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This  paper  presents  a geometric  nonlinear  analysis  formulation  for beams  of  functionally  graded  cross-
sections  by  means  of  a Total  Lagrangian  formulation.  The  influence  of  material  gradation  on  the  numerical
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response  is  investigated  in  detail.  Two  examples  are  given  that illustrate  the  main  features  of the  formu-
lation,  in  which  the  behavior  of  beams  of graded  cross-sections  is compared  with  homogeneous  material
beams.  A  motivation  for  this  work  is  the  potential  development  of  functionally  graded  risers  for  the
offshore  oil  exploration  industry.

© 2011 Elsevier Ltd. All rights reserved.
otal Lagrangian formulation

. Introduction

Functionally graded materials (FGMs) possess spatially varied
icrostructures caused by the non-uniform distribution of the rein-

orcement phase and by interchanging reinforcement and matrix
aterial roles in a continuous manner (see, for example, Yin et al.,

004; Paulino et al., 2006; Shen et al., 2008; Paulino et al., 2009).
hese materials have been used in several engineering applications
ncluding thermal barrier coatings and thermal protection systems,
rack propagation inhibitors in multi-layer components or buckling
ailure prevention in thin walled members. Applications can also be
bserved in biomechanics (e.g. bone and dental implants), piezo-
lectric devices, spaceflight structures, engines, pressure vessels,
nd pipes. The field has rapidly advanced in several fronts includ-
ng modeling, synthesis, and experiments (Suresh et al., 1993;
uresh and Mortensen, 1998; Miyamoto et al., 1999; Paulino and
utradhar, 2006; Chen et al., 2008; Almeida et al., 2010; Choi and
aulino, 2010). This paper contributes toward numerical modeling
f FGM structures and concentrates on the geometrically nonlinear
ehavior of functionally graded beams. We  hope that the work will

mpart knowledge to the development and evaluation of combined
aterials and structural systems. In fact, a relevant application is
elated to the potential development of functionally graded risers,
hich has widespread in the petroleum industry.

∗ Corresponding author. Tel.: +55 21 35271169; fax: +55 21 35271165.
E-mail address: calmeida@puc-rio.br (C.A. Almeida).

093-6413/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.mechrescom.2011.07.006
Modeling of FGMs has employed a variety of techniques, includ-
ing the finite element method. Most of the work has concentrated
on the use of continuum element formulations (Kim and Paulino,
2002; Dave et al., 2011). However, there has been significant work
using discrete elements such as plates and shells (Tutuncu, 2007;
Ng et al., 2000; Reddy and Cheng, 2001). There has also been some
work on beams modeled with continuum elements (Chakraborty et
al., 2003; Zhang and Paulino, 2007) and with one dimension (line)
elements, as in (Chakraborty et al., 2003), where a first-order shear
deformation theory is employed for linear analysis of beams in stat-
ics as well as in dynamics (Reddy, 1997). This paper emphasizes on
line elements in large displacement analysis, but small strains, in
which the material properties vary gradually through the thickness.
The through-thickness property variation plays a role in the beam
behavior, which is demonstrated by comparing stress profiles of
homogeneous beams with those of graded beams.

The remainder of this paper is organized as follows. Initially,
Section 2 presents a brief introduction to the finite element for-
mulation used herein. The FGM capabilities are incorporated into
the finite element model in Section 3. Next, in order to assess the
effectiveness of the proposed formulation, two  numerical exam-
ples are presented in Section 4. Finally, conclusions are drawn, and
directions for future research are pointed out in Section 5.

2. Finite element formulation review
The finite element formulation adopted in this work follows the
Total Lagrangian approach for two-dimensional beam problems, as
presented by Pacoste and Eriksson (1997).  It considers the center

dx.doi.org/10.1016/j.mechrescom.2011.07.006
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
mailto:calmeida@puc-rio.br
dx.doi.org/10.1016/j.mechrescom.2011.07.006
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Eriksson, 1997). Also, the element displacement fields u(x), v(x) and
�(x) are linearly interpolated along the length with respect to nodal
Fig. 1. Initial and deformed c

ine I-J of a beam element of length L, initially straight, laying on
he local x axis of a reference configuration system and undergo-
ng to a space deformed configuration I′ − J′, as illustrated by Fig. 1.
he present model takes into account kinematics for large displace-
ents and rotations, but with small strains and shear deformations.
The beam center line I′–J′, in deformed configuration, can be

escribed by means of position vector r(x), defined as (Lages et al.,
999)

(x) = [x + u(x)] i + v(x)j (1)

here u(x) and v(x) are, respectively, axial and transversal displace-
ents of a point on the beam center line axis at coordinate x and i

nd j are unit vectors at fixed axes x and y. Moreover, as shown in
ig. 1, this point is associated to a cross section S that may  undergo
arge displacements and rotation to spatial position S′, according to
he parameters u(x), v(x) and �(x). The tangent to the beam center
ine I′–J′, vector ∂r(x)/∂  x, can be expressed in terms of the beam
eformation measures �(x), �(x) and �(x) as

∂r(x)
∂x

= [1 + �(x)] a + �(x)b, �(x) = ∂�(x)
∂x

(2)

here unit vectors a and b are orthogonal and parallel to the cross
ection S′, respectively, and can be expressed as

(x) = cos �(x)i + sin �(x)j, b(x) = −sin�(x)i + cos�(x)j (3)

From Eqs. (1) and (2),  these deformations result, in terms of the
eam displacements, as follows

�(x) =
[

1 + ∂u(x)
∂x

]
cos �(x) +

[
∂v(x)

∂x

]
sin �(x) − 1

�(x) = −
[

1 + ∂u(x)
∂x

]
sin �(x) +

[
∂v(x)

∂x

]
cos �(x)

�(x) = ∂�(x)
∂x

(4)

These equations reduce to the classic Timoshenko’s beam for-
ulas if the condition of small rotation angle �(x) is enforced, i.e.

os(x) ≈ 1 and sin(x) ≈ 0, and by neglecting the remaining second
rder terms. Moreover, Euler–Bernoulli deformation measures are

hen obtained if on top of these, pure bending identity condition is
pplied (�(x) = dv(x)/dx).

According to Fig. 2, N and T are, respectively, normal and trans-
erse components of the internal force F acting on a generic section
urations of beam center line.

S′, and M is the bending moment. In vector form, they are expressed
as

F = Na + Tb, M = Ma  × b (5)

where “×” denotes vector cross product operation. Imposing the
equilibrium conditions on the resulting stresses and assuming a
linear constitutive relation of an homogeneous material one can
write

N =
(∫

A

E dA

)
� = EA�, T =

(∫
A

G dA

)
� = GA�,

M =
(∫

A

Ey2 dA

)
� = EIz� (6)

where EA,  GA and EIz are the resulting beam cross sectional axial,
shear and flexural rigidities, respectively. As shown in the next sec-
tion, material gradation is incorporated into the formulation in the
evaluation of these cross-sectional properties. The element strain
energy U is given as

U = 1
2

∫ L

0

(
EA�2 + GA�2 + EIz�2

)
dx (7)

where �(x), �(x) and �(x) are as defined in Eq. (4).To avoid
locking, the integral in Eq. (7) is numerically evaluated using one-
point Gaussian quadrature at the element mid-point (Pacoste and
Fig. 2. Internal forces and bending moment on a beam cross section.
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′ ′(z−z1)/a2 9
Fig. 3. Young’s modulus distribution over pipe cross section thickness.

egrees of freedom ue = {uI, vI , �I, uJ, vJ , �J}. Once the interpolation
unctions and the integration strategy are defined, one can use

∂u(x)
∂x

=
(

uJ − uI

)
L

,
∂v(x)

∂x
=

(
vJ − vI

)
L

∂�(x)
∂x

=
(

�J − �I

)
L

, �(x) = �I

(
1 − x

L

)
+ �J

(
x

L

) (8)

o evaluate Eq. (7).  The components of the element internal force
ector fe = {NI, TI, MI, NJ, TJ, MJ} and tangent stiffness matrix Ke are
btained by successive differentiation of U with respect to vector
e components (Pacoste and Eriksson, 1997), in the form

ei
= ∂U

∂uei

, Keij
= ∂2

U

∂uei
∂uej

i, j = 1 . . . 6 (9)

. FGM capabilities

This section describes the approach employed to consider func-
ionally graded cross-section beams into the total Lagrangian
ormulation presented in the previous section. As an example, we
onsider experimental data and numerical simulation results for
he Young’s modulus E(x) and Poisson’s ratio �(x), from a plate of
iC–Ni3Al alloy (Yin et al., 2004), which are adjusted through thick-
ess of a pipe cross section by means of a representation curve
btained using least square data reduction, as illustrated by Fig. 3.

In this case, a power law approximation for the distribution of
 through the pipe wall is obtained as

(r) = Ee

(
r

re

)m

(10)

here Ee and m are adjusting parameters and re is the external
adius of the pipe. The power relation shown in Eq. (10) enables one
o proceed with the beam analysis using equivalent rigidity mod-
li (e.g., EA, GJ and EIz), all obtained in closed form in Eq. (6) from

ntegrals over the beam cross section area, in the finite element
train energy expression (Eq. (7)). This is a general approach, suit-
ble to any distribution provided, as shown in the examples that
ollow. Notice that material property variation, through the thick-
ess of the beam, is considered in the numerical formulation, and

he fact that we refer to equivalent moduli does not reduce it to
n homogeneous beam. The through-thickness material property
ariation plays a role in the beam response, specially on the stress
istributions, as shown in the next section.
ommunications 38 (2011) 553– 559 555

4. Numerical examples

In order to illustrate the main features of the present formula-
tion two examples are considered. The objective is to evaluate the
behavior of beams of graded material through the cross-sections by
comparing the results with those of homogeneous materials. In the
analyses that follow both linear and geometric nonlinear behaviors
of in-plane bending beams are investigated.

4.1. Bi-material FGM beam

This example, which has been considered by Chakraborty et al.
(2003) and Zhang and Paulino (2007), consists of a cantilever beam
subjected to a transverse tip load. As shown in Fig. 4, the beam
possesses a composite cross-section made of two  basic materials
(Steel and Alumina) that receives a thin FGM layer between them
allowing for a smooth material property transition. The numerical
input data, including dimensions and all material properties, is also
presented in the figure. The FGM material property is assumed to
vary according to the following exponential relation

E(z∗) = Es exp
[(

z∗

a2
− 1

2

)
ln

(
Es

Ea

)]
= A.B(z∗/a2) (11)

where z∗ ∈
[
−a2/2, a2/2

]
, A = Es

(
Es/Ea

)−1/2
and B = Es/Ea.

The beam reference axis position (neutral axis), from the mid-
coordinate of FGM layer, is obtained by imposing the equilibrium
condition

N = 0 ⇒
∫

A

�x dA =
∫

A

E(z)�z dA = 0

⇒
∫

z

E(z)z dz = 0. (12)

According to Fig. 5, and considering z* = z − z1 in Eq. (11), Eq. (12)
results in the following∫ (z1−(a2/2))

−(a3+(a2/2)−z1)

Eaz dz +
∫ (z1+(a2/2))

(z1−(a2/2))
AB(z−z1)/a2 z dz

+
∫ (z1+(a2/2)+a1)

(z1+(a2/2))
Esz dz = 0 (13)

which leads to z1 = 0.0128 m.

4.1.1. Equivalent structural rigidities
Using Eqs. (6) and the numerical data in Fig. 4, equivalent struc-

tural rigidities are obtained with the material gradation law being
integrated along the cross-section area of the beam shown in Fig. 5.
Notice that the exponential distribution used for E(z*) in Eq. (11) is
also employed for G(z*), with z* = z − z1.

4.1.1.1. (a) Axial rigidity (EA).

EA = EsAs +
∫ (z1+(a2/2))

(z1−(a2/2))
AB(z−z1)/a2 b dz + EaAa = 16.754 × 109 N

(14)

where As = ba1 and Aa = ba3.

4.1.1.2. (b) Shear rigidity (GA).∫ (z1+(a2/2))

GA = GsAs +

(z1−(a2/2))
A B b dz + GaAa = 5.982 × 10 N

(15)

where A′ = Gs

(
Gs/Ga

)−1/2
and B ′ = Gs/Ga.
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Fig. 4. The cantilever composite cross-section beam considered.
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Table 1
Analytical results for the composite cross-section beam.

Stress Component Expression Limits

�xx (Alumina) −Ea[PLz/EIy] −0.0222 < z < 0.0103

�xx (FGM) −EFGM(z∗)[PLz/EIy] 0.0103 < z < 0.0153

�xx (Steel) −Es[PLz/EIy] 0.0153 < z < 0.0278

�xz (Alumina) Ga[P/GA] −0.0222 < z < 0.0103

�xz (FGM) GFGM(z∗)[P/GA] 0.0103 < z < 0.0153

values using a single element model and a very good agreement in
the results is observed. Also, solutions for a full FGM cross section
Fig. 5. Neutral axis position at composite beam cross-section.

.1.1.3. (c) Flexural rigidity (EIy).

Iy=EsIs +
∫ (z1+(a2/2))

(z1−(a2/2))
AB(z−z1)/a2 z2b dz + EaIa = 3.044 × 106 N m2

(16)
here Is = ba3
1/12 + Asd2

s and Ia = ba3
3/12 + Aad2

a , with
s = z1 + (a1 + a2)/2 and da = (a2 + a3)/2 − z1, respectively.

Fig. 6. Axial and shear stresses through the be
�xz (Steel) Gs[P/GA] 0.0153 < z < 0.0278

According to Eqs. (11)–(13) z* = z − z1, where z1 = 0.0128m .

4.1.2. Numerical results
From the results in Eqs. (11)–(16), the usual FE procedure is

carried out to obtain the beam nodal displacements using defini-
tions in Eq. (9).  These results are then employed to obtain the beam
deformations, as defined in Eqs. (4),  and correspondent stress com-
ponents. Closed forms for these axial and shear stress components,
at the fixed cross-section of the beam considered, are obtained
according to expressions shown in Table 1. Fig. 6 illustrates these
stress distributions as they are compared to obtained numerical
beam model are included in these comparisons. Notice that for the
applied load and the geometric and material parameters consid-

am thickness at fixed end cross-section.
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�xx = E(r)�rr = E(r)

(
My

)
= E(r)2	

(
M

)  (
y
)

. (20)
Fig. 7. Cantilever beam consid

red in this study, the beam response is in its linear range, although
ull geometric nonlinear formulation capabilities are employed. The
umerical analysis responses were obtained in one load step, with
o iteration requirements.

.2. Straight cantilever beam under constant bending

Fig. 7 illustrates an initially straight pipe cross section cantilever
eam subject to constant bending moment in large displacement
nalysis. This example reproduces a classical solid mechanics prob-
em for which analytical solutions are compared to the obtained
umerical results of a FGM beam. In the present study, geomet-
ic nonlinearities are taken into account. The numerical input data
sed, including beam dimensions and material property param-
ters, is also presented in Fig. 7. The material Young’s modulus
istribution through the pipe wall thickness is as in Fig. 3, having
iC and Ni3Al at the external radius and inner radius, respectively.
owever, it should be noticed that this material configuration used

s for simulation purposes only and may  not refer to the material
f a real system.

Because under constant bending the beam centerline undergoes
 constant curvature configuration �, then the tip cross-section
otation angle �, in Fig. 7, may  be obtained by analytical means
sing

 = �L = ML

EIz
or � = 2	

(
M

M∗

)
(17)

here M*  is the required bending moment for � = 2	 rad, as shown

n Fig. 8. From geometric considerations, the beam tip displace-

ents are readily obtained as

 = L − R sin � and v = R − R cos � (18)

Fig. 8. Static equilibrium configurations for various bending loads.
n large displacement analysis.

where R = 1/�  = L/�. Thus, Eq. (18) are equivalent to

u
L

=
(

1 − sin �

�

)
and

v
L

= (1 − cos �)
�

. (19)

Results from the analytical expressions in Eqs. (17) and (19) are
presented in Fig. 9, for 0 ≤ M/M*  ≤ 1, which are used to evaluate the
numerical responses of the cantilever beam model considered in
this study.

4.2.1. Numerical results
In this analysis, 10 equally spaced elements are employed. The

beam static configurations for different values of the applied end
moment are shown in Fig. 8, in a qualitative manner. Measurements
of horizontal and vertical displacements as well the rotations at
the tip of the beam, for increasing values of the applied moment,
are compared with good agreement to the analytical results, in
Fig. 9. These numerical results were obtained with 100 equally
incremented load steps, using Newton–Raphson iteration proce-
dure with displacement increment tolerance of 10−4. In all load
steps numerical solution convergence was  reached, at maximum,
after four equilibrium iterations.

Finally, results for normal stress distributions in the pipe-beam
section for M = 0.6M*  – which corresponds to a fairly large dis-
placement configuration, as shown in Fig. 8 – are considered. These
longitudinal stresses were analytically evaluated using the expres-
EIz M∗ L

Fig. 9. Tip displacements and rotations of cantilever beam under constant bending.
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Fig. 10. Normal stresses at: (a) vertical cross-section cut and (b) 45◦ cross-section cut (M = 0.6M*,  E(r) = 404(r/re)0.64GPa).
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Fig. 11. Normal Stresses at: (a) Vertical Cross-Section Cut an

Fig. 10a  and b presents normal stress distributions, furnished
y the numerical analysis for FGM beam and by Eq. (20), along the
eam for two different cross-section cuts: at a vertical cross-section
nd at 45◦ apart from this position, respectively. A very good agree-
ent between these distributions is observed. Also, these results

re compared to stresses in a homogenous beam cross-section hav-
ng the same equivalent bending rigidity. For this particular loading,
hese plots show stress redistributions for the FGM material with
5% increase in the longitudinal stress maximum value and 43%
ecrease in its minimum value, as compared to linear distributions

hown in the homogeneous material beam.

The obtained stress pattern distributions, which are dependent
n the material Young’s modulus through the pipe beam thick-
ess, are changed if, for instance, the same large displacement
5◦ Cross-Section Cut (M = 0.6 M*,  E(r) = 220
(

r/re

)−0.64
GPa).

beam analysis is carried out but with FGM cross section having
TiC at the internal radius and Ni3Al at external radius. In this case
E(r) = 220(r/re)−0.64 and the resulting stresses are as in Fig. 11a and
b. In contrast to the obtained numerical results shown in Fig. 10a
and b, new stress distributions, as compared to homogeneous
beam results, reduce maximum stress values and increase the
minimum ones.

5. Concluding remarks and extensions
This paper addresses a geometrically nonlinear analysis of func-
tionally graded beams using a tailored Lagrangian formulation by
means of a Total formulation. The effect of material gradation
was incorporated in the formulation considering the beam ele-
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C.A. Almeida et al. / Mechanics Resea

ent effective cross-section rigidities associated to axial, shear
nd flexural deformation kinematics, all obtained in closed form
rom integration of the actual property variation through the thick-
ess. Two numerical examples present a redistribution of stresses

n the cross-section of functionally graded beams as compared to
nalytical solutions and to homogeneous beams. As shown in the
xamples, stress and displacement comparisons were considered.
n the large displacement analysis, however, it was noticed that
he beam of graded material presented a substantial difference in
tress distributions as compared to the homogeneous one having
he same equivalent cross-section rigidity.

The nonlinear techniques developed in this paper may  be appli-
able to extend the existing body of work on linear formulations for
unctionally graded beams to the geometric nonlinear range. For
nstance, Silva et al. (2006) modeled bamboo as a linear function-
lly graded material. However, slender structures such as bamboo
ay  exhibit second order behavior, which could be captured by the

resent geometrically nonlinear formulation.
We  expect that this work will contribute to connect research

ith actual industrial applications. For instance, it is a first step
owards development of functionally graded riser pipelines and
ressure vessels, which may  have promising applications in the
etroleum industry (Rasmussen, 2008; Ilstad et al., 2006; Tutuncu,
007). In this respect, future work includes extension of the present
ormulation to three-dimension analyses of FGM risers and consid-
rations of dynamic loading conditions.
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