. The position vectors of the end Nodes 1 and 2 of this
element at time ta and tbð¼ ta þΔtÞ are defined as ðxa1; xa2Þ and

Fig. 1. (a) 3D-framed structure; (b) discretization of structure by particles and elements; (c) particles and forces
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ðxb1; xb2Þ, respectively, as shown in Fig. 3(a). The reference configu-
ration for stress analysis of Element 12 at time tb is set to be its
configuration at ta. So the effect attributable to the geometric
change within time stepΔt can be neglected. The relative displace-
ment at Nodes 1 and 2 between time ta and tb are Δx1 ¼ xb1 � xa1
and Δx2 ¼ xb2 � xa2, as shown in Fig. 3(b). Then, taking the
motions of Node 1 as the rigid body translations of the element,
the relative displacements of Node 2 to Node 1 between the
reference configuration and the current configuration is Δu2 ¼
Δx2 �Δx1.

Because the internal forces are related only to the deformation,
it is necessary to remove rigid body translations and rotations from
the relative displacements. A simple kinematic formulation, the
convected material frame (Shih et al. 2004), is suggested. First,
assume the Element 1020 at tb is subjected to a fictitious translation,
�Δx1, and a fictitious reversed rotation, �Δθ. Then, Element 1020

is displaced to Position 100200, as shown in Fig. 4(a). The internal
force is obtained at this configuration. The relative rigid body
displacement attributable to the fictitious rotation Vur2 can be
obtained as follows (Goldstein et al. 2002):

Vur2 ¼ �ðRT � IÞΔx0 ð4Þ

where I = 3 × 3 unit matrix; R = rotation matrix ofΔθ;Δθ = angle
between Elements 12 and 1020; Δx0 = position vector of Node 2
in the local deformation coordinate at time tb; and Δx0 ¼
l1020 0 0½ � where l1020 = length of Element 12 at time tb. There-
fore, the deformation displacement increment of Element 12 from
tb to ta is

Δud2 ¼ Δu2 þΔur2 ¼ Δx2 �Δx1 � ðRT � IÞΔx0 ð5Þ

The time segment Δt is assumed to be very small, and the
deformation during the time step is infinitesimal. Therefore, the
infinitesimal strain and engineering stress could be used to evaluate
stress. As a bar element, its deformation is related only to the varia-
tion of the bar length. Thus, instead of using Eq. (5), the incremen-
tal deformation of a bar can be determined from the following
equation:

Δud2 ¼ ðl1020 � l12Þe12 ð6Þ

where l12 and l1020 = length of Element 12 at time ta and tb, respec-
tively; and e12 = directional vector of Element 12 at time ta.

After the fictitious rotation, Element 100200 is parallel to
Element 12 [Fig. 4(b)], which satisfies the basic assumptions of
material mechanics. The axial force of the element is

Fig. 3. Single 3D bar element: (a) displacements of particles at two ends of element; (b) relative displacements of particles

Fig. 4. Particle internal force calculations: (a) reversed rotation, �Δθ, and translation, �Δx1; (b) rotation, Δθ, and translation, Δx1

Fig. 2. Discrete motion path of Particle α
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f 200 ¼ f a þΔf a ¼
�
σαAα þ

EαAα

l12
ðl1020 � l12Þ

�
e12 ð7Þ

where f a = axial force of Element 12 at time ta; Δf a = incremental
axial force of Element 12 at time tb; σa = axial stress at time ta;
Ea = Young’s modulus; and Aa = section area of Element 12.
According to the static equilibrium condition

f 100 ¼ �f 200 ð8Þ

As the axial force at the fictitious position is obtained, let the
element subject to a rotation, Δθ, and a translation, Δx1, return
to its original position. In this process, only the direction of the
element axial force is changed. Then the real element axial force
can be determined [Fig. 4(b)]:

f 20 ¼ �f 10 ¼
�
σαAα þ EαAα

l12
ðl1020 � l12Þ

�
e1020 ð9Þ

where e1020 = directional vector of Element 12 at time tb. The axial
force f 10 and f 02 is applied to the corresponding particle, respec-
tively. The internal force of a particle can be identified by the sum-
mation of all axial forces of elements connected to it.

Nonlinear Constitutive Model

Eq. (9) is the internal force formulation for a linear constitutive
model. Because structural “failure” directly is bound up with the
nonlinear property of the structural material, the inelastic constit-
utive model is also considered in the analysis (Yu 2010). In the
FPM, material nonlinearity does not cause nonlinearity to the par-
ticle motion equation. It only causes differences in the calculation
of the particle internal force.

Consider a nonlinear constitutive model, σ ¼ EðεÞ, in the analy-
sis. The strain-stress relationship and loading-unloading state of the
bar element should be determined first in every time step according
to the element state in the last time step. Then, the incremental axial
force of the bar element in Eq. (7) can be determined by σ ¼ EðεÞ
explicitly because the incremental deformations of the last step are
already known. The internal forces of particles connected to the
element are changed correspondingly. Therefore, the only differ-
ence between linear and nonlinear constitutive models in the
FPM is how the particle internal force is calculated.

Explicit Time Integration

Several methods can be employed to find solutions for the particle
motion equations [see Eq. (2)]. Because every item at the right-
hand side can be expressed explicitly and also because the iteration
in the solution procedure is avoided in doing so, explicit time
integrations are used. If a simple central difference is adopted,
the velocity and acceleration can be approximated as

_dn ¼
1

2Δt
ðdnþ1 � dn�1Þ ð10Þ

€dn ¼
1

Δt2
ðdnþ1 � 2dn þ dn�1Þ ð11Þ

where dnþ1, dn, and dn�1 = displacement of an arbitrary particle at
step nþ 1, n, and n� 1, respectively; andΔt = constant time incre-
ment. Substituting Eqs. (10) and (11) into Eq. (2) yields

dnþ1 ¼
�

2
2þ μΔt

�
Δt2

mα
ðFext

n � Fint
n Þ þ

�
4

2þ μΔt

�
dn

�
�
2� μΔt
2þ μΔt

�
dn�1 ð12Þ

Eq. (12) is a simple and explicit formula, from which displacements
of structures can be determined.

Computational Procedures

The computational procedure of the FPM for bar assemblies is very
simple. It can be summarized as follows:
1. At the first time step, t0 ¼ 0, give all initial input information,

such as the initial displacements, external force, and constraint
conditions. According to Eq. (12), d�1 is needed, which can be
obtained from the following equation:

d�1 ¼ d0 �Δt _d0 þ
1
2
Δt2€d0 ð13Þ

Substituting d�1, d0, Fext
0 , and Fint

0 into Eq. (12), d1 is
determined. Store d0 and d1; then, move forward to the next
step.

2. At any time step, nðn ≠ 0Þ, update the positions of all parti-
cles first.

3. Determine the new axial force of each element at its new
position by using Eqs. (6)–(9). If the nonlinear constitutive
model is considered, the incremental internal force is obtained
by the nonlinear stress-strain relationship of the nonlinear
constitutive model. Assemble them for each particle internal
force, Fint

n .
4. If particle external forces, Fext

n , are changed at time step tn,
update them.

5. If particle mass values, mα, are changed at time step tn,
update them.

6. Substituting dn�1, dn, Fext
n , and Fint

n , into Eq. (12), dnþ1 is
determined. Store dn and dnþ1; then, move forward to the next
step, tnþ1.

7. If time is less than the ending time, return to Step 2.
Otherwise, stop.
The analytical code was developed in Matlab, and all examples

in this work were computed with a personal computer (i.e., 2.6 GHz
Pentium Dual-Core CPU and 2 GB RAM with the Windows XP
operating system).

Example

The star dome truss shown in Fig. 5 is a commonly used benchmark
problem for testing the accuracy of different geometric and material
nonlinear algorithms (Driemeier et al. 2005; Leu and Yang 1990;
Papadrakakis 1981). Papadrakakis combined the dynamic relaxa-
tion and the first-order conjugate gradient methods in the investi-
gation of the large deflection analysis. Leu and Yang generated the
results of the truss nonlinear behavior analysis by considering the
effects of both the rigid body motion and stretching. Driemeier et al.
explored the various features of this structure with plasticity and
damage by using the nonlinear finite-element method. However,
without any special treatments, the FPM was used to analyze
the nonlinear and dynamic behavior of this truss with the same
program used in the linear static analysis, which could prove the
accuracy and generality of this method.

The structure properties are shown in Fig. 5. The cross-section
area of all members is 20 mm2.
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To catch the buckling property of this dome, a displacement
control of the FPM was used. Eq. (12) turns to be

Fext
n ¼

�
2þ μΔt

2

�
mα

Δt2

�
dnþ1 þ

�
2� μΔt
2þ μΔt

�
dn�1

�
�

4
2þ μΔt

�
dn

�
þ Fint

n ð14Þ

As the displacement increases, the external force, F in Fig. 5,
could be obtained directly from Eq. (14). The bilinear kinematic
hardening model used in the Driemeier et al. research was adopted
for this example. The Young’s modulus at the linear elastic and
hardening phases are 200 GPa and 200 MPa, respectively. The
yield stress σcrit ¼ 250 Mpa. Set the time step Δt ¼ 1 × 10�5 s
and the displacement incremental step Δd ¼ 1 × 10�6 mm. Fig. 6
shows the elastic and plastic pre- and postbuckling behaviors of
load versus displacement at Nodes 1 and 2. The elastic and plastic
limit loads of 4,662N and 3,033N were predicted for this analysis,
which are quite similar to the Driemeier et al. results.

To catch the dynamic buckling property of this dome, Eq. (12),
as a force control method, can be used directly in the analysis.
Apply constant forces F ¼ 3;630N, 3,631N, 3,632N, and 3,633N
to the elastic model, respectively. The vertical displacement
responses of Node 1 are shown in Fig. 7(a). When F > 3;632N,
the deflection of Node 1 vibrates with a very small amplitude.
When F > 3;632N, the structural buckling happens, and the

deflection of Node 1 becomes much larger. Thus, the dynamic
snap-through load is approximately 3,632N. Comparing to the
static result 4,662N, the dynamic ultimate load of the star dome
truss is reduced by 22% in these analyses. Similarly, Kassimali
and Bidhendi (1988) analyzed the 24-rod truss and found the
dynamic stability elastic ultimate load dropped by 24% compared
with static results. The vertical plastic displacement responses of
Node 1 versus different constant loads are shown in Fig. 7(b).
The dynamic plastic ultimate load approximately of 2,255N is
reduced 26% compared to the static plastic result. The dynamic
plastic analysis takes approximately 0.375 s of computer time
for a physical time of 0.04 s.

Failure Criterion for Truss Structure

Most of the work reported in the literature uses the stress or strain
limit as a truss structure failure criterion. That is, if the strain
or stress in a certain member exceeds the limit value of the material,
fracture happens, and this member cannot support the stress or
strain any longer. In this paper, a failure criterion for the truss struc-
ture is proposed on the basis of the ideal plastic constitutive model.

Moments usually induce bending and shearing forces into
members. Because a 3D bar element is used in this paper, the code
can not simulate the bending and shearing failure in a single
element. To modify this point, compression also is considered to

Fig. 5. Star dome truss geometry and loading

Fig. 6. Star dome truss displacement results: (a) load versus vertical displacement of Node 1; (b) load versus horizontal displacement of Node 2
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be one reason that element failures can result. As shown in Fig. 8,
the relationship between stress and strain is linear until the member
axial tensile or compressive stress reaches the material’s yield
value, σcrit. Then, the material behavior is proposed to be plastic
until failure happens. However, the exact critical strain value at
the point at which failure happens is not quite clear. According
to several experiments, the critical axial tensile strain value is sug-
gested to be approximately three times the yield strain, εcrit ¼ 3εelas
(Lynn and Isobe 2007b).

After failure happens, the fracture member may have one or two
free ends. If the external force is not exerted, unloading will occur
in the failure member. The unloading is elastic in nature with the
same slope as the initial loading phase, also shown in Fig. 8.

FPM for Modeling Truss Structure Failure

When a structure reaches the failure criterion, member fracture and
crack are unavoidable. Because the FPM model is a particle dis-
cretization domain, and no continuum is assumed, it could handle
the discontinuous structure naturally after failure happens. In this
study, a simple and straightforward method for modeling truss
structure failure is introduced.

Fig. 9(a) shows part of a truss structure modeled by a 3D bar
element. If Member AB reaches the failure criterion, fracture
may happen at A, B, or both. To determine the fracture position,
the particle force at both member ends, fA and fB must be calcu-
lated. Comparing these two particle forces, if jfAj > jfBj, fracture
happens at A. Then Element A0B is departed from Particle A. A new
particle is generated at A0, as shown in Fig. 9(b). If jfAj < jfBj, frac-
ture happens at B; then, a new particle is generated at B0, as shown

Fig. 7. Star dome truss dynamic displacement results of Node 1 versus different constant loads: (a) elasticity; (b) plasticity

Fig. 8. Ideal-plastic stress-strain curve for failure criterion

Fig. 9. FPM for modeling member failure
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in Fig. 9(c). If jfAj ¼ jfBj, fracture happens at both ends.
Element A0B0 will be departed from the remaining structure and
become a free element. Two new particles, A0 and B0, are generated
simultaneously, as shown in Fig. 9(d).

When the fracture happens, the basic computational procedure
of the FPM will not be changed. Only the properties of both the
newly added particles and the corresponding original particles
should be updated. Assuming the fracture of Element AB happens
at A [see Fig. 9(b)], the following procedure is adopted to perform
the adaptivity:
1. The mass of the newly generated particle depends on the ele-

ment connected to it. Half of the mass of Element A0B is redis-
tributed to Particle A0. Correspondingly, the mass of the new
Particle A0 should be subtracted from the mass of Particle A.

2. With the new topology information, particle forces still depend
on the forces of elements connected to them. The internal
force of Particle A0 can be evaluated from the deformation
of Element A0B; the internal force of Particle A can be identi-
fied by the summation of all the axial forces of elements
connected to it. The external forces of Particle A0 and A are
evaluated in the same way.

3. The total number of elements will not be changed, whereas the
total number of particles should be updated at the point at
which the fracture happens.
Regardless of which case in Figs. 9(b) and 9(c) happens in the

fracture analysis, the motions of all particles still can be obtained by
Eq. (12) with updated forces and masses.

Energy Conservation During Failure Process

In FPM, the explicit time integration with the central difference
method is adopted for solving the motion equations. Krenk
(2006) demonstrated that the response calculated by the Newmark-
based time integration algorithm satisfies the energy balance equa-
tion. During the complicated failure process, a large deformation
and fracture of the truss structure induces strong nonlinearity and
discontinuity. However, the energy conservation should still be
observed.

The external work is done by external forces. It is the summa-
tion of the external work done by the external force exerted on each
particle over this particle displacement, given by

We ¼
XNp

n¼1

f extn Δn ð15Þ

where f extn = external force on Particle n; Δn = displacement of
Particle n; and Np = total number of particles.

The internal work includes kinetic energy, strain energy, and
damping work. The kinetic energy is attributable to particle veloc-
ity, which is the summation of the kinetic energy of every particle,
given by

Wk ¼
XNp

n¼1

mnv2n
2

ð16Þ

where mn = mass of Particle n; and vn = velocity of Particle n.
The strain energy is attributable to the deformation of elements.

Because the truss structure in this paper is modeled by the 3D bar
element, the deformation is only related to the length variation of
the element. According to the stress-displacement curve shown in
Fig. 8, the element may undergo an elastic phase, a plastic phase, or
unloading. Taking the tension part as an example, it could be speci-
fied as three cases to get the strain energy, as shown by the shaded
regions in Fig. 10.

If the tensile element is in an elastic phase, as shown in
Fig. 10(a), the single element strain energy wn is given by

wn ¼
1
2

Z
σBεBdV ð17Þ

where σB and εB = stress and strain at Point B, respectively.
If the tensile element is in a plastic phase, as shown in

Fig. 10(b), wn is given by

wn ¼
Z �

σcritεB �
1
2
σcritεcrit

�
dV ð18Þ

where σcrit = yield stress; and εcrit = yield strain.
If the tensile element is unloading from the plastic phase, as

shown in Fig. 10(c), wn is given by

wn ¼
Z �

σcritðεplas � εcritÞ þ 1
2
σBðεB � εplas þ εcritÞ

�
dV ð19Þ

where εplas = strain at the point at which unloading is from a plastic
to an elastic phase.

The total strain energy is the summation of all element strain
energy:

Ws ¼
XNe

n¼1

wn ð20Þ

where Ne = total number of elements.
The damping work is done by a damping force over each

particle displacement. Because damping causes energy dissipation,
the damping work always points in the opposite direction of the
particle velocity, which is given by

Fig. 10. Element strain energy: (a) elastic phase; (b) plastic phase; (c) unloading phase
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Wd ¼
XNp

n¼1

μmnvnΔn ð21Þ

The external work should be equal to the internal work over the
entire simulation time:

We ¼ Ws þWk þWd ð22Þ

To verify the energy conservation in the progressive failure
process obtained by FPM, a 2D frame structure shown in
Fig. 11(a) was analyzed as an example. The material had a Young’s
modulus E ¼ 69 GPa, yield stress σcrit ¼ 400 MPa, and density
ρ ¼ 2;700 kg=m3. The cross-section area of each element was
0:0005 m2. The time step Δt ¼ 1 × 10�5 ms was set for the
analysis. A constant load was applied to the two ends of the

structure, and it was removed after fracture happened, as shown
in Fig. 11(b).

Without Damping

In this case, the damping was not considered. The failure process
is shown in Fig. 12. The two ends of the structure were separated at
last because of the stress concentrations at these two parts. Consider
Member AB, located at one end of the structure, marked in
Fig. 12(a). The variations of its element internal force and displace-
ment are shown in Fig. 13. The internal force and displacement first
increased linearly. After the yield stress was reached, the element
went into the plastic phase. Element AB was separated from the
main body of the structure at the point at which fracture happened
at tf ¼ 0:73 ms. Although the external load disappeared at that
time, the strain energy increased because of decreasing kinetic

Fig. 13. (a) Internal force; (b) displacement variations of Member AB during failure process without damping

Fig. 12. Failure process of framed structure under constant load: (a) t ¼ 2:5 ms; (b) t ¼ 5 ms; (c) t ¼ 7:5 ms; (d) t ¼ 10 ms

Fig. 11. (a) 2D framed structure; (b) load history
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energy. Thus, the element was still in plastic loading and the inter-
nal force did not decrease immediately. After the internal force un-
loading in the element happened, this element started free vibration.

As shown in Fig. 14(a), the internal and external energy of
Element AB increased at first. After fracture happened at both ends
of Element AB, both the kinetic energy and the external work
dropped immediately. Two reasons explain this phenomenon.
One is the external force is removed at the point at which the frac-
ture happens in the structure. The other is that masses of Particles A
and B decrease because of the fracture. Before the fracture happens,
the mass of Particle A is equal to half of all element masses
connected to Particle A. But after fracture happens, the mass of
Particle A is only the half mass of Element AB. The same thing
happens to Particle B. Then, the strain energy and kinetic energy
transform one another, whereas the total internal energy of
Element AB is conserved. The total energy conservation of the
entire structure is shown in Fig. 14(b). The total internal energy
and the external work are always identical to one another, even after
failure.

With Damping

Consider now a damping factor μ ¼ 0:5. The failure process of the
structure was almost the same as the situation without damping,
which is omitted. But the situation was totally different for energy.

The variations of the internal force and displacement in
Element AB are shown in Fig. 15. After the element was separated
from the main body of the structure, the element started vibration.
Because the damping force dissipated energy, the amplitude of
the vibration became smaller and smaller. The kinetic energy
disappeared at approximately 100 ms. The plastic deformation

could not be recovered. Thus, strain energy existed in the element
at last. The total internal energy, including the strain energy, kinetic
energy, and damping work, became a constant after the fracture
happened. The energy conservation of the entire structure, shown
in Fig. 16(b), is also balanced during the failure process.

Progressive Failure Analysis of Truss Structure
Under Typhoon Conditions

In this section, a dynamic failure analysis is performed by using
FPM to simulate the collapse process of a practical project.

Analyzed Model of FPM

Fig. 17 shows a cantilever truss structure used as the roof of an
audience stand at Sanmen, China. Each member of the structure
was modeled by a 3D bar element and two particles. The total
particle and element numbers were 416 and 1,456, respectively.
The material properties of the steel roof were Young’s modu-
lus E ¼ 206 GPa, yield stress σcrit ¼ 243 MPa, and density
ρ ¼ 7;900 kg=m3. The properties of the pipe cross sections used
in the structural members are shown in Fig. 18. The columns were
concrete-filled steel tubes, 0.6 m in diameter. The properties of
the concrete were Young’s modulus E ¼ 31:5 GPa and density
ρ ¼ 2;000 kg=m3. Compared to the steel roof, the reinforced con-
crete columns were very strong, and they remained intact during
the typhoon. Therefore, the deformations of these columns were
ignored in the analysis, and they were considered to be fixed
supports of the roof.

Fig. 14. Energy conservation without damping: (a) Element AB; (b) entire structure

Fig. 15. (a) Internal force; (b) displacement variations of Member AB during failure process with damping
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Load Conditions

This structure was destroyed by a typhoon in 2005. A typhoon
is one kind of the most complicated dynamic loads. Because the
failure simulation algorithms are focused on in this paper, wind
loads were simplified as constant impact loads in the analysis.
The duration of the impact load was 2 ms. According to the weather
records, the direction of the typhoon attacking the structure was
south to north with an extreme velocity 61:013 m=s, as shown
in Fig. 19(a). But the extreme wind velocity used in the design
of the structure was only 31:45 m=s on the basis of a 50 years
recurrence interval. Therefore, no doubts existed that the structure
would collapse under the typhoon. The relationship between
the wind pressure, ω, and wind velocity, v, is given by ω ¼
v2=1;600 [Ministry of Housing and Urban-Rural Development
(MOHURD) 2002], from which the wind pressure of the typhoon
can be determined. Because the windward side of the cantilever
was titled 10° upward, and the space under the roof was occupied
by stands, the wind on the leeward side was assumed to be blocked
and neglected in the analysis. Wind loads were applied to the struc-
ture as equivalent distributed loads that were perpendicular to the
surface of the roof, as shown in Fig. 19(b).

The design dead and live loads on the roof were 1:3 kN=m2 and
0:5 kN=m2, respectively. The initial gravity load was included in
the dead load.

Analytical Conditions and Results

The time step Δt ¼ 1 × 10�5 s was set in the analysis. The equiv-
alent impact loads were removed at t ¼ 2 ms. After that, only the
dead and live loads were considered in the system. The damping
force of the structure was not considered.

Fig. 20 shows the axial force variations of marked rods in
Fig. 18, which could reflect the wave propagation of the dynamic
loads and failure states of structural members in the cantilever roof.
When t ¼ 1:92 ms, the stress of Rod 1 exceeded the elastic limit
and went into the plastic plateau; when t ¼ 2:3 ms, fracture hap-
pened at one end of Rod 1 because of over compression. After that,
the internal force of Rod 1 started to fluctuate. Rod 4 had a very
similar failure process, but it failed because of over tension. Rods 2,
3, 5, and 6 were adjacent to Rods 1 and 4, respectively. Stresses of
both Rod 2 and Rod 5 increased in an elastic phase at the beginning.
After fractures happened in Rods 1 and 4, the variation trends of
stresses in Rods 2 and 5 changed. Fractures resulted in the unload-
ing of these two rods. Then, their internal forces started to fluctuate.

Fig. 16. Energy conservation with damping: (a) Element AB; (b) entire structure

Fig. 17. Cantilever-framed structure: (a) structure in use (Image by Y.Yu); (b) axisymmetric view; (c) plane view; (d) vertical view
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The stresses of Rods 3 and 6 were very small at the beginning. The
fractures of Rods 1 and 4 led to the loading of these two rods. Then,
the stresses of Rods 3 and 6 become much larger and started to
fluctuate in an elastic phase.

Figs. 21 and 22 show the progressive failure of the structure. At
t ¼ 2:3 ms, fractures first happened in the top layer members of the

cantilever part because of compression. At approximately 2.4 ms,
members in the bottom layer were subjected to tensile failures.
Part AB of the cantilever structure was then rotated by the effect
of the wind about Point A and separated from the main body at last.
Although only the axial force in the 3D bar element was consid-
ered, the analytical results surprisingly show the shear failure was

Fig. 18. Cross section of cantilever-framed structure

Fig. 19. Typhoon and structure information: (a) wind direction and structural surrounding landform; (b) simplified distributed wind load on structure

1178 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2011

J. Struct. Eng. 2011.137:1168-1181.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
R

A
IN

G
E

R
 E

N
G

IN
E

E
R

IN
G

 L
IB

 E
 o

n 
03

/0
3/

13
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



the primary failure mode of the structure. The calculation of the
failure process for the cantilever structure took approximately
8 s of computer time for a physical time of 0.6 s.

The total energy conservation of the entire structure during the
failure process is shown in Fig. 23. Fig. 23(a) shows the details
of the energy conservation at the beginning of the fracture. At
t ¼ 2:0 ms, the impact loads were removed and the structure only
had dead and live loads at that point in time. The external work
started to decrease at that time, because the direction of gravity
was different from the direction of the particle motion, and the live
and dead loads did minus work. The kinetic energy decreased
immediately because of the disappearing of impact loads, whereas
the strain energy continued to increase at this point. At t ¼ 2:3 ms,
the fracture first occurred. The free ends of the failure members
released some strain energy at first. The released strain energy
was then changed to kinetic energy; and, so, the kinetic energy

stopped decreasing. From then on, the strain energy and kinetic
energy transformed to one another, and the value of their summa-
tion was identical to the external work.

Fig. 23(b) shows the variation of the structural energy from
t ¼ 0 to t ¼ 1;200 ms. The external work and the kinetic energy
would increase again, indicating that live and dead loads would
change the directions of particle motions and would finally do
positive work. As the particle motion was accelerated by gravity,
the kinetic energy also increased again. After most of the possible
failure happened in the structure, the strain energy vibrated around
a stable value. The total energy was conserved during the entire
failure process.

Fig. 24 shows damage views of the structure from both the ob-
servation of the real failure site and from the analytical results. The
comparison of the two results indicates that the collapse simulated
by the FPM can catch the basic information of the structure failure.

Fig. 20. Variations of rod stresses during fracture process: (a) Rod 1;(b) Rod 4; (c) Rods 2 and 5; (d) Rods 3 and 6

Fig. 21. Vertical view of cantilever structure failure process
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Conclusion

A general FPM framework for simulating truss structure failure
was proposed in this paper. The fundamentals of this method were
proposed first. At first glance, the FPM seemed similar to the tradi-
tional corotational formulation of frame analysis. However, the

differences in evaluating deformation and forces were significant,
both in basic concept and procedure. By using a fictitious reverse
motion, the structural element was moved to a convected material
frame configuration. After evaluating deformation and obtaining
internal forces at this configuration, the element was moved back
to the original position by a forward motion.

Fig. 22. Axisymmetric view of cantilever structure failure process

Fig. 23. Energy conservation during failure process of cantilever roof: (a) from t ¼ 0 to t ¼ 10 ms; (b) from t ¼ 0 to t ¼ 1;200 ms

Fig. 24. Damage of cantilever roof: (a) observed (Image by Y.Yu); (b) simulated by using FPM
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In a comparison of traditional approaches for truss analysis, the
FPM enforced equilibrium on each particle instead of imposing a
global equilibrium of the entire continuous system. No iterations
were necessary to follow nonlinear laws, and no matrices were
formed or solved in this method. Without any special treatments,
the FPM can be used to analyze the nonlinear dynamic behavior of
the star dome truss with the same program used in the linear static
analysis, which proves the accuracy and generality of this method.

The FPM is advantageous in the simulation of structural failure
because particles are free to separate from one another. A simple
and straightforward method for detecting and modeling truss struc-
tural failure was introduced into the FPM. According to the energy
conservation study of a 2D truss, different kinds of energies were
balanced during the failure process. This failure simulation algo-
rithm was also used in a practical 3D truss structure failure simu-
lation. From the results, the basic failure mode of the structure,
which was quite close to the practical failure image, was observed.
If the 3D beam element was developed to simulate this example,
more failure details could be caught. Therefore, it is believed that
the further development of the FPM can provide engineers with an
effective tool to analyze complicated failure problems.
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