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Abstract
Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed
at dynamic-type applications. A technique for designing the shape of specified vibration modes
is the topology optimization method (TOM) which finds an optimum material distribution inside
a design domain to obtain a structure that vibrates according to specified eigenfrequencies and
eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known
grayscale or intermediate material problem arises which can invalidate the post-processing of
the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to
allow intermediate material values. This idea leads to the functionally graded material (FGM)
concept. In fact, FGMs are materials whose properties and microstructure continuously change
along a specific direction. Therefore, in this paper, an approach is presented for tailoring
user-defined vibration modes, by applying the TOM and FGM concepts to design functionally
graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded
structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain
points of the structure, by simultaneously finding the topology and material gradation function.
The optimization problem is solved by using sequential linear programming. Two-dimensional
results are presented to illustrate the method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tailoring specified vibration modes is a requirement for
designing resonators (Sanchez-Rojas et al 2010, Maeda et al
2006, Howe and Boser 1996), actuators (Jose et al 2002)

5 Authors to whom any correspondence should be addressed.

and vibro-motors, which transform a mechanical vibration
into a linear (Sharp et al 2010, Sun et al 2010, Saitou et al
2000, Pai and Tien 2000) or rotational (Lee and Pisano 1992)
motion. On the other hand, considering a structure made
of piezoelectric material, tailoring a specified vibration mode
is advantageous for designing: (i) piezoelectric transducers
for power applications such as sonotrodes (Or et al 2007);
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Figure 1. Sketch of the FGPT design by using the TOM, where the goal is to simultaneously find the topology and its material gradation
function (when FGSs are considered, the voltage input excitation is replaced by concentrated mechanical load excitation).

(ii) ultrasonic transducers for medical and non-destructive
testing (by tailoring the well-known piston-like mode) (Rubio
et al 2009); and (iii) ultrasonic piezoelectric motors (Uchino
and Giniewicz 2003).

A technique for designing the shape of specified
vibration modes is the topology optimization method (TOM).
Essentially, TOM finds a material distribution problem inside
a design domain subjected to loads and boundary conditions,
aiming, for example, to design a structure which vibrates
according to specified eigenfrequencies and eigenmodes
(Maeda et al 2006). Nevertheless, when TOM is applied to
dynamic problems, the well-known grayscale or intermediate
material problem arises, which can invalidate the post-
processing of the optimal result (Bendsøe and Sigmund 2003).

An important issue to be addressed in the topology
optimization is how to change the material density from zero
(void) to one (solid material). The use of discrete values
leads to ill-posedness due to multiple local minima and should
therefore be avoided. However, the problem can be relaxed
during the optimization by assuming intermediate densities,
which is achieved by setting an appropriate continuous
material model, where the formulation for intermediate
materials (between 0 and 1) defines the level of problem
relaxation. Nevertheless, at the end of the TOM (post-
processing phase), the grayscale regions should be interpreted
and approximated to bound values (zero or one), which
modifies the final performance. As a result, there is a tradeoff
between the final performance of the topology-optimized
structure and its post-processed final topology, especially in
dynamic applications. Accordingly, when material is added
or removed during post-processing, the final eigenfrequencies
and eigenvalues (mode shapes) are modified. For alleviating
this problem, several options have been proposed such as
filtering techniques (Bourdin 2001), the perimeter control
method (Haber et al 1996) and the projection technique
(Guest et al 2004). However, as shown by Maeda et al
(2006), even using some of those schemes, the final topology
will not be free of grayscales. Therefore, a more natural
way for solving dynamic problems using TOM is to allow
intermediate material values. This idea leads to the functional
graded material (FGM) concept. FGMs are materials whose
properties and microstructure continuously change along a
specific direction (Aboudi et al 1999). By using the FGM

concept and TOM, Rubio et al (2009) have tailored the piston-
like mode of ultrasonic piezoelectric transducers; however,
the work is limited to finding the optimal gradation function
without considering the topological design.

In this work, an approach is presented for tailoring user-
defined vibration modes by applying TOM and FGM concepts
to design functionally graded piezoelectric transducers
(FGPT) and non-piezoelectric structures (functionally graded
structures—FGS) in order to achieve maximum and/or
minimum vibration amplitudes at certain points of the structure
(see figure 1), finding simultaneously the topology and material
gradation function.

This work is arranged as follows. In section 2, FGPT
and FGS modeling is presented and, in section 3, the topology
optimization problem and its implementation are detailed. It
is noteworthy that all the theoretical formulations will be
presented considering the focus on FGPT, as the FGS problem
is a simplification of the former. Finally, in sections 4 and 5,
numerical results are presented and conclusions are inferred,
respectively.

2. FGPT and FGS finite element modeling

By using a modal analysis, the natural frequencies and
vibration mode shapes are obtained. Specifically, in
a piezoelectric analysis, the following eigenvalue and
eigenvector problem is solved (damping effects are not
considered) (Lerch 1990):

− λ

[
Muu 0

0 0
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Ψu

Ψϕ
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}
with: λ = ω2 (1)
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nel∑
e=1

∫ ∫ ∫
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uρ(x, y, z)Nu dx dy dz; (2)
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Kuu =
nel∑
e=1
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BT
ueT(x, y, z)Bϕ dx dy dz;

Kϕϕ =
nel∑
e=1

∫ ∫ ∫
�e

BT
ϕε

S(x, y, z)Bϕ dx dy dz;

(3)

where the term cE is the elastic property matrix (elastic
stiffness at constant electric field); εS is the dielectric property
matrix (dielectric susceptibility at constant strain); the term
e is the piezoelectric property matrix; and ρ is the material
density. All properties depend on Cartesian coordinates x , y
and z. Additionally, the terms Muu, Kuu, Kuϕ and Kϕϕ are
the mass, stiffness, piezoelectric and dielectric global matrices,
respectively. According to finite element theory, global
matrices are formed for each finite element e contribution
(being represented by the summation symbol in equations (2)
and (3)). The eigenvalue and natural frequency are represented
by the terms λ and ω, respectively, and Ψ = {Ψu Ψϕ }T is
the eigenvector. Finally, the superscript T indicates transpose;
the constant nel represents the total number of finite elements
used for discretization; the term Nu are the shape functions, and
Bu and Bϕ are the strain–displacement and voltage-gradient
matrices. Equation (1) has been reduced by considering the
short-circuited electrodes; that is, the electrical potential in the
electrodes has been set to zero in equation (1).

It is observed from equations (2) and (3) that material
properties depend on the Cartesian position (x , y and z),
according to the FGM concept. In numerical implementation,
the change in material properties is considered by using the
graded finite element (GFE) concept (Kim and Paulino 2002),
where the properties are interpolated inside each finite element
e based on nodal property values. In this research, the same
shape functions for interpolating geometry and displacements
are used for material property interpolation. For FGPT, the
GFE concept yields

ρ(x, y, z) =
n∑

m=1

Nm(x, y, z)ρm,

cE
i jkl(x, y, z) =

n∑
m=1

Nm(x, y, z)(cE
i jkl)m,

eikl (x, y, z) =
n∑

m=1

Nm(x, y, z)(eikl)m,

εS
ik(x, y, z) =

n∑
m=1

Nm(x, y, z)(εS
ik)m for i, j, k, l = 1,2,3

(4)
where ρ, cE

i jkl , eikl and εS
ik represent density, elastic,

piezoelectric and dielectric material properties, respectively.
The term n is the number of nodes per finite element. Further
details of the GFE concept can be found in Kim and Paulino
(2002) and Silva et al (2007).

Finally, as observed in equation (1), the FGS modeling is
a simplification of the more general FGPT one; in other words,

the electric and piezoelectric effects are neglected. Hence, for
FGS, the modal analysis can be expressed as

−λMuuΨu + K̄uuΨu = 0 with :

K̄uu =
nel∑
e=1

∫ ∫ ∫
�e

BT
uE(x, y, z)Bu dx dy dz;

(5)

where E represents the elastic matrix for a non-piezoelectric
material.

3. Topology optimization applied to FGPT and FGS
design

3.1. Material model

In this work, the material at each point inside the design
domain is defined by using a combination between two
‘traditional’ material models: (i) the rational approximation
of material properties (RAMP) (Pedersen 2000) and (ii) the
solid isotropic material with penalization (SIMP) (Bendsøe and
Sigmund 2003). This combination of models is formulated
due to the fact that in the dynamic analysis of structures the
use of SIMP only causes local vibration modes in regions
where the design variables have a low value (Neves et al
1995); specifically, localized modes appear in areas where the
design variables have the minimum admissible value (usually
near to zero: 10−3). These areas are more flexible in relation
to areas with high design variable values and, consequently,
they control the lower-order modes (Pedersen 2000). Thus,
if a material model based on a power-law function with an
improper combination of exponents is chosen, the problem
of localized eigenmodes is likely to arise. For instance, by
adopting the SIMP material model with penalizations equal to
3 and 1 for the stiffness and mass properties, respectively, the
ratio between mass and stiffness tends to infinite values when
the design variable tends to 0, which causes the appearance
of eigenvalues associated with localized modes, specifically,
related to the lowest modes (Pedersen 2000). For overcoming
this problem, Stolpe and Svanberg (2001), Bendsøe and
Sigmund (2003) and Hansen (2005) proposed an alternative
by defining RAMP and SIMP material models for elastic and
density properties, respectively.

The material model for elastic properties is given by
(Stolpe and Svanberg 2001)

C H (x, y) = C3 +
[

ρ1TOM(x, y)

1 + p1(1 − ρ1TOM(x, y))

]

× [(ρ2TOM(x, y)C1 + (1 − ρ2TOM(x, y))C2) − C3] (6)

where the design variable ρ1TOM(x, y) controls the topology
of the structure (see figure 2); in other words, it controls
the amount of FGM inside the design domain. The design
variable ρ2TOM(x, y) defines the composition of the graded
material, that is, it determines the FGM obtained by mixing
two base materials (non-graded materials) type j ( j =
1, 2, 3), see figure 2. On the other hand, the term
p1 is a penalization term for intermediate design variables
ρ1TOM(x, y), typically chosen larger than three; the term Ci

(i = 1, 2, 3) defines the elastic properties coefficients where,
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Figure 2. Sketch of material model schemes for FGPT or FGS design.

for the FGPT design, the value i = 1 indicates piezoelectric
material, i = 2 depicts piezoelectric or non-piezoelectric
material and i = 3 represents air. For FGS design, materials
type 1 and type 2 are non-piezoelectric materials. Finally,
C H is the ‘mixed’ FGM elastic properties. Specifically,
the considered optimization problem aims to perform a 0–
1 material distribution represented by air (0) and solid FGM
material (1), where the FGM material is composed of two
materials: type 1 and type 2; that is, we are digging holes
in an FGM material and at the same time finding its optimal
gradation. However, the material model allows intermediate
values (mixtures) of material type 1 and type 2.

On the other hand, for density, piezoelectric and dielectric
properties, the material model is formulated based on the SIMP
one, which is defined as follows:

DH (x, y) = ρ
p2
1TOM

(ρ2TOM(x, y)D1 + (1 − ρ2TOM(x, y))D2)

− (1 − ρ
p2
1TOM

(x, y))D3 (7)

where p2 is a penalization power on design variables ρ1TOM ,
the term DH refers to the density, dielectric or piezoelectric
properties of the FGM and the constants Di are the density,
dielectric or piezoelectric properties for each base material type
i (i = 1, 2, 3).

Figure 2 illustrates an example of the result that can
be obtained through this formulation. The white region,
represented by ρ1TOM = 0.0, corresponds to air and the black
region, represented by ρ1TOM = 1.0, corresponds to FGM
material. The FGM material considered in this work has a
horizontal layer-type gradation which will also be optimized.
The plot on the right shows the final optimized gradation
distribution. Thus, for all properties, when ρ1TOM = 1.0 or
ρ1TOM = 0.0, FGM or air properties are obtained, respectively
(see figure 2). On the other hand, ρ2TOM = 1.0 denotes
properties of the material type 1 and ρ2TOM = 0.0 represents
properties of the material type 2 inside FGM (see figure 2).

3.2. Optimization problem formulation

The design objective, both FGPT and FGS, is formulated
in order to find, by using the TOM, the topology and
material gradation law, which maximizes and/or minimizes the
vibration amplitude in specified points of the structure, when
the structure vibrates at the desirable mode k. Figure 1 shows
these problem specifications. In the same way, by maximizing
and/or minimizing specified vibration amplitudes, the vibration
mode shape of the mode k can be tailored.

The proposed optimization problem based on multi-
objective function is formulated in its discrete form as

maximize
ρ1TOMi

,ρ2TOMi

F = w1

[ m1∑
k=1

w2k log((tT
kmax

Ψrk )
2)

−
m2∑

k=1

w3k log((tT
kmin

Ψrk )
2)

]

− (1 − w1)

m1+m2∑
k=1

w4k log(L2
33k

)

such that:
Ndes∑
i=1

ρ1TOMi
Vi − V ∗

s1
� 0

Ndes∑
i=1

ρ2TOMi
Vi − V ∗

s2
� 0

0 � ρ1TOMi
� 1 for i = 1, . . . , Ndes

0 � ρ2TOMi
� 1 for i = 1, . . . , N des

equilibrium equations (see either equation (1) or (4),

according to problem). (8)

In relation to objective function F , the terms m1 and
m2 are the number of modes whose amplitude of vibration
must be maximized and/or minimized, respectively. The
vector Ψr represents the resonance eigenvector of the mode
number k, and the terms tkmax and tkmin are respectively dummy
vectors, which are vectors consisting of zeros except for the
position corresponding to the d.o.f that must be maximized
or minimized where it has a value equal to one, for each
corresponding mode k. Finally, the constants wi (i =
1, . . . , 4) are weight coefficients for each goal. Nevertheless,
if only the first two terms are maximized (aiming to maximize
the amplitude of vibration at specific points of the mode
k), the formulation would lead to very low stiffness results.
This problem is well known from the design of compliant
mechanisms (Sigmund 1997). Hence, the term L33k is added
to the objective function (see equations (8)), which represents
the mean compliance for achieving static stiffness (Maeda et al
2006, Silva et al 2000, Nishiwaki et al 1998).

On the other hand, terms ρ1TOMi
and ρ2TOMi

represent the
design variables at node i (i = 1, 2, 3, . . . , Ndes), according to
the continuous approximation of material distribution (CAMD)
scheme (Matsui and Terada 2004). The value Vi is the quantity
of FGM at node i (i = 1, 2, 3, . . . , Ndes). Terms V ∗

s1
and V ∗

s2

represent FGM and material type 1 constraints, respectively.
The constant Ndes denotes the total number of nodes. The two

4



Smart Mater. Struct. 20 (2011) 025009 W M Rubio et al

Figure 3. Flowchart of the topology optimization implementation.

constraint values related to design variables ρ1TOMi
and ρ2TOMi

seem to have a strong influence when designing to achieve
specified eigenvalues (resonance frequencies). However, since
the optimization problem considers the vibration mode design
only (maximizing vibration amplitudes at specified points),
these constraint values do not seem to have such a strong
influence in the final result.

Finally, the topology optimization problem for the ρ2TOMi

design variable is formulated as a layer-like optimization
problem, aimed at sintering the designed components as a
layer-structured green piece without any adhesive material;
hence, the design variables ρ2TOMi

are considered equal at each
layer, as shown in Rubio et al (2009).

3.3. Numerical implementation

The numerical procedure follows the implementation shown
in Rubio et al (2009). Four numerical techniques are used
for implementing our approach (Rubio et al 2009): (i) firstly,
the GFE concept (Kim and Paulino 2002) is utilized for
simulating the continuous material gradation inside each finite
element. (ii) Secondly, the CAMD (Matsui and Terada 2004)
is used for assuming a continuous change of design variables.
(iii) Thirdly, the projection technique (Guest et al 2004) is
implemented for obtaining explicit control of the material
gradient and, consequently, for obtaining a smooth gradation
function, which represents a smooth change of properties along
the gradation direction. Finally, (iv) the modal assurance
criterion (MAC) (Kim and Kim 2000) is adopted to follow the
desirable vibration mode shape along the iterative process of
the TOM (see figure 3). Specifically, the MAC compares pairs
of vibration modes and gives their correlation level to find the
desired mode (Kim and Kim 2000).

Figure 3 shows a flowchart of the optimization algorithm.
First of all, the initial domain is discretized by graded
finite elements and the design variables are defined at each

node. The proposed formulation is implemented by using
Matlab™ code. The Q4/Q4 graded finite element (Rahmatalla
and Swan 2004) is used, which represents a two-dimensional
four-node quadrilateral GFE. For FGPT design, each node has
three degrees of freedom: two mechanical (horizontal and
vertical displacements), and one electric (electrical potential)
and, for FGS design, each node has two displacement
degrees of freedom. Besides, each node has two design
variables. In this research, the sequential linear programming
method (SLP) is applied to solve the nonlinear optimization
problem (Haftka et al 1990). It consists of the sequential
solution of approximated linear sub-problems that can be
defined by writing a Taylor series expansion for the nonlinear
optimization problem around the current design point at each
iteration step. This linearization requires the sensitivities
(gradients) of the objective function and constraints in relation
to each design variable set (ρ1TOMi

and ρ2TOMi
). The sensitivity

calculation is similar to that presented in Rubio et al (2009),
with the additional complexity that each node has two design
variables: terms ρ1TOMi

and ρ2TOMi
.

Additionally, at each iteration, moving limits are defined
for design variables (ρ1TOMi

and ρ2TOMi
). During the iterative

process, the design variables will be allowed to change by
5–15% of the original values. After linear optimization, a
new set of design variables are obtained and updated in the
design domain until convergence is achieved for the objective
function. The procedure converges when the changes in design
variables from iteration to iteration are below 10−3.

4. Results

4.1. Design of an FGS

To illustrate the proposed method, first, a two-dimensional
FGS is designed considering a plane strain assumption. The
design domain used is shown in figure 4(a). The design
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Figure 4. Design of an FGS by using TOM: (a) design domain; (b) initial first vibration mode (the dashed line represents undeformed
domain); (c) final optimal topology (the dashed line represents undeformed domain); (d) counterphased optimal topology (the dashed line
represents undeformed domain) and (e) final material gradation function.

Table 1. Parameters used in TOM.

Data
Design of
an FGPT

Design of
an FGS

Radius used in projection technique (rmin) 2.5 3.5
FGM constraint function value, V ∗

s1
30 30

Initial values of ρ1TOM and ρ2TOM 1 1
Number of smallest eigenvalues to be
computed in FE analysis

50 60

Initial values for all penalization
coefficients

1 1

Final value for penalization coefficient p1 3 3
Final value for penalization coefficient p2 1 —

- For piezoelectric properties 3 —
- For dielectric properties 1 —
- For density 1 1

Weight coefficient w1 0.8 0.85
Weight coefficient w2 1 1
Weight coefficient w3 1 1
Weight coefficient w4 1.5 1.5

domain is specified as 20 mm × 20 mm with mechanical
boundary conditions as specified in figure 4(a). The idea is
simultaneously to distribute three types of materials into the
design domain. Material type 1 is represented by copper
(ρ2TOM = 1), material type 2 by nickel (ρ2TOM = 0) and material
type 3 by air. A material gradation along the thickness direction
is assumed and a mesh of 80×50 finite elements is adopted. At
each iteration, during the TOM procedure, 60 eigenmodes are
calculated. For all results, the parameters used during topology
optimization are defined in table 1. All material property
values used are described in table 2.

The goal is to maximize the amplitude of vibration at
point A and simultaneously to minimize the amplitude of
vibration at point B; both requirements are defined for the first
vibration mode when the design domain contains only copper
(see figure 4(b)).

Figures 4(d) and (e) show the optimal topology and
material gradation function after the topology optimization
process. From the deformed topology (see figures 4(c)
and (d)), it is observed that, at the first vibration mode, the
vertical amplitude of vibration is maximized at point A and,
simultaneously, is minimized at point B; accordingly, the initial
goals are achieved. In addition, the first vibration frequency
changes from 5.11 to 3.66 kHz.

These results can be confirmed by observing the
convergence data in figures 5(a) and (b) for the desirable
amplitudes of vibration. From these curves, it is clear that
the relative amplitude at point A and B is incremented and
reduced along the iterative process, respectively. In addition,
the curves in figure 5 show oscillations at the end of the
convergence process due to the fact that there is eigenmode
switching during the iterative optimization. This switching
appears frequently in applications of topology optimization
to eigenproblems (Ma et al 1995, Rubio et al 2009), which
arises due to fact that the order of the desirable eigenmode
changes during the optimization. However, as the MAC has
been implemented in this work, the target mode shape is always
tracked at each iteration.

Finally, the material gradation function depicts an FGS
with a rich region of nickel properties on the bottom and top
surfaces, and a structure with approximately 50% nickel and
50% copper around layer numbers 30 and 45—see figure 4(e).
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Table 2. Material properties.

Properties PZT-5A Copper Nickel

Dielectric properties
(F m−1)

ε0 8.85 × 10−12 — —

εS
11 916 × ε0 — —

εS
33 830 × ε0 — —

Piezoelectric properties
(C m−2)

e31 −5.4 — —
e33 15.8 — —
e15 12.3 — —

Elastic properties
(N m−2)

cE
11 12.1 × 1010 — —

cE
12 7.54 × 1010 — —

cE
13 7.52 × 1010 — —

cE
33 11.1 × 1010 — —

cE
44 2.11 × 1010 — —

cE
66 2.28 × 1010 — —

E (Young’s modulus) (GPa) — 115 200
ν (Poisson’s coefficient) — 0.34 0.31

Density (kg m−3) 7800 8940 8908

Figure 5. Convergence curves for: (a) relative amplitude of vibration
at point A of figure 4(d) and (b) amplitude of vibration at point B of
figure 4(d).

4.2. Design of an FGPT

In relation to FGPT design, the objective function F is
maximized, see equation (8). In this case, the design domain
of figure 6(a) is used and materials PZT-5A (material type
1), epoxy resin (material type 2) and air (material type 3) are
combined. The main goal is to maximize the relative amplitude
of vibration at point A and to minimize the amplitude of

vibration at point B (see figure 6(b)). Both requirements are
defined for vibration mode number 1 (k = 1). In figure 6, the
applied voltage is sketched only for indicating the electrode
position, as during modal analysis, no electrical potential is
applied. The first mode is shown in figure 6(b), which is
defined considering only a non-graded piezoelectric transducer
with properties of PZT-5A. The design domain is discretized
with 80 × 50 finite elements.

Figures 6(d) and (e) show the final topology and material
distribution function after the optimization process. From the
deformed structure (see figures 6(c) and (d)), it is observed
that in fact the relative amplitude of vibration at point A
is maximized and at point B is significantly minimized and,
hence, the initial goals are satisfied. On the other hand,
from figure 7, the historic convergence curve of the vibration
amplitude of the above defined points is observed. Figure 7
confirms the results of figure 6. In this problem, the first
vibration frequency varies from 49.45 to 16.34 kHz.

Finally, the material gradation represents a piezoelectric
transducer with a rich region of epoxy resin near to the middle
of the structure and a rich region of piezoelectric material
(PZT-5A) on the bottom of the transducer (see figure 6(e)).

5. Conclusion

This paper presents a systematic study for designing
piezoelectric and non-piezoelectric structures aimed at
tailoring a specific vibration mode based on the topology
optimization method and functionally graded material concept.
The TOM design for dynamic problems, considering the FGM
concept, seems to be more promising because it circumvents
the post-processing problem related to the grayscale removal
in traditional dynamic TOM problems. On the other hand, by
using the TOM and the FGM concept, the optimal gradation
and topology of FGPTs and FGSs can be found. Specifically,
user-defined eigenvectors can be tailored aimed to design
mechanical and piezoelectric resonators. Finally, examples of
both FGPT and FGS demonstrate that the optimal topology
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Figure 6. Design of an FGPT by using TOM: (a) design domain; (b) initial first vibration mode; (c) final optimal topology; (d) counterphased
optimal topology; and (e) final material gradation function.

Figure 7. Convergence curves for: (a) relative amplitude of vibration
at point A of figure 6(d) and (b) amplitude of vibration at point B of
figure 6(d).

and material gradation can produce vibrating structures that
have design-specified mode shapes; hence, by applying the
proposed approach, the range of application of FGPTs and
FGSs can be broadened and their design can become more
systematic and generic.
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Haftka R T, Gürdal Z and Kamat M P 1990 Element of Structural
Optimization (Dordrecht: Kluwer Academic)

Hansen L V 2005 Topology optimization of free vibrations of fiber
laser packages Struct. Multidiscip. Opt. 29 341–8

Howe R T and Boser B E 1996 Surface micromachined
accelerometers IEEE J. Solid-State Circuits 31 366–75

Jose K A, Suh W D, Xavier P B, Varadan V K and Varadan V V
2002 Surface acoustic wave MEMS gyroscope Wave Motion
36 367–81

8

http://dx.doi.org/10.1016/S1359-8368(99)00053-0
http://dx.doi.org/10.1002/nme.116
http://dx.doi.org/10.1002/nme.1064
http://dx.doi.org/10.1007/BF01279647
http://dx.doi.org/10.1007/s00158-004-0495-8
http://dx.doi.org/10.1109/4.494198
http://dx.doi.org/10.1016/S0165-2125(02)00030-6


Smart Mater. Struct. 20 (2011) 025009 W M Rubio et al

Kim J H and Paulino G H 2002 Isoparametric graded finite elements
for nonhomogeneous isotropic and orthotropic materials
Trans. ASME J. Appl. Mech. 69 502–14

Kim T S and Kim Y Y 2000 MAC-based mode-tracking in structural
topology optimization Comput. Struct. 74 375–83

Lee A P and Pisano A P 1992 Polysilicon angular microvibromotors
J. Microelectromech. Syst. 1 621–9

Lerch R 1990 Simulation of piezoelectric devices by two- and
three-dimensional finite elements IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 37 233–47

Ma Z D, Kikuchi N and Cheng H C 1995 Topology design for
vibration structures Comput. Methods Appl. Mech. Eng.
121 259–80

Maeda Y, Nishiwaki S, Izui K, Yoshimura M, Matsui K and
Terada K 2006 Structural topology optimization of vibrating
structures with specified eigenfrequencies and eigenmode
shapes Int. J. Numer. Methods Eng. 67 597–628

Matsui K and Terada K 2004 Continuous approximation of material
distribution for topology optimization Int. J. Numer. Methods
Eng. 59 1925–44

Neves M M, Rodrigues H and Guedes J M 1995 Generalized
topology design of structures with a buckling load criterion
Struct. Opt. 10 71–8

Nishiwaki S, Frecker M I, Min S and Kikuchi N 1998 Topology
optimization of compliant mechanisms using the
homogenization method Int. J. Numer. Methods Eng. 42 535–59

Or S W, Chan H L W and Liu P C K 2007 Piezocomposite ultrasonic
transducer for high-frequency wire-bonding of microelectronics
devices Sensors Actuators A 133 195–9

Pai M and Tien N C 2000 Low voltage electomechanical vibromotor
for silicon optical bench applications Sensors Actuators A
83 237–43

Pedersen N L 2000 Maximization of eigenvalues using topology
optimization Struct. Multidiscip. Opt. 20 2–11

Rahmatalla S F and Swan C C 2004 A Q4/Q4 continuum structural
topology optimization implementation Struct. Multidiscip. Opt.
27 130–5

Rubio W M, Silva E C N and Paulino G H 2009 Toward optimal
design of piezoelectric transducers based on multifunctional and
smoothly graded hybrid material systems J. Intell. Mater. Syst.
Struct. 20 1725–46

Saitou K, Wang D-A and Wou S J 2000 Externally resonated linear
microvibromotor for microassembly J. Microelectromech. Syst.
9 336–46

Sanchez-Rojas J L, Hernando J, Donoso A, Bellido J C,
Manzaneque T, Ababneh A, Seidel H and Schmid U 2010
Modal optimization and filtering in piezoelectric microplate
resonators J. Micromech. Microeng. 20 055027

Sharp S L, Paine J S N and Blotter J D 2010 Design of a linear
ultrasonic piezoelectric motor J. Intell. Mater. Syst. Struct.
21 961–73

Sigmund O 1997 On the design of compliant mechanisms using
topology optimization Mech. Struct. Mach. 25 493–524

Silva E C N, Carbonari R C and Paulino G H 2007 On graded
elements for multiphysics applications Smart Mater. Struct.
16 2408–28

Silva E C N, Nishiwaki S and Kikuchi N 2000 Topology
optimization design of flextensional actuators IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 47 657–71

Stolpe M and Svanberg K 2001 An alternative interpolation scheme
for minimum compliance topology optimization Struct.
Multidiscip. Opt. 22 116–24

Sun D, Wang S, Sakurai J, Choi K-B, Shimokohbe A and
Hata S 2010 A piezoelectric linear ultrasonic motor with the
structure of a circular cylindrical stator and slider Smart Mater.
Struct. 19 045008

Uchino K and Giniewicz J R 2003 Micromechatronics (New York:
Dekker)

9

http://dx.doi.org/10.1115/1.1467094
http://dx.doi.org/10.1016/S0045-7949(99)00056-5
http://dx.doi.org/10.1109/84.157360
http://dx.doi.org/10.1109/58.55314
http://dx.doi.org/10.1016/0045-7825(94)00714-X
http://dx.doi.org/10.1002/nme.1626
http://dx.doi.org/10.1002/nme.945
http://dx.doi.org/10.1007/BF01743533
http://dx.doi.org/10.1002/(SICI)1097-0207(19980615)42:3<535::AID-NME372>3.0.CO;2-J
http://dx.doi.org/10.1016/j.sna.2006.03.018
http://dx.doi.org/10.1016/S0924-4247(99)00390-8
http://dx.doi.org/10.1007/s001580050130
http://dx.doi.org/10.1007/s00158-003-0365-9
http://dx.doi.org/10.1177/1045389X09337085
http://dx.doi.org/10.1109/84.870060
http://dx.doi.org/10.1088/0960-1317/20/5/055027
http://dx.doi.org/10.1177/1045389X10374890
http://dx.doi.org/10.1080/08905459708945415
http://dx.doi.org/10.1088/0964-1726/16/6/045
http://dx.doi.org/10.1109/58.842054
http://dx.doi.org/10.1007/s001580100129
http://dx.doi.org/10.1088/0964-1726/19/4/045008

	1. Introduction
	2. FGPT and FGS finite element modeling
	3. Topology optimization applied to FGPT and FGS design
	3.1. Material model
	3.2. Optimization problem formulation
	3.3. Numerical implementation

	4. Results
	4.1. Design of an FGS
	4.2. Design of an FGPT

	5. Conclusion
	Acknowledgments
	References

