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Abstract This paper presents a single-loop algorithm for
system reliability-based topology optimization (SRBTO) that
can account for statistical dependence between multiple
limit-states, and its applications to computationally demand-
ing topology optimization (TO) problems. A single-loop
reliability-based design optimization (RBDO) algorithm
replaces the inner-loop iterations to evaluate probabilistic
constraints by a non-iterative approximation. The proposed
single-loop SRBTO algorithm accounts for the statistical
dependence between the limit-states by using the matrix-
based system reliability (MSR) method to compute the
system failure probability and its parameter sensitivities.
The SRBTO/MSR approach is applicable to general sys-
tem events including series, parallel, cut-set and link-set
systems and provides the gradients of the system failure
probability to facilitate gradient-based optimization. In most
RBTO applications, probabilistic constraints are evaluated
by use of the first-order reliability method for efficiency.
In order to improve the accuracy of the reliability calcula-
tions for RBDO or RBTO problems with high nonlinearity,
we introduce a new single-loop RBDO scheme utilizing the
second-order reliability method and implement it to the pro-
posed SRBTO algorithm. Moreover, in order to overcome
challenges in applying the proposed algorithm to compu-
tationally demanding topology optimization problems, we
utilize the multiresolution topology optimization (MTOP)
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method, which achieves computational efficiency in topol-
ogy optimization by assigning different levels of resolu-
tions to three meshes representing finite element analysis,
design variables and material density distribution respec-
tively. The paper provides numerical examples of two-
and three-dimensional topology optimization problems to
demonstrate the proposed SRBTO algorithm and its appli-
cations. The optimal topologies from deterministic, com-
ponent and system RBTOs are compared with one another
to investigate the impact of optimization schemes on final
topologies. Monte Carlo simulations are also performed to
verify the accuracy of the failure probabilities computed by
the proposed approach.

Keywords First-order reliability method ·
Multiresolution topology optimization · Reliability-based
design optimization · Second-order reliability method ·
Single-loop approach · System reliability

1 Introduction

Topology optimization aims to find an optimal structural
layout under given constraints through iterative computa-
tional simulations. In the past decades, a large number of
studies have been devoted to this important research area
of structural optimization (Bendsøe and Sigmund 2003).
Topology optimization methods have been successfully
applied to a wide range of practical engineering problems
(Rozvany 2001; Bendsøe and Sigmund 2003). However,
most of the efforts have been conducted in a deterministic
manner although uncertainties in loads or material proper-
ties may result in significant likelihood of violating design
constraints. In the current study, this approach is referred
to as deterministic topology optimization (DTO). Recently,
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active research has been performed to achieve optimal
topologies with acceptable probability of satisfying given
constraints. This approach is often termed as reliability-
based topology optimization (RBTO), and has been success-
fully applied to a variety of topology optimization problems
(Bae et al. 2002; Maute and Frangopol 2003; Allen et al.
2004; Jung and Cho 2004; Kang et al. 2004; Kharmanda
et al. 2004; Kim et al. 2006; Guest and Igusa 2008;
Rozvany 2008; Lógó et al. 2009; Luo et al. 2009; Chen et al.
2010). For example, Maute and Frangopol (2003) employed
RBTO in the design of compliant micro-electromechanical
system mechanism (MEMS). Jung and Cho (2004) applied
RBTO to geometrically nonlinear structures with uncertain
loads and material properties. Additionally, Rozvany (2008)
derived the analytical solution for benchmark problems in
probabilistic topology optimization. Most research efforts
on RBTO have been focused on satisfying the probabilis-
tic constraint given for each failure mode. In this paper,
this approach is referred to as component reliability-based
topology optimization (CRBTO). A generic formulation for
CRBTO problems is given as follows

min
d

f (ρ(ψψψ; d))

s.t. P[gi (ρ(ψψψ; d), X) ≤ 0] ≤ Pt
i , i = 1, ..., n

K(ρ(ψψψ; d)) · ud = f
dL ≤ d ≤ dU

(1)

where d ∈ �k is the vector of deterministic design variables;
ρ(ψψψ; d) is the material density at the position ψψψ ∈ �2 or �3

that is generally determined by a projection function f p(·)
and the design variables, i.e. ρ(ψψψ; d) = f p(d); f (·) is the
objective function that often describes the volume, com-
pliance, or displacement of the structure; X ∈ �m is the
vector of random variables representing the uncertainties
in the problem; gi (·), i = 1, . . . , n is the i-th “limit-state
function” that indicates violating a design constraint given
in terms of volume, displacement, or compliance by its
negative sign, i.e. gi (·) ≤ 0; Pt

i is the constraint on the
probability of the i-th limit state; K, ud and f respectively
denote the stiffness matrix, displacement vector and load
vector in the equilibrium condition; and dL and dU are the
lower and upper bounds on d, respectively. For simplicity,
the equilibrium condition and the bounds on the design vari-
ables will be omitted in the following RBTO formulations
of the paper. The probability constraint in (1) is described
in terms of either the reliability index (RIA: Enevoldsen and
Sørensen 1994) or the performance function, i.e. the Pt

i -
quantile of the limit-state function (PMA: Tu et al. 1999),
which is obtained by use of a structural reliability analysis
method such as the first-order reliability method (FORM).

While most research efforts in the literature have been
focused on CRBTO, in certain circumstances, the prob-

abilistic constraint should be given on a system failure
event, i.e. a logical (or Boolean) function of multiple failure
modes. For example, the failure of a topology design can
be defined as an event that at least one of the potential fail-
ure modes occurs. This is termed as system reliability-based
topology optimization (SRBTO). SRBTO introduces addi-
tional complexity to reliability calculations especially when
component events are statistically dependent, or when the
system event is not a series (i.e. union of events) or parallel
system (i.e. intersection of events). A generic formulation
for SRBTO is as follows.

min
d

f (ρ(ψψψ; d))

s.t. P(Esys) = P

[⋃
k

⋂
i∈Ck

gi (ρ(ψψψ; d), X) ≤ 0

]
≤ Pt

sys,
(2)

where P(Esys) is the probability of the system failure event;
Ck is the index set of the components (limit-states) in the
k-th cut-set; and Pt

sys is the constraint on the system failure
probability. Any type of system event may be considered
in SRBTO but, for illustration purpose, (2) shows a cut-
set system formulation that can describe series, parallel,
and cut-set systems. A limited number of studies have
been performed on SRBTO because calculation of system
probability and its parameter sensitivities introduces addi-
tional complexity to the topology optimization that already
requires high computational cost. Recently, SRBTO has
been considered for cases in which all component events are
statistically independent of each other (Silva et al. 2010).
In this case, the system failure probability and its param-
eter sensitivities can be obtained by algebraic calculations
of the component probabilities and sensitivities. However,
the limit-states of SRBTO problems often show strong sta-
tistical dependence because of shared or correlated random
variables. In another recent research, SRBTO was applied
to discrete structures that usually require less computational
cost than continuum topology optimization (Mogami et al.
2006). However, the discrete approach (or so-called size
approach) cannot change the structural topology during the
solution process, so the solution will have the same topology
as the initial design (Eschenauer and Olhoff 2001) whereas
continuum topology optimization can optimize size, shape
and connectivity of the structure.

As an effort to overcome impediments to adopting
SRBTO techniques in current design practice, this study
focuses on developing new SRBTO algorithms for con-
tinuum linear elastic structures that can consider statisti-
cal dependence between component events (limit-states).
First, we introduce an SRBTO procedure using a matrix-
based system reliability (MSR) method (Song and Kang
2009; Kang et al. 2011) to handle the statistical depen-
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dence between the limit-states. The MSR method allows
for accurate and efficient calculation of system failure prob-
ability and its parameter sensitivities for general system
problems including series, parallel, cut-set and link-set sys-
tems. Second, we develop a new single-loop algorithm to
improve the accuracy of FORM-based RBTO by use of the
second-order reliability method (SORM). Finally, a recently
developed multiresolution topology optimization (MTOP;
Nguyen 2010; Nguyen et al. 2010a) is integrated with the
SRBTO algorithm to enhance efficiency in computationally
demanding topology optimization problems. This approach
uses three distinct meshes with different resolutions for
finite elements, density and design variables in order to
achieve high resolution optimal designs with significantly
reduced computational costs.

The remaining of this paper is structured as follows:
Section 2 describes the single-loop system reliability-based
topology optimization using the matrix-based system reli-
ability method; Section 3 provides a single-loop algorithm
to enhance component and system reliability-based topol-
ogy optimization by use of the second-order reliability
method; Section 4 presents the multiresolution topology
optimization approach; Section 5 provides numerical exam-
ples of SRBTO; and finally Section 6 provides summary and
conclusions of the paper.

2 System reliability-based topology optimization
using matrix-based system reliability method

In this section, we present a single-loop formulation for sys-
tem reliability-based topology optimization that can account
for statistical dependence between limit-states for general
system failure events. After a brief review on existing
single-loop approaches for component and system RBTO
and methods to account for statistical dependence, the new
SRBTO formulation using matrix-based system reliability
(MSR) method is introduced.

2.1 Single-loop component and system reliability-based
topology optimization

For CRBTO and SRBTO shown in (1) and (2) respectively,
a nested or “double-loop” approach has been often used, in
which each step of the iterations for design optimization
involves another loop of iterations for reliability analysis.
However, this double-loop computation can be prohibitive if
the computational cost for evaluating limit-state function(s)
during the inner-loop search for the “most probable point”
(MPP) or “design point” is expensive (Yang et al. 2005).
There have been active research efforts to overcome this
computational challenge by decoupling the reliability anal-
ysis and the design optimization loops (Wu and Wang 1998;

Royset et al. 2001; Du and Chen 2004; Liang et al. 2007,
2008; Shan and Wang 2008). For example, a single-loop
approach (Liang et al. 2007, 2008) replaces the inner-loop
calculations by an approximate solution obtained by the
Karush–Kuhn–Tucker (KKT) optimality condition. As a
result, the double-loop optimization problem is converted
into an equivalent single-loop problem. This single-loop
approach was reported to have the accuracy comparable
with the double-loop approach and the efficiency almost
equivalent to that of deterministic optimization (Liang et al.
2008). In this study, we utilize this single-loop approach for
the RBTO formulations.

For the CRBTO problem in (1), the single-loop formula-
tion is given as follows.

min
d

f (ρ(ψψψ; d))

s.t. gPt
i

∼= gi
(
ρ(ψψψ; d), x(ut

i )
) ≥ 0, i = 1, ..., n

where ut
i
∼= βt

i · (α̂ααt
i )

T

α̂αα
t
i
∼=
(

− ∇xgi (ρ(ψψψ; d), x(u))Jx,u∥∥∇xgi (ρ(ψψψ; d), x(u))Jx,u
∥∥
)

u=ũi

(3)

where gPt
i

is the Pt
i -quantile of the i-th limit-state function

gi (·); βt
i = −�−1(Pt

i ) is the target (generalized) relia-
bility index where �−1(·) denotes the inverse cumulative
distribution function (CDF) of the standard normal distribu-
tion; Jx,u is the Jacobian matrix of the transformation from
the standard normal space to the original random variable
space, i.e. x = x(u); α̂αα

t
i is the negative normalized gradi-

ent (row) vector of the i-th limit-state function evaluated at
the approximate location for the performance function value
ũi . Instead of searching for the exact MPP at each step of
the design iterations, the single-loop approach obtains an
approximate location for the performance function value ũi

by solving the system equation given by the KKT condition
(Liang et al. 2008). Then, the negative normalized gradient
is scaled by the target reliability index βt

i to determine the
location where gPt

i
is approximately evaluated, i.e. ut

i .
Similarly, the SRBTO problem in (2) can be solved by a

single-loop approach as follows.

min
d,Pt

f (ρ(ψψψ; d))

s.t. gPt
i

∼= gi
(
ρ(ψψψ; d), x(ut

i )
) ≥ 0, i = 1, ..., n

P(Esys; Pt ) = P

⎡
⎣⋃

k

⋂
i∈Ck

gi (ρ(ψψψ; d), X) ≤ 0

⎤
⎦ ≤ Pt

sys

where ut
i
∼= βt

i · (α̂αα
t
i )

T

α̂αα
t
i
∼=
(

− ∇xgi (ρ(ψψψ; d), x(u))Jx,u∥∥∇xgi (ρ(ψψψ; d), x(u))Jx,u
∥∥
)

u=ũi

(4)
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where Pt is the vector of the target failure probabilities,
Pt

i , i = 1, . . . , n. Note that in (4), the target failure
probabilities are treated as design variables rather than pre-
defined constraint values as in (3). This is to control the
system failure probability P(Esys) indirectly in the single-
loop approach by controlling the radii βt

i = −�−1(Pt
i ),

i = 1, . . . , n of the spheres on which the approximate
location for the performance function values are found.

2.2 System reliability-based topology optimization
under statistical dependence

When the limit-states in an SRBTO problem are assumed
to be statistically independent (Silva et al. 2010), the sys-
tem probability can be computed by algebraic calculations
of the probabilities of the individual limit-states because the
probability of any intersection can be computed by the prod-
uct of the individual component probabilities. However, if
there exists significant statistical dependence between limit-
states due to shared or correlated random variables, one
needs to use system reliability analysis methods that can
account for the dependence. In addition, the parameter sen-
sitivities of the system failure probability would facilitate
the use of gradient-based optimization algorithm. However,
computation of the parameter sensitivities of a system fail-
ure probability is challenging when component events are
statistically dependent or the system event is not a series or
parallel system.

The authors have recently applied the matrix-based sys-
tem reliability (MSR) method to general reliability-based
design optimization problems (Nguyen et al. 2010b). The
current study aims to use the MSR method for SRBTO. The
MSR method (Song and Kang 2009) computes the probabil-
ity of a general system including series, parallel, cut-set and
link-set system and its parameter sensitivities by system-
atic matrix calculations. Consider a system event whose i-th
component, i = 1, . . . , n has two distinct states, e.g. fail-
ure or survival. Then, the sample space can be subdivided
into N = 2n mutually exclusive and collectively exhaustive
(MECE) events, denoted by e j , j = 1, .., N . Then, any sys-
tem event can be represented by an “event” vector c whose
j-th element is 1 if e j belongs to the system event and 0 oth-
erwise. Let p j = P(e j ), j = 1, .., N denote the probability
of e j . Due to the e j ’s mutual exclusiveness, the probability
of any general system event Esys , i.e. P(Esys) is computed
as the sum of the probabilities of e j ’s that belong to the sys-
tem event. Therefore, the system probability is computed by
the inner product of the two vectors, that is

P(Esys) =

⎧⎪⎨
⎪⎩
∫
s

cTp(s) fS(s)ds dependent components

cTp independent components

(5)

where p is the “probability” vector that contains p j ’s,
j = 1, .., N ; S denotes the random variables identified as
the sources of statistical dependence between components,
termed as common source random variables (CSRVs). For a
given outcome of CSRVs, the component events are con-
ditionally independent of each other, which allows us to
use the efficient procedure to construct the probability vec-
tor that is applicable to independent components (Song and
Kang 2009); p(s) denotes the probability vector constructed
by use of the conditional failure probabilities of the limit-
states given S = s, i.e. Pi (s) ≡ P(Ei |S = s) instead of
Pi ≡ P(Ei ); and fS(s) is joint probability density function
(PDF) of S. Matrix-based procedures have been developed
to construct the vectors c and p efficiently; to compute con-
ditional probabilities and component importance measures;
and to evaluate parameter sensitivities of the system failure
probability. The details of these procedures and merits of
the method are summarized in (Song and Kang 2009). The
method has been further developed and successfully applied
to various system reliability problems (Kang et al. 2008,
2011; Song and Ok 2010; Lee et al. 2011).

When CSRVs are not clearly shown as in Kang et al.
(2008), one can identify the source of statistical dependence
between limit-states from the results of the component relia-
bility analyses. For example, when the first-order reliability
method (FORM) is used for the component reliability anal-
yses, the component events are described as Zi ≤ −βi ,
i = 1, . . . , n, where Zi and βi respectively denote the
standard normal random variable and the reliability index
obtained by FORM. If Zi , i = 1, . . . , n, follow the general-
ized Dunnett–Sobel (DS) class correlation model (Dunnett
and Sobel 1955; Song and Kang 2009), they are represented
in the form:

Zi =
(

1 −
m∑

k=1

r2
ik

)0.5

Yi +
m∑

k=1

rik Sk, i = 1, . . . , n (6)

in which Yi , i = 1, . . . , n and Sk , i = 1, . . . , m are
uncorrelated standard normal random variables; and rik’s
are the coefficients of the generalized DS model that deter-
mine the correlation coefficient between Zi and Z j as
ρi j = ∑ m

k=1(rik .r jk) for i 
= j . Note Zi and Z j are
conditionally independent of each other given the out-
come of CSRVs Sk , i = 1, . . . , m. Thus, the conditional
probability of the i-th component event given S = s is
derived as

Pi (s) = P(Zi ≤ −βi |s) = �

⎛
⎝−βi − �m

k=1(riksk)√
1 − �m

k=1r2
ik

⎞
⎠ (7)

If a given correlation matrix cannot be described exactly by
a generalized DS class, one can obtain a generalized DS
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model with the minimum fitting error for an approximate
identification of CSRVs (Kang et al. 2011).

2.3 Single-loop SRBTO algorithm using MSR method

The single-loop SRBTO using the MSR method is formu-
lated as follows.

min
d,Pt

f (ρ(ψψψ; d))

s.t. gPt
i

∼= gi (ρ(ψψψ; d), x(ut
i )) ≥ 0, i = 1, ..., n

P(Esys; Pt ) =

⎧⎪⎨
⎪⎩

∫
s

cTpt (s) fS(s)ds ≤ Pt
sys dependent

cTpt ≤ Pt
sys independent

where ut
i
∼=βt

i · (α̂αα
t
i )

T

α̂αα
t
i
∼=
(
− ∇xgi (ρ(ψψψ;d), x(u))Jx,u∥∥∇xgi (ρ(ψψψ;d), x(u))Jx,u

∥∥
)

u=ũi

(8)

When limit-states are statistically dependent, the system
failure probability is defined as a function of design vari-
ables in Pt by constructing p(s) using Pi (s) in (7) with
βi replaced by βt

i = −�−1(Pt
i ). For a case with statis-

tically independent limit-states, the probability vector p is
constructed by use of Pt

i = �(−βt
i ). In (8), we denote

the probability vectors by pt and pt (s) to indicate that the
probability vectors are constructed by use of βt

i instead of
βi . Inheriting the merits of the MSR method, the proposed
SRBTO/MSR approach can evaluate the probability of a
general system event efficiently and accurately with statis-
tical dependence considered. This helps reduce the risk of
having under- or over-conservative optimal designs caused
by inaccurate system reliability calculations (Nguyen et al.
2010b).

The MSR method provides the parameter sensitivities of
P(Esys) with respect to design variables so as to facili-
tate the use of gradient-based optimization algorithms for
SRBTO. From (5), the sensitivity of the system failure prob-
ability with respect to a parameter θ can be computed as
follows.

∂ P(Esys)

∂θ
=

⎧⎪⎨
⎪⎩

∫
s

cT ∂p(s)
∂θ

fS(s)ds dependent

cT ∂p
∂θ

independent

(9)

Song and Kang (2009) developed an efficient matrix pro-
cedure to construct ∂p/∂θ and ∂p(s)/∂θ from the param-
eter sensitivities of component probabilities ∂ Pi/∂θ and
∂ Pi (s)/∂θ , respectively. For example, one can obtain
component-level parameter sensitivities using the FORM
(Bjerager and Krenk 1989).

Herein we derive the sensitivity of Pi (s) with respect to
the design variables in the proposed single-loop SRBTO,

Pt
i , i = 1, . . . , n so as to construct ∂p/∂θ and ∂p(s)/∂θ in

(9) using the aforementioned matrix procedure in Song and
Kang (2009). The sensitivity of Pi (s) with respect to Pt

i is
derived as

∂ Pi (s)
∂ Pt

i
= ∂ Pi (s)

∂βt
i

· ∂βt
i

∂ Pt
i

= −∂ Pi (s)
∂βt

i
· 1

ϕ(−βt
i )

(10)

in which ϕ(·) denotes the PDF of the standard normal dis-
tribution; and from (7), the sensitivity with respect to the
target reliability index is derived as

∂ Pi (s)
∂β t

i
= − 1√

1 − �m
k=1r2

ik

ϕ

⎛
⎝−β t

i − �m
k=1(riksk)√

1 − �m
k=1r2

ik

⎞
⎠ (11)

It is noted that the partial derivative of Pi (s) with respect
to d is zero (with Pt

i fixed). Therefore, for the con-
straint P(Esys) ≤ Pt

sys , it is not necessary to evaluate the
sensitivity of P(Esys) with respect to d.

Next, the sensitivities of gPt
i

∼= gi (ρ(ψψψ; d), x(ut
i )) with

respect to the design variables are derived as follows. First,
the sensitivities with respect to design variables d are
evaluated as

∂gi (ρ(ψψψ; d), x(ut
i ))

∂d
=
∑
ρ

∂gi (ρ(ψψψ; d), x(ut
i ))

∂ρ
· ∂ρ(ψψψ; d)

∂d

(12)

where ∂gi (ρ, x)/∂ρ is computed for the given limit-state
definition, e.g. volume, compliance and displacement. For
example, the adjoint method (Bendsøe and Sigmund 2003)
may facilitate the sensitivity calculation; and ∂ρ(ψψψ; d)/∂d
is obtained from the given projection function (Nguyen
et al. 2010a). The sensitivity of gPt

i
with respect to Pt

i is
derived as

∂gPt
i

∂ Pt
i

= [∇ugi (ρ(ψψψ; d), x(u))
]

u=ut
i

∂ut
i

∂ Pt
i

∼= [∇xgi (ρ(ψψψ; d), x(u)) · Jx,u
]

u=ut
i

∂β t
i

∂ Pt
i
(α̂αα

t
i )

T

= − 1

ϕ(−βt
i )

[∇xgi (ρ(ψψψ; d), x(u)) · Jx,u
]

u=ut
i
(α̂αα

t
i )

T

(13)

Note that this partial derivative is approximate because α̂αα
t
i

is assumed to be insensitive to the changes in Pt
i during the

design iterations.
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3 Improving accuracy of component and system
reliability-based topology optimization

This section introduces new single-loop approaches to
improve the accuracy of reliability calculations in compo-
nent and system RBTO problems with highly nonlinear
limit-state functions.

3.1 Accuracy in FORM-based reliability-based design
and topology optimization

As shown in (2), (4) and (8), the system reliability analysis
during an SRBTO employs the results from the component
reliability analyses on the given limit-states. Therefore, the
accuracy of SRBTOs in satisfying the probabilistic con-
straint on the system event, i.e. P(Esys) ≤ Pt

sys , depends
on that of the component reliability analyses. The inac-
curacy of the FORM-based reliability-based design and
topology optimization has been reported in the literature
(Mogami et al. 2006; Royset et al. 2006; McDonald and
Mahadevan 2008; Rahman and Wei 2008; Silva et al. 2010;
Lee et al. 2010). Some studies have been conducted to
improve the accuracy. For example, Royset et al. (2006)
employed the first-order approximation for failure probabil-
ity and then used higher-order reliability approximations or
Monte Carlo simulations to adjust parameters to improve
the accuracy of system reliability-based design optimiza-
tion. Lee et al. (2010) proposed to use the MPP-based
dimension reduction method (Xu and Rahman 2005) in the
SRBDO framework.

Most of the single-loop SRBDO and SRBTO approaches
(Liang et al. 2007; McDonald and Mahadevan 2008;
Nguyen et al. 2010b; Silva et al. 2010) also employ the
FORM for component probability analyses, which poten-
tially results in unconservative or non-optimal solutions
when the limit-state functions are highly nonlinear. For
example, if a limit-state function is defined in term of
the compliance under uncertain loads, the function is a
quadratic function of the random variables representing the
uncertainty in the loads. Therefore, the linear approxima-
tion by FORM may cause significant errors in component
reliability analyses, and thus also in system reliability cal-
culations. As an effort to apply the single-loop approach to a
wide range of topology optimization problems, we propose
a method to enhance the accuracy of the failure proba-
bilities calculated during the single-loop component and
system RBTO.

3.2 Single-loop component reliability design and topology
optimization with improved accuracy

First, let us consider the single-loop CRBTO approach in
(3). At each step of the design iterations, the approximate

location for the performance function value ut
i is obtained

by scaling the negative normalized gradient vector α̂αα
t
i eval-

uated at the point obtained from the KKT condition, u = ũi

by the target reliability index βt
i , i.e. ut

i
∼= βt

i · (α̂αα
t
i )

T. The
validity of this approximate location for the performance
function value ut

i is checked at the final step of the design
iterations. We modify this procedure to improve the accu-
racy of the single-loop approach. Instead of finding the
approximate location for the performance function value
on the surface of the sphere with the fixed radius βt

i , the
radius is updated at each step of the design iterations by
the ratio of βt

i to the reliability index improved based on the
curvatures at the approximate location for the performance
function value ut

i of the previous step. The formulation of
the proposed scheme is as follows.

min
d

f (ρ(ψψψ; d))

s.t. gPt
i

∼= gi (ρ(ψψψ; d), x(ut
i )) ≥ 0, i = 1, ..., n

at the k-th step: ut
i
∼= β

t (k)
i · (α̂αα

t
i )

T

β
t (k)
i =

⎧⎨
⎩

βt
i k = 1

βt
i

β
t (k−1)(SO RM)
i

×β
t (k−1)
i otherwise

α̂αα
t
i
∼=
(

− ∇xgi (ρ(ψψψ; d), x(u))Jx,u∥∥∇xgi (ρ(ψψψ; d), x(u))Jx,u
∥∥
)

u=ũi

(14)

where β
t (k)
i is the target reliability index used to find the

approximate location for the performance function value
at the k-th step of the iterations; and β

t (k−1)(SO RM)
i is the

reliability index of the (k−1)-th step which was improved
based on the curvatures of the limit-state function at the
approximate location for the performance function value
as follows

β
t (k−1)(SO RM)
i = −�−1

(
Pt (k−1)(SO RM)

i

)

Pt (k−1)(SO RM)
i = �

(
−β

t (k−1)
i

) m−1∏
j=1

1√
1 + κ jβ

t (k−1)
i

(15)

in which Pt (k−1)(SO RM)
i denotes the failure probability

estimated by use of the approximate location for the
performance function value u = ut

i at the (k−1)-th step
by the concept of the second-order reliability method
(SORM; Breitung 1984; Der Kiureghian 2005); and κj ( j =
1, . . . , m − 1) denote the principal curvatures around the
approximate location for the performance function value at
the (k−1)-th step, u = ut

i . Figure 1 shows the actual MPP
u∗ of the given design and the approximate location for
the performance function value ut where the improved reli-
ability index β

t (k−1)(SO RM)
i is computed using Breitung’s
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u~

tα̂

∗u

t t tˆ= β αutβ

t
pG G= G 0=

Fig. 1 Actual MPP (u∗) and approximate location for the performance
function value (ut)

formula in (15). The convergence of the radius β
t (k)
i indi-

cates that the SORM-based reliability index approaches the
target reliability index βt

i . Compared to similar techniques
in the literature (Royset et al. 2006; Rahman and Wei
2008; Lee et al. 2010), our study focuses on implementa-
tion of SORM into the single-loop RBTO. In this study, the
improved CRBTO by SORM in (14) is termed as “SORM-
based CRBTO.” It should be noted that other reliability
analysis methods than SORM, such as importance sampling
method or dimension reduction method can be used for the
updating rule in the proposed approach if necessary.

3.3 Single-loop system reliability-based design
and topology optimization with improved accuracy

The single-loop SRBTO/MSR in (8) is also improved by
enhancing the accuracy of component reliability analysis
results that are used for system reliability analyses. The
formulation of the SORM-based SRBTO/MSR is as follows

min
d,Pt

f (ρ(ψψψ; d))

s.t. gPt
i

∼= gi (ρ(ψψψ; d), x(ut
i )) ≥ 0 i = 1, ..., n

P
(

Esys; Pt (SO RM)
)

=

⎧⎪⎨
⎪⎩
∫

s
cTpt(SORM)(s) fS(s)ds≤ Pt

sys dependent

cTpt (SO RM) ≤ Pt
sys independent

where ut
i
∼= βt

i .(α̂αα
t
i )

T

α̂αα
t
i
∼=
(

− ∇xgi (ρ(ψψψ; d), x(u))Jx,u∥∥∇xgi (ρ(ψψψ; d), x(u))Jx,u
∥∥
)

u=ũi

(16)

where Pt (SO RM) is the vector of the component failure
probabilities by Breitung’s formula (15) at the approxi-
mate location for the performance function values, ut

i ,

i = 1, ..., n; pt (SO RM)(s) and pt (SO RM) denote the prob-
ability vector constructed by use of the Breitung’s for-
mula reliability indexes β

t (SO RM)
i instead of βt

i ; and ũi is
obtained by use of the KKT condition using βt

i . The only
change from (8) is that the probability vector is constructed
by use of the SORM-based reliability indexes instead of the
FORM reliability indexes at the approximate location for
the performance function values.

4 Multiresolution Topology Optimization (MTOP)

A main challenge in performing RBTOs for realistic prob-
lems is the high computational cost which is inherited from
deterministic topology optimization. The material distri-
bution method (Bendsøe 1989) is often used in topology
optimization. This method rasterizes the domain via the
density of pixels/voxels, and thus often requires a large
number of design variables, especially in three-dimensional
applications. Most of the research efforts to overcome this
challenge focused on finite element analysis that constitutes
the dominant computational cost in topology optimization.
For example, researchers make use of powerful computing
resources such as parallel computing (Borrvall and Peters-
son 2001; Evgrafov et al. 2008), approximation procedure
(Amir et al. 2009), or fast iterative solvers (Wang et al. 2007;
Amir et al. 2010). These studies employ the same level of
resolutions for finite element mesh and the design mesh dur-
ing optimization process. In order to obtain high resolution
topology designs with a relatively low computational cost,
we hereby propose to employ a recently developed mul-
tiresolution topology optimization approach (Nguyen et al.
2010a) for SRBTO problems. In this section, the MTOP
approach is introduced and further developed to include
pattern symmetry and pattern repetition constraints.

4.1 MTOP formulation

To illustrate the MTOP approach, let us consider a “mini-
mum compliance” topology optimization problem:

min
d

f (ρ(ψψψ; d)) = C(ρ(ψψψ; d), ud) = fTud

s.t. V (ρ(ψψψ; d)) =
∫

�

ρ(ψψψ; d)dV ≤ Vs (17)

where C(ρ, u) = fTud is the compliance of the continuum;
V (ρ) is the total volume; and Vs is the prescribed volume
constraint. A desirable solution of topology optimization
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specifies the density at every point in the domain as either
0 (void) or 1 (solid). However, since it is impractical to per-
form such an integer optimization, the problem is relaxed
such that the density can have any value between 0 and 1.
For example, in the Solid Isotropic Material with Penaliza-
tion (SIMP) approach (Bendsøe 1989; Rozvany et al. 1992),
the constitutive matrix is parameterized using solid material
density as follows

D(ψψψ) = ρ(ψψψ; d)pD0 (18)

where D0 is the constitutive matrix of the material in the
solid phase, corresponding to the density ρ(ψψψ; d) = 1;
and p is the penalization parameter. To prevent singular-
ity of the stiffness matrix, a small positive lower bound, e.g.
ρmin = 10−3, is placed on the density. Using the penaliza-
tion parameter p > 1, the intermediate density approaches
either 0 (void) or 1 (solid). In the conventional element-
based approach, the density of each element is represented
by one value ρe. In this case, the global stiffness matrix K
in (1) is expressed as

K =
Nel∑
e=1

Ke(ρe) =
Nel∑
e=1

∫
�e

BTD(ρe)B d� (19)

where Ke(ρe) is the stiffness matrix of the element e; B
is the strain-displacement matrix of shape function deriva-
tives; �e denotes the domain of the element e; and D(ρe)

is the constitutive matrix in the element determined by the
density ρe.

Different from the conventional approaches that use the
same mesh for finite element analysis and design (Fig. 2a),
the MTOP approach utilizes three different meshes: a rel-
atively coarse f inite element (FE) mesh to perform the
analysis, a fine design variable mesh to perform the opti-

Design variableDensityDisplacement 

a b

Fig. 2 Element-based and MTOP elements: a Q4/U; and b MTOP
Q4/n25/d25

mization, and a fine density mesh to represent material
distribution and compute the stiffness matrices. The density
mesh is finer than the finite element mesh so that each finite
element consists of a number of density elements (sub-
elements). Within each density element, the material density
is assumed to be uniform. For example, Fig. 2a shows a
conventional element-based approach Q4/U element while
Fig. 2b shows an MTOP Q4/n25/d25 element where “n25”
and “d25” respectively indicate that the number of density
elements and design variable per a Q4 element is 25.

The MTOP approach needs a scheme to obtain the ele-
ment stiffness matrix from corresponding density elements
and design variables. The stiffness matrix is computed as
the summation of the integration of the stiffness integrand
over each density element, which has uniform density. As a
result, the formulation for the stiffness matrix integration is
expressed as follows.

Ke =
∫

�e

BTDB d� =
1∫

−1

1∫
−1

BTDBJ dξdη

=
n∑

i=1

(
(ρi )

p
∫

�0
i

BTD0BJ d A0
i

)
=

n∑
i=1

(ρi )
p Ii

Ii =
∫

�0
i

BTD0BJ d A0
i (20)

where ξ and η denote the intrinsic coordinates in the inter-
val [−1,1]; J is the Jacobian; A0

i is the area/volume of each
density element i in the reference domain �0

i ; and ρi is
the density in the i-th density element. The solution of the
optimization problem in (17) by a gradient-based optimizer
would require the computation of sensitivities of objective
function and constraint. The sensitivities of the compliance
and the volume with respect to design variables are derived
as follows.

∂C

∂dn
=
∑
ρi

∂C

∂ρi

∂ρi

∂dn
=
∑
ρi

−uT ∂K
∂ρi

u
∂ρi

∂dn

∂V

∂dn
=
∑
ρi

∂V

∂ρi

∂ρi

∂dn
(21)

where the sensitivity ∂K/∂ρi can be derived from (20) and
(21) (Bendsøe and Sigmund 2003; Nguyen et al. 2010a).
The sensitivities of the density with respect to design vari-
ables depend on the definition of the material density func-
tion. The MTOP approach utilizes a projection method
(Guest et al. 2004) to compute the density of each density
element from the design variables via a projection func-
tion f p(.). The projection method also provides the mesh
independence and minimum length scale for the topology
design (Nguyen et al. 2010a). For example, if a linear pro-
jection method is employed, the uniform density of a density
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element, ρi is computed as the weighted average of the
design variables in the neighborhood, i.e.

ρi =
∑

n∈Si
dn · w (rni )∑

n∈Si
w (rni )

,

where w (rni ) =
⎧⎨
⎩

rmin − rni

rmin
if rni ≤ rmin

0 otherwise
(22)

where dn denotes the n-th design variable; Si is the sub-
domain corresponding to the i-th density element; and rni is
the distance from the point associated with design variable
dn to the centroid of the i-th density element, i.e. rni =
‖ψψψn − ψψψni‖ in which ψψψn and ψψψni are the coordinates of
the point associated with design variable dn and Si , respec-
tively. Here it is assumed that the change of material density
occurs over the physical radius rmin, which is independent
of mesh. Using the projection function with a minimum
length scale, the mesh independent solution is obtained.
In this study, the method of moving asymptotes (MMA;
Svanberg 1987) is used as the gradient-based optimizer.
The MTOP approach is used in all numerical examples of
the reliability-based topology optimization in this paper.
Various two- and three-dimensional problems demonstrated
that the MTOP approach can achieve high resolution opti-
mal topologies with relatively low computational cost in
comparison to the conventional element-based approach
(Nguyen 2010, Nguyen et al. 2010a). The approach can pro-
mote high-resolution topology optimization in various prob-
lems including biomedical problems, e.g. optimal design of
craniofacial segmental bone replacements (Sutradhar et al.
2010).

4.2 Pattern symmetry and pattern repetition in MTOP

The topology optimization approach is usually applied to
concept design of structures. Due to some practical design
constraints or demands, these structures may require pattern
symmetry and/or pattern repetition in the design. For exam-
ple, pattern symmetry and repetition have been successfully
incorporated into the topology optimization of function-
ally graded material in two-dimensional structures (Almeida
et al. 2010). In this study, we implement pattern symmetry
and repetition conditions into the framework of the multires-
olution topology optimization. Because the design variables
are separated from the analysis model in the MTOP frame-
work, we can choose a basic set of design variables and
map to the whole domain to satisfy the pattern symmetry
and/or pattern repetition condition. Figure 3 illustrates the
mapping schemes to gain pattern symmetry and repetition
in the optimal design.

pattern 
repetition

pattern 
symmetry

Fig. 3 Design variables mapping for pattern symmetry and pattern
repetition

5 Numerical examples

In this section, the proposed SRBTO/MSR procedure
and the SORM-based improvement on CRBTO and
SRBTO/MSR are demonstrated by numerical examples. In
all numerical examples, MTOP is used for computational
efficiency. First, a two-dimensional bridge example demon-
strates the impact of statistical dependence between the
limit-states in SRBTO, which can be taken into account by
the SRBTO/MSR approach. Second, a three-dimensional
cube example shows the improvement in the accuracy
of the SORM-based RBTOs over the traditional FORM-
based RBTOs. Third, a three-dimensional building example
demonstrates that the SORM-based SRBTO approach can
be applied to computationally demanding topology opti-
mization problems with pattern repetition scheme by use of
the MTOP approach. For simplicity, all the quantities are
given dimensionless.

5.1 Two-dimensional bridge

Consider a two-dimensional bridge design in a domain of
250 × 50 and thickness of 0.05 as shown in Fig. 4. The
objective of the optimal design is to minimize the volume
of the structure under constraints on the displacements at
selected locations. The isotropic material is assumed to have
Young’s modulus E0 of 2 × 108 and Poisson’s ratio ν of 0.3.
The minimum length scale rmin = 1.25, and penalization
parameter p = 3 are employed. These material properties
are hereby assumed to be deterministic since the uncertain-
ties in material properties usually have minimal impacts on
reliability-based optimal topologies for a structure under
linear elastic behavior. Stochastic loads are applied at nine
locations on a non-designable layer (with thickness of two)

1 2 3 4 5 4 3 2 1

F1F2F3F4F5F4F3F2F1

50
250

non-designable layer

Fig. 4 Configuration of two-dimensional bridge example
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Fig. 5 The results of two-dimensional bridge example: a DTO (μF =
105, volfrac = 39.07%); b FORM-based CRBTO (μF = 105,
volfrac = 48.64%); c FORM-based SRBTO/MSR (μF = 105,
volfrac = 47.70%); and d FORM-based SRBTO/MSR (μF = 2.5 ×
104, volfrac = 16.66%)

at the bottom of the bridge as shown in Fig. 4. A symmetric
loading condition is assumed, so the nine loads are modeled
by use of five random variables. Each of the five random
variables is assumed to follow a Gaussian distribution with
the mean (μF ) of 100,000 and coefficient of variation (ratio
of the standard deviations to the means) of 1/6. All the five
random variables are assumed to be uncorrelated. The con-
straints on the displacements at the locations of the applied
forces are described by the limit-state functions

gi (ρρρ, F) = d0
i − di (ρρρ, F) , i = 1, .., 5 (23)

where ρρρ denotes the vector of the element densities; F
is the vector of the five random variables representing
applied forces; di (ρρρ, F) is the vertical displacement at
the i-th location predicted by a finite element analysis;
and d0

i is the limit on the displacement. In this exam-
ple, the displacement limits are given as {d0

i }i=1,..,5 =
{1.25, 1.50, 1.75, 2.00, 2.25}. Because of the symmetry

conditions, only a half of the domain is taken into the
analysis model with 125 × 50 MTOP elements (Q4/n9/d9).

First, a deterministic topology optimization (DTO) is per-
formed with the loads equal to the given mean values. This
is performed by (1) except that the probabilistic constraints
are replaced by deterministic ones, i.e. gi (ρρρ, F) ≥ 0. The
corresponding optimal design is shown in Fig. 5a. The vol-
ume fraction (volfrac) of the optimal design, i.e. the ratio of
the optimal volume to that of the original domain is 39.07%.
Next, a FORM-based CRBTO is conducted as in (3) with all
the reliability index targets βt

i = 2 (or Pt
i = 0.02275). The

optimal topology shown in Fig. 5b has the volume fraction
of 48.64%. This optimal volume is higher than that by the
DTO since the topology that avoids the failure under the
mean loads is expected to have significantly higher proba-
bility to violate the constraints than the given target failure
probability. After the CRBTO optimization is completed,
the probability that at least one of the constraints is vio-
lated (i.e. series system) is estimated by the MSR method
as Psys = 0.066517. Next, a FORM-based SRBTO/MSR
is performed for the series system event with the target
system failure probability Psys = 0.066517, which was
chosen to be the same as the system failure probability of
the optimal topology by the CRBTO in order to compare
the optimal topologies by CRBTO and SRBTO that have the
same system failure probability. The SRBTO optimal topol-
ogy, which is different from those by DTO and CRBTO,
is shown in Fig. 5c (volume fraction of 47.70%). Another
SRBTO is performed with the mean values of the random
loads reduced to 25% (Fig. 5d) to investigate the impacts of
the load intensity on the optimal topology.

Table 1 shows the component and system failure proba-
bilities by Monte Carlo simulations (MCS) for the optimal
designs by the CRBTO and SRBTO in order to verify the
accuracy of the FORM-based RBTO procedures in this
example. The results confirm that the FORM-based RBTO
designs provide failure probabilities that are compatible
with the target probabilities on component events (CRBTO)
and system event (SRBTO). This is because the limit-state
functions in this example are linear function of the uncer-
tain loads and the random variables are assumed to follow
Gaussian distributions. Thus, the improvement schemes
proposed in Section 3 is not needed.

Table 1 Two-dimensional
bridge example: verification of
failure probabilities of CRBTO
and SRBTO designs by MCS
(106 times, c.o.v = 0.005)

CRBTO MCS on CRBTO design SRBTO/MSR MCS on SRBTO design

P1 0.002275 0.002266 0.001214 0.001281

P2 0.002275 0.022798 0.016284 0.016331

P3 0.002275 0.023119 0.039239 0.039377

P4 0.002275 0.023019 0.042740 0.042662

P5 0.002275 0.023132 0.023450 0.023239

Psys 0.066517 0.066990 0.066517 0.066719
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The efficiency of MTOP over the conventional element-
based approach is investigated by using the SRBTO prob-
lem above. To obtain a similar level of resolution using
the element-based approach, it is necessary to use 375 ×
150 Q4/U elements. After 50 iterations, the computer run
time of the element-based approach is about two times more
than the MTOP Q4/n9/d9 approach. The relative efficiency
is further increased as we aim at a higher level of resolu-
tion. More details on comparison of computational costs are
found in (Nguyen 2010; Nguyen et al. 2010a).

In this example, the volume fraction from SRBTO
(47.70%) is fairly close to that of the CRBTO (48.64%) that
gives the same system failure probability. This might give an
impression that it is not necessary to perform SRBTO con-
sidering the additional computations for the system failure
probability. However, SRBTO is still preferred for RBTO
problems when probabilistic constraint is given on the sys-
tem failure event for the following reasons. First of all,
the probabilistic constraints on individual limit-states that
would satisfy the given constraint on the system failure
probability are not known a priori. In this numerical exam-
ple, we chose the constraint on the system failure probability
in SRBTO as the system failure probability of the result of
the CRBTO just for comparison purpose. Second, in using
CRBTO formulation for solving SRBTO problems, all the
component target failure probabilities are often given equal
mainly because the actual component failure probabilities of
an optimal design that would satisfy the system constraint
are not known. Introducing such uniform target component
failure probabilities often makes the SRBTO problems more
constrained than necessary, which may lead to non-optimal
solutions (Nguyen et al. 2010b). Finally, in SRBTO, one
can identify the relative contribution of each limit-state to
the system probability based on components probabilities
of the optimal design or by use of the component impor-
tance measures by the MSR method (Song and Kang 2009;
Nguyen et al. 2010b). According to the component failure
probabilities of the optimal designs, the importance rank-
ing of the limit-states is as follows: 4 (most important)
→3→5→2→1 (least important).

The effects of the mean values, coefficient of variations,
and the correlations between random variables Fi

′s on the
optimal topologies are also investigated. For simplicity, all
the loads are assumed to have the same mean values (μF ),
coefficients of variation (c.o.v), and correlation coefficients
(ρi j ). The SRBTO problem is solved again with the same
target system probability of 0.066517 while the mean val-
ues, coefficients of variation and correlation coefficients are
varied. First, Fig. 6a and b show that the increase in mean
values (from 0.25 × 105 to 1.25 × 105) and coefficients of
variation (from 0.01 to 0.50) results in the increase in vol-
ume fractions of the optimal topologies. Next, the impacts
of changes in the correlation coefficients (from 0.00 to
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Fig. 6 Impact on FORM-based SRBTO results (volume fraction) by
changes in a mean values (c.o.v = 1/6, ρi j = 0.0); b coefficients of
variation (μF = 100,000, ρi j = 0.0); and c correlation coefficients
(μF = 100,000, c.o.v = 1/6) of the load random variables

0.90) of the load random variables are shown in Fig. 6c.
It is seen that positive correlation among the random loads
results in higher volume fractions, i.e. more conservative
design. This is because positively correlated loads increase
the displacements, and thus the failure probabilities. There-
fore, in this problem, if the positive correlation is ignored,
the RBTO may lead to an unsafe design. Also presented
in each plot are the results with the statistical dependence
between limit-states ignored, i.e. each joint probability can
be computed by the product of the component probabili-
ties (Nguyen 2010; Silva et al. 2010). As shown in Fig. 6,
designs become more conservative than necessary when sta-
tistical dependence is ignored. This is because the failure
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probability of a series system is overestimated when sta-
tistical dependence is ignored. Figure 6b and c show that
the effect of statistical dependence on the optimal designs
increases as the coefficients of variation or the correlation
coefficients of the random loads increase.

5.2 Three-dimensional cube

This numerical example is to demonstrate the improved
accuracy of the proposed SORM-based RBTO methods.
The objective of optimization is to minimize the volume
in a cube domain shown in Fig. 7 while satisfying deter-
ministic or probabilistic constraints on the compliances for
multiple load cases. One corner is fixed in all three direc-
tions while the other corners are restricted in the vertical
direction only. The isotropic material is assumed to have
Young’s modulus of E0 =1,000 and Poisson’s ratio of ν =0.3.
A cube with edge length L = 24 is divided into 12 × 12 ×
12 B8/n125/d125 MTOP elements with a total of 216,000
density elements. The minimum length scale rmin = L/10,
and penalization parameter p = 3 are employed. The struc-
ture is subjected to three random loads applied at five loca-
tions as shown in Fig. 7. F1 denotes the magnitude of the
force at the center while F2 and F3 represent the loads at
the midpoints between the center and the four corner points
of the top face. F1,F2 and F3 are assumed to be normal ran-
dom variables with the mean values 100, 0 and 0, and with
the standard deviations 10, 30 and 40, respectively.

Limit-states are defined on the compliances caused by
two load combinations �F1 = (F1, F2) and �F2 = (F1, F3) as
follows.

gi
(
ρρρ,�Fi

) = Ct
i − Ci

(
ρρρ,�Fi

) = Ct
i − uTFi , i = 1, 2 (24)

where Ct
i (= 120) is the threshold value on the compliance;

Ci (ρρρ,�Fi ) is the compliance corresponding to the load case

F1

L

F1
F3

F3F2

F2

L

L

Fig. 7 Three-dimensional topology optimization of a cube

Fig. 8 Optimal topologies by a DTO (volfrac = 6.3%); b SORM-
based CRBTO (σ(F1) = 10, volfrac = 24.4%); c SORM-based
SRBTO (σ(F1) = 10, volfrac = 22.3%); and d SORM-based SRBTO
(σ(F1) = 20, volfrac = 23.9%)

�Fi ; and Fi is the global force vector assembled based on
the load case �Fi . The following three topology optimiza-
tion problems are investigated: (1) Deterministic Topology
Optimization (DTO) using the mean values of the loads with
deterministic constraints gi (ρρρ,�Fi ) ≥ 0; (2) CRBTO with
probability constraints Pt

1 = Pt
2 = 0.02275, i.e. reliability

indexes βt
1 = βt

2 = 2.0; and (3) SRBTO with the system
limit-state Esys = {(g1(ρρρ,�F1) ≤ 0)∪ (g2(ρρρ,�F2) ≤ 0)} with
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Fig. 9 Convergence histories of topology optimizations of a three-
dimensional cube



Single-loop system reliability-based topology optimization 605

Pt
sys = 0.04493, which is given so as to match the system

failure probability of the optimal topology of the CRBTO.
Figure 8 shows the optimal topologies by DTO (Fig. 8a),

SORM-based CRBTO (Fig. 8b), and SORM-based SRBTO
(Fig. 8c). The volume fraction of DTO is lower than
CRBTO and SRBTO because the risk of high compliance
caused by the load uncertainties is ignored. It is noteworthy
that, with the same system failure probabilities, the vol-
ume fraction of CRBTO is 10% higher than SRBTO. This
is because CRBTO approach (assigning fixed constraints
on individual components) is generally more constrained

than SRBTOs (assigning a constraint on system event, not
on the individual components) at the same level of system
failure probability (Nguyen et al. 2010b). Figure 8d shows
the result of the SRBTO with the standard deviation of F1

increased to 20 in order to see the impact of the load vari-
ability on the optimal topology. In summary, it is seen from
Fig. 8 that the optimal topology is affected significantly by
the load variability and the failure event definitions on the
optimal topology of a structure.

The convergence histories of the optimizations are shown
in Fig. 9. The proposed single-loop SORM-based CRBTO
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Fig. 10 CRBTOs with standard deviation of load F1: a volume frac-
tion of optimal designs; b failure probabilities of the first limit-state;
c failure probabilities of the second limit-state; d reliability index con-

vergence for the first limit-state with standard deviation σ (F1) = 50;
and e reliability index convergence for the second limit-state with
standard deviation σ (F1) = 50
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and SRBTO show similar rates of convergence, which
are also comparable to that of DTO. The system failure
probability of the optimal topology found by SORM-based
SRBTO/MSR, Psys = 0.04493 is verified by a fairly close
estimate by MCS, Psys = 0.04515 (106 times, c.o.v =
0.005).

In order to demonstrate the improved accuracy of the
SORM-based single-loop CRBTO method, the results are
compared with those by the FORM-based CRBTO with
the component probability targets Pt

1 = Pt
2 = 0.02275.

Figure 10a shows the difference in the volume fractions of
the optimal designs. Monte Carlo simulations (MCS: 106

times, c.o.v = 0.005) are performed to find the component
failure probabilities of the optimal topologies by the FORM-
based and SORM-based CRBTOs. The results in Fig. 10b
and c show that the component probabilities of SORM-
based CRBTOs are fairly close to the target probabilities
while the FORM-based CRBTOs show significant errors
especially when the random loads have large variability. In
addition, Fig. 9d and e show the convergence histories of the
reliability indexes of the first and second limit states, respec-
tively, for the standard deviation load F1, σ(F1) = 50. It is
observed that the reliability index improved by curvatures
at the approximate location for the performance function
value β

t (k)SO RM
i converges to the component target reliabil-
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Fig. 12 Building core example: a domain of the topology optimiza-
tion; and b load cases

ity index after a few design iterations, which allows for more
accurate assessment of the failure probability assessment of
the design in achieving the target reliability.

The accuracy of the SORM-based single-loop SRBTO
method is also investigated. The FORM-based and SORM-
based SRBTO are performed with the system probability
target of 0.04493 while standard deviation of load F1 is var-
ied from 10 to 60. Figure 11a compares the volume fractions
by the FORM and SORM-based SRBTOs. It is seen that
the FORM-based SRBTO provides unconservative designs
due to the inaccuracy in reliability calculations. The results
of Monte Carlo simulations (MCS: 106 times; c.o.v =
0.005) in Fig. 11b show that the proposed SORM-based
SRBTO provides improved accuracy in predicting the sys-
tem failure probability. In general, the computational cost
for the SORM-based approach is more expensive than the
FORM-based approach since additional cost is required for
calculating the curvatures around the approximate location

Table 2 Three-dimensional building example: statistical parameters
of the load random variables and constraint on the compliances

Load cases P q (at top) Ct
i

Mean c.o.v Mean c.o.v

Case 1 70.71 0.30 2.82 0.15 250

Case 2 50.00 0.15 2.00 0.30 125

Case 3 50.00 0.20 2.00 0.15 125
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Fig. 13 Building core optimal
topologies (three-dimensional
and side views):
a DTO volfrac = 21.93%;
b SRBTO volfrac = 28.15%
(Pt

sys = 0.05); and c SRBTO
volfrac = 22.25% (Pt

sys = 0.85)

for the performance function value (Breitung 1984; Der
Kiureghian 2005); however, the increase of computational
time in the numerical examples was moderate while the
SORM-based approach allows for significant improvement
in accuracy for highly nonlinear reliability problems.

The results in Figs. 10a and 11a show the volume frac-
tions of the optimal designs increase significantly as the
load variability increases. It is because the variability of ran-
dom load increases the uncertainty of the compliance and
thus the probability of violating given constraints.

5.3 Three-dimensional building

The proposed SRBTO/MSR method and the MTOP
approach allow for system reliability-based optimization
for large-scale structural topologies. In this example, the
SORM-based SRBTO employing the MTOP approach is
applied to design the structural topology of a building core
subjected to horizontal loads. The objective of the opti-
mization is to minimize the volume under the constraint
on system failure event defined in terms of the compli-
ances for multiple load cases. Figure 12a shows the domain

of the topology with the dimensions of L × L × 5L ×
L/12 in which L/12 represents the thickness of the core
(L = 24). The domain is divided into 12 × 12 × 60 ×
1 B8/n125/d125 MTOP elements, which results in a total
of 2,640 brick elements and 330,000 density elements.
The four corners of the domain are non-designable regions
which are shown as black areas in Fig. 12b. Young’s modu-
lus E0 of 106, Poisson’s ratio ν of 0.3, the minimum length
scale rmin = L/10, and penalization parameter p = 4 are
employed. In this example, the building core is designed
with four symmetric axes: x , y and two diagonal directions
(dash-dot lines in Fig. 12b). We consider three load cases as
shown in Fig. 12b. In the first load case, the uncertain point
loads (P1) and the uncertain distributed loads (linearly vary-
ing from q1/2 to q1 along the height as shown in Fig. 12a)
are applied with the angle of θ = 45◦ (diagonal direction).
The second and third load cases have the angle of θ = 0◦ (x
direction), and θ = 90◦ (y direction), respectively. During
the finite element analyses, for simplicity, the distributed
load is converted to the equivalent point loads applied at the
finite element nodes along the height of the building. All
six random variables {P1, P2, P3, q1, q2, q3} are assumed to

Table 3 Three-dimensional building example: component and system probabilities by SRBTO/MSR and MCS (106 times)

P1 P2 P3 Psys

Case I ρsame = 0.50 ρdiff = 0.25 SRBTO/MSR 0.02731 0.02088 0.00539 0.05000

MCS (c.o.v = 0.005) 0.02747 0.02101 0.00542 0.05023

Case II ρsame = 0.50 ρdiff = 0.25 SRBTO/MSR 0.26940 0.25973 0.20818 0.50000

MCS (c.o.v = 0.001) 0.26977 0.26006 0.20800 0.50008

Case III ρsame = 0.90 ρdiff = 0.45 SRBTO/MSR 0.02812 0.02227 0.00625 0.05000

MCS (c.o.v = 0.004) 0.02816 0.02242 0.00638 0.05017

The changes from the default case are shown in bold
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follow normal distributions. Table 2 provides the means and
the coefficients of variation (c.o.v) of the random variables
and the corresponding constraints given on the compliances
of the system. These load random variables are assumed
to be correlated with correlation coefficient ρsame = 0.50
when they belong to the same load case and the correlation
coefficient ρdiff = 0.25 for the loads from different load
cases.

First of all, the optimization problem is solved with-
out pattern repetition constraints (Case I). The deterministic
topology optimization is performed using the mean val-
ues of the loads (Fig. 13a) and the SORM-based SRBTO
is conducted with the target system probability Pt

sys =
0.05 on the series system event of compliance limit-states
determined for the three load cases (Fig. 13b). The DTO
(volfrac 21.93%) and SRBTO (volfrac 28.15%) resulted in
significantly different topologies. The higher volume frac-
tion in the SRBTO topology implies the importance of con-
sidering the uncertainties in the loads for building structures.
The component and system probabilities of the optimal
topologies by SRBTO/MSR and MCS (106 times, c.o.v =
0.005) are shown in Table 3, which confirms the accuracy
of the SORM-based SRBTO. The component probabilities
of 0.02731, 0.02088, and 0.00539 help identify the relative
importance ranking of the three constraints as 1→2→3.

Next, we vary the system probability target Pt
sys from

0.01 to 0.85 (Case II). Figure 14 shows the volume frac-
tions of the optimal designs for the range. It is seen that the
decrease of the target probability (i.e. more conservatism)
increases the volume fractions of the optimal designs. The
volume fraction of the SRBTO converges to that of DTO
as the target probability increases. For example, the target
system probability of 0.85 results in the volume fraction of
22.25%, which is only 1.4% different from DTO (21.93%).
Even though these two optimal volume fractions are fairly
close to each other, it is noteworthy that the optimal topol-

ogy of SRBTO (Psys = 0.85) in Fig. 13c is different from
that of DTO in Fig. 13a.

The topology optimization problem is solved again using
pattern repetition constraints along the vertical direction.
This type of pattern repetition constraint is included for
both DTO and SRRBTO in this numerical example. The
number of pattern repetitions along the vertical direction
(denoted by m) is varied from 1 to 12 to investigate the
impact of these constraints on the optimal topologies. The
optimal topologies by DTO and SRBTO (with Pt

sys =
0.05) are shown in Fig. 15a and b, respectively. Figure 15
demonstrates significant impacts of the pattern repetition

m=3 m=12m=6 m=10

m=3 m=12m=6 m=10

a

b

Fig. 15 Building core optimal topologies with pattern repetition: a
DTO; and b SRBTO (ρsame = 0.50, ρdiff = 0.25, Pt

sys = 0.05)
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constraints on optimal topologies and topologies. The effect
of the correlation coefficients is also investigated by increas-
ing the correlation coefficients (Case III). Figure 16 shows
the optimal volume fractions versus the number of pattern
repetitions, m by DTO, SRBTO (ρsame = 0.50, ρdiff =
0.25), and SRBTO (ρsame = 0.90, ρdiff = 0.45). A larger
number of patterns results in more constrained optimization
problem, and thus provides higher volume fractions.
Impacts of the correlation between uncertain loads are also
observed.

6 Summary and conclusions

This paper presents three research developments for enhanc-
ing the theories and applications of component and sys-
tem reliability-based topology optimization (CRBTO and
SRBTO): (1) developing a single-loop SRBTO approach
that employs the matrix-based system reliability (MSR)
method to handle the statistical dependence between mul-
tiple limit-states; (2) developing SORM-based single-loop
approaches for CRBTO and SRBTO to improve the accu-
racy in evaluating probabilistic constraints; and (3) incor-
porating multiresolution topology optimization (MTOP)
approach to CRBTO and SRBTO in order to obtain high
resolution design with a relatively low computation cost
with a capability of imposing pattern repetition and sym-
metric constraints. Three numerical examples of two- and
three-dimensional structures demonstrate that (1) uncertain-
ties in TO problems can make significant impact on optimal
topologies; (2) if SRBTO problem (i.e. TO with probabilis-
tic constraint given on a system event, not on individual
limit-states) is solved by CRBTO approaches, it is hard to
determine corresponding component target failure probabil-
ities and the problem becomes more constrained in general;
(3) statistical dependence between limit-states can be suc-

cessfully incorporated by use of the MSR method, which
may cause a significant difference in optimal topologies; (4)
SORM-based RBTO approaches provide optimal designs
with improved accuracy in satisfying component and system
probabilistic constraints; and (5) MTOP approach enables
us to perform CRBTOs and SRBTOs of large-scale TO
problems with low computational cost and is capable of
imposing pattern symmetry and repetitions in large-scale
RBTO problems.
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Nomenclature

B strain-displacement matrix of shape function
derivatives

c “event” vector
d vector of design variables
D(·) constitutive matrix determined by material

density function
dn the n-th design variable
D0 constitutive matrix corresponding to the solid

material
Ei the i-th failure event
Esys the system failure event
E0 Young’s modulus corresponding to the solid

material
f (·) objective function
f global load vector
gi (ρ, X) limit-state (or performance) function of the

i-th failure mode
gPt

i
performance function of the i-th failure mode

Jx,u Jacobian matrix of the transformation x =
x(u)

K global stiffness matrix
Ke element stiffness matrix
p penalization parameter
p “probability” vector
Pi actual failure probability of the i-th mode
Pt

i target failure probability of the i-th mode
Psys actual system failure probability
Pt

sys target system failure probability
rik Dunnett-Sobel correlation parameter
rmin minimum length scale
rni distance from the point associated design

variable to the centroid
S common source random variables
ud displacement vector
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ũt
i approximate location for the performance

function value for the i-th failure mode
ũi approximate location for the performance

function value by the KKT condition
volfrac volume fraction
Vs prescribed volume constraint
X random variables
α̂ααi negative normalized gradient vector
βi reliability index
βt

i target reliability index

β
t (k)
i updated target reliability index at the k-th

design iteration
β

t (k)(SO RM)
i improved reliability index using Breitung’s

formula at the k-th design iteration
μμμx vector of means of x
ρ(·) material density function
ρi density of element i
ψψψ position vector
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