
Composites: Part B 43 (2012) 2646–2654
Contents lists available at SciVerse ScienceDirect

Composites: Part B

journal homepage: www.elsevier .com/locate /composi tesb
Influence of pattern gradation on the design of piezocomposite energy
harvesting devices using topology optimization

S.L. Vatanabe a, G.H. Paulino b, E.C.N. Silva a,⇑
a Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School of University of São Paulo, SP, Brazil
b Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, IL, USA

a r t i c l e i n f o
Article history:
Received 12 December 2011
Received in revised form 24 March 2012
Accepted 29 March 2012
Available online 13 April 2012

Keywords:
A. Ceramic–matrix composites (CMCs)
A. Polymer–matrix composites (PMCs)
C. Finite element analysis (FEA)
B. Electrical properties
Topology optimization
1359-8368/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.compositesb.2012.03.023

⇑ Corresponding author.
E-mail address: ecnsilva@usp.br (E.C.N. Silva).
a b s t r a c t

Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy.
Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and
convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring
optimization procedures. This paper investigates the influence of pattern gradation using topology opti-
mization on the design of piezocomposite energy harvesting devices based on bending behavior. The
objective function consists of maximizing the electric power generated in a load resistor. A projection
scheme is employed to compute the element densities from design variables and control the length scale
of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are pre-
sented and discussed using the proposed method. The numerical results illustrate that pattern gradation
constraints help to increase the electric power generated in a load resistor and guides the problem
toward a more stable solution.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The direct and converse piezoelectric effects of certain active
materials have been employed in numerous applications of energy
harvesting devices, with the goal of reducing or eliminating the
need for external power sources or batteries in electronic devices
in general. The interest in vibrational energy harvesting has been
motivated by advances in low-power electronic components such
as wireless sensors for structural health monitoring and tire pres-
sure sensors, actuators that can be powered remotely, and by the
need for supplemental energy sources for unmanned aerial vehi-
cles [1]. Additional motivation is provided by the desire to develop
such devices with simultaneous structural and power generation
functionality, which can reduce weight, material usage, and costs.
The interest in piezoelectric energy harvesting is reflected in a
number of authoritative reviews that have been written in recent
years [2–4].

Piezoelectric material can be combined with other non-
piezoelectric materials, generating new types of materials, called
piezocomposites. These materials usually offer substantial
advantages over conventional piezoelectric materials, such as high
electromechanical coupling and better energy conversion [5].
Piezocomposite energy harvesting devices can be designed for
quasi-static applications, where the excitation frequency is much
ll rights reserved.
lower than the resonance frequency, or for dynamic applications,
where the goal is to operate the device in a frequency range as
close as possible to a determined resonance frequency. In quasi-
static applications, usually the goal is to maximize the conversion
of mechanical energy into electricity, which can be measured by
various criteria, however, the electromechanical coupling coeffi-
cient k is most commonly used. In the case of dynamic applica-
tions, the goal is to directly maximize the electrical power
generated in a given load [6]. Zhu et al. [7] used a cantilever with
a sandwich structure and a seismic mass attached to the tip to ana-
lyze the power output of a vibration-based piezoelectric energy-
harvesting device when it is connected to a load resistor. They
found that the series or parallel configurations of the piezoelectric
layers can change the distribution of the electric current and volt-
age at the output terminals. However, it cannot change signifi-
cantly the power output and vibrational amplitude when the
structure is subjected to the same excitations.

Topology optimization is a computational technique used for
determining the layout, or topology, of a structure or material
such that a prescribed objective is maximized or minimized, sub-
jected to design constraints. It has been successfully applied to
design piezoelectric devices in recent years. Silva et al. [5,8,9] used
topology optimization and homogenization for designing piezo-
electric microstructures with high performance characteristics,
such as hydrostatic coupling coefficient, figure of merit, and
electromechanical coupling factor. Sigmund et al. [10] employed
topology optimization to design 1–3 piezocomposites with
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optimal performance characteristics for hydrophone applications.
Buehler et al. [11] applied homogenization to calculate the effec-
tive properties of an unit cell incorporating piezoelectric and con-
ventional materials. They maximize the displacement of an
arbitrary point due to an applied electric field, while specifying
the structure strength. Jayachandran et al. [12–14] used stochastic
global optimization combined with homogenization to obtain the
optimal granular configuration of ferroelectric ceramic micro-
structure for application in piezoelectric actuators.

Topology optimization has also been applied to design piezo-
electric energy harvesting devices, by distributing piezoelectric
material and others in a given design domain, in order to maximize
the output electric power. Zheng et al. [15] applied the topology
optimization method to design piezoelectric energy harvesting de-
vices, by maximizing the converted electric energy, considering
static applications. Rupp et al. [6] developed a computational ap-
proach to design dynamic piezoelectric energy harvesting systems
composed of layered plates and shells connected to an electrical
circuit. They found that a design methodology solely based on find-
ing regions of positive and negative strain is inadequate for design
purposes when the piezoelectric layers significantly change the
structural response. Chen et al. [16] proposed a level set-based
topology optimization approach to synthesize mechanical energy
harvesting devices for self-powered micro systems by reformulat-
ing the energy harvester design problem as a PDE-constrained
topology optimization problem. Nakasone and Silva [17] presented
a formulation for dynamic design of piezoelectric laminated plates
aiming at piezoelectric sensors, actuators and energy-harvesting
applications. Through this formulation, a design with enhanced en-
ergy conversion in the low-frequency spectrum is obtained, by
minimizing a set of first eigenvalues, enhancing their correspond-
ing eigenshapes while maximizing their electromechanical cou-
pling coefficients. Lee and Youn [18] explored the segmentation
of a piezoelectric material layer, guided by inflection lines from
multiple vibration modes of interest to minimize voltage cancella-
tion. El-Sabbagh and Baz [19] investigated the use of multiple pairs
of electrodes to overcome the problem of charge cancellation in
piezoelectric bimorphs applied to energy harvesting applications.

The method presented in this work addresses the design of pie-
zoelectric energy harvesters by tailoring the layout of piezocom-
posite structures. In this work, the influence of pattern gradation
[20] is investigated in the design of dynamic piezocomposite en-
ergy harvesting devices by means of the topology optimization
method. New parameters are included in the investigation, such
as the number of patterns in the design domain and the variation
of dimensions of the pattern along the structure. This approach
has the potential to improve the design of dynamic piezoelectric
energy harvesters by tailoring the layout of piezocomposite struc-
tures, aiming at maximization of electric power generated in the
load resistor and at guiding the problem toward to a more stable
result.

In order to ensure convergence upon mesh refinement, the
application of filtering techniques have been popular. Filtering
techniques originally comprised sensitivity filtering [21] and
density filtering [22], and these two approaches have produced
globally convergent mesh designs that, in many cases, are satisfac-
tory for practical purposes. Recently, a number of projection
schemes that alleviate the gray transition problem have been pro-
posed by Guest et al. [23], Sigmund [24], Xu et al. [25], Kawamoto
et al. [26], among others [27,28]. In the present work, a projection
technique is implemented to avoid mesh dependency and checker-
board patterns, and a random initial material distribution is con-
sidered in order to avoid local minima, a common problem in the
design of optimized dynamic structures.

This paper is organized as follows: in Section 2, the mechanical,
piezoelectric, circuit modelling, and corresponding formulation
using the finite element method are described. In Section 3, the
topology optimization formulation is provided. In Section 4, the
numerical implementation of the pattern gradation concept is ex-
plained, in conjunction with the different design domains adopted
in this work. In Section 5, numerical examples demonstrating the
influence of the pattern gradation concept in the design of dynamic
piezocomposite energy harvesting devices are shown. Finally, in
Section 6, some conclusions are inferred.

2. Piezoelectric finite element method for dynamic applications

The analysis tool adopted in this paper is the Finite Element
Method (FEM), mainly because each individual element can be
manipulated as a single entity within the complex system. This is
an important issue in the topology optimization method, once each
finite element depends on a local group of design variables.

The displacement and electric potentials are assumed to have
harmonic behavior, i.e.

U ¼ Ueeixt ; U ¼ Ueeixt ð1Þ

respectively. The piezoelectric dynamic system with structural
damping and load resistor can be written in the finite element form
as follows

�x2 M 0
0 0

� �
U
U

� �
þ ix

C 0
0 0

� �
þ

0 0
0 KR

� �� �
U
U

� �
þ

Kuu Ku/

Kt
u/ K//

" #
U
U

� �
¼

F
Q

� �

ð2Þ

where M, C, KR, Kuu, Ku / and K// are the mass, damping, load resis-
tor, stiffness, piezoelectric, and dielectric matrices, respectively, and
U, U, F and Q are the displacement, electric potential, force, and
electric charge vectors, respectively. Notice that U and U are com-
plex vectors.

The structural damping matrix adopted here is defined by

C ¼ bKuu ð3Þ

where b is the damping factor. It is possible to add a proportional
mass matrix M to compute C. However, usually, energy harvesting
devices operate in the first or second resonance frequency, and thus,
the influence of M in damping model is negligible when the model
is excited at low frequencies. Therefore, in this work, C is considered
proportional to Kuu only. The load resistor matrix, in harmonic anal-
ysis, is obtained by

KR ¼ � 1
x2R

� �
1 �1
�1 1

� �
/1

/2

� �
ð4Þ

where /1 and /2 are the degrees of freedom of electric potential
where the resistor is coupled.

The electric power P generated in the resistor R is obtained by

P ¼ V2
rms

R
¼
ðD/peakÞ

2

2R
ð5Þ

where Vrms is the RMS voltage calculated between the electrodes.
The electromechanical coupling coefficient (k) measures the conver-
sion of mechanical energy into electricity and it is calculated by [5]:

k2 ¼ ðElectromechanical EnergyÞ2

ðMechanical EnergyÞðElectrical EnergyÞ

¼ ðUtKu/UÞ2

ðUtKuuUÞðUtK//UÞ
ð6Þ
3. Topology optimization formulation

The optimization consists in distributing the material within a
design domain to maximize (or minimize) a desired objective



Fig. 1. Steps of piezoelectric devices design using topology optimization.

1 For interpretation of color in Figs. 1–4 and 6–13, the reader is referred to the web
ersion of this article.
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function. The steps of the design of piezoelectric devices using the
topology optimization method are shown in Fig. 1. Loads, boundary
conditions and constraints are applied to the design domain, which
is discretized into finite elements. The optimization iterative pro-
cess is carried out until it has obtained an optimized material dis-
tribution. Then, it is performed the post-processing step, where the
optimized result is interpreted, verified and sent to manufacturing.

3.1. Material model

The discrete problem, where the amount of material at each ele-
ment can assume only values equal to either one or zero is an ill-
posed problem. A typical way to seek a solution for topology opti-
mization problems is to relax the problem by allowing the material
to assume intermediate property values during the optimization
procedure, which can be achieved by defining a special material
model [29,30]. Thus, in this work, the topology optimization for-
mulation employs a material model based on the SIMP (Solid Iso-
tropic Material With Penalization) [31]. The traditional SIMP
model states that at each point of the domain, the local effective
property WH of the mixture is

WH ¼ qpWB þ ð1� qpÞWA ð7Þ

where WA and WB are the constituent material properties and p is
the penalization coefficient. WA and WB correspond to the elastic
(cE), piezoelectric (e) and dielectric (eS) properties. The variable q
is a pseudo-density describing the amount of material at each point
of the domain, which can assume values between 0 and 1.

Essentially, this material model approximates the material dis-
tribution by defining a function of a continuous parameter (design
variable) that determines the mixture of basic materials through-
out the domain. In this sense, the relaxation yields a continuous
material design problem that no longer involves a discernible con-
nectivity. A topology solution can be obtained by applying penali-
zation coefficients p to the material model to recover the 0 � 1
design. In this work, p = 3 is adopted.

4. Numerical implementation

The discrete formulation problem is defined by:

Maximize
d

: P

subjected to : equilibrium equation
0 6 d 6 1

VðdÞ ¼
XN

i¼1

ddX 6 Vs

where d are the design variables of each element. To avoid numer-
ical problems that arise in the implementation of the topology opti-
mization method, such as mesh dependency and checkerboard
instability, a projection technique, based on the work of Stromberg
et al. [20], is implemented. The optimization problem is solved
using the MMA solver (Method of Moving Asymptotes) [32].

4.1. Pattern gradation in one direction

The pattern repetition is defined as the number of times a par-
ticular pre-defined region, called pattern, is repeated along the do-
main, in one or more directions. The gradation consists of
geometrically modifying (stretching or shrinking) one or more
dimensions of each repetition along the domain [20].

In this work, the implementation of the pattern gradation con-
straint is based on MTOP (‘‘Multiresolution Topology Optimiza-
tion’’), as presented by Nguyen et al. [33]. The MTOP concept
considers the design variable mesh separated from the finite ele-
ment mesh (see Fig. 2). Thus, a layer of pseudo-densities are added
to the model, which are function of the design variables according
to a projection method.

Once the pattern gradation parameters are defined, such as the
number of patterns in the domain and the adopted gradation, de-
sign variables are distributed in the largest pattern, which are con-
sidered primary design variables, as shown in gray in Fig. 3. These
variables are mapped in the repeated regions, originating the
mapped design variables, shown in black in Fig. 3. This figure also
shows the pattern being shrunk along the domain by the back-
ground gradient color.1

For a pattern gradation in one direction, the pattern is defined
by the region enclosed by two coordinates, denoted by xn�1 and
xn, for the n-th pattern. In Fig. 3, for example, the pattern gradation
is performed in the x-direction. Thus, pattern 1 is specified by
selecting the coordinates x0 and x1 as bounds. This concept is car-
ried over for each of the n patterns and the mapped variables at
each repetition are correlated to the primary design variables.
The mapped design variables are defined as follows [20]:

x� ¼
Xn�1

i¼0

ðxiþ1 � xiÞ þ anðx� xnÞ ð8Þ

where a is a scaling parameter of the n-th pattern with respect to
the biggest pattern (which are the primary design variables). This
scaling parameter is defined by:

an ¼
xnþ1 � xn

x1 � x0
ð9Þ

The mapped design variables have the same values of the respective
primary design variables values, so the solver adopted in topology
optimization only modifies the values of the primary design
variables.
v



(a) (b) (c)
Fig. 2. Illustration of MTOP concept: (a) finite element mesh; (b) pseudo-density mesh and (c) design variable mesh [20].

Fig. 3. Example of pattern gradation in one direction; primary design variables are
indicated in gray, mapped design variables in black, and the gradation is indicated
by the background gradient color [20].
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The weighting factors of the projection function must be refor-
mulated for the pattern gradation. Thus, the projection area is no
longer circular and it can assume an elliptical shape, depending
on the position of each element. The larger dimension of the ellipse
can measure 2rmin and the distances between nodes are multiplied
by the scaling parameter a (see Fig. 4c). In regions near of the
boundaries of the domain, the projection area assumes a hybrid
form of circle and ellipse (see Fig. 4b). The weighting factors are
calculated as follows [20]:

we
j ¼

rmin�re
j

rmin
if r 6 rmin

0 if r > rmin

8<
: ð10Þ

where we
j is the node weight j of element e; re

j defines the distance
between the centroid of element e and the node j in the projection
area Xe. The calculus of re

j is defined by
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ðxj�x1Þ
an
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ð12Þ
Fig. 4. Example of different projection areas along the domain.
4.2. Sensitivities

By using the MMA algorithm as the optimization solver, it is
necessary to evaluate the sensitivities of the objective functions
with respect to the design variables. In this section, the expressions
for the sensitivities with respect to a general design variable q
(which can be substituted by the design variables d) are presented.
The electric power presented in Eq. (5) can be written by the fol-
lowing form:

P ¼
LT

dummyU
� 	2

2R
ð13Þ

where Ldummy is a dummy global vector with a positive unitary va-
lue at one electrode and a negative unitary value at the other elec-
trode. The negative value is due to the voltage difference of the
formula. Considering that @F

@qi
¼ 0 and Q = 0, the sensitivity of the

objective function (Eq. (5)) yields to [6]:
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The parameter N is the number of finite elements. The adjoint
vector Ladj is used in order to avoid the inverse calculation of the
matrix K, which is obtained by solving the following linear system:

KLadj ¼
0

Ldummy

� �
ð17Þ

This adjoint vector is calculated only one time per iteration,
reducing the computational cost.

Once the pseudo-densities of each element are calculated based
on the design variables, the calculation of sensitivity should be
modified as follows:

@c
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¼ @c
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@qe
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@qe

we
jP

j2Xe
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j

 !
ð18Þ

A flowchart of the optimization algorithm describing the steps
involved is shown in Fig. 5. The software is implemented in
MATLAB.



Fig. 5. Flowchart of the optimization procedure.
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5. Numerical examples

The design domain adopted is shown in Fig. 6, whose dimen-
sions are 100 � 20 mm. The piezoelectric layers are connected in
parallel configuration. There is a resistor of 1 kX coupled to the
electrodes and a harmonic unit force is applied to the free end of
the design domain, with an excitation frequency of 1 kHz. The
model assumes a plane strain state and it is symmetric about the
x axis. The adopted materials are PZT-5A piezoceramic and epoxy
polymer, whose properties are listed in Table 1. The structural
damping parameter a has a value equal to 10�8. The finite element
mesh is discretized in 150 � 30 Q4 elements. Sensitivities are
calculated using the adjoint method.

The design of dynamic structures may present many local
minima, making difficult the design process of such devices. Thus,
Fig. 6. Design domain adopted.

Table 1
Material properties.

Property PZT-5A Epoxy

cE
11 ð1010N=m2Þ 12.1 0.53

cE
13 ð1010N=m2Þ 7.52 0.31

cE
33 ð1010N=m2Þ 11.1 0.53

cE
44 ð1010N=m2Þ 2.10 0.11

e13 (C/m2) �5.4 0
e33 (C/m2) 15.8 0
e15 (C/m2) 12.3 0
eS

11=e0 1650 4

eS
33=e0 1700 4

Specific weight (kg/m3) 7500 1384
the main idea of this work is to evaluate the influence of pattern
gradation in energy harvesting design. The adopted procedure
consists of three different design domains, which are described
below.

5.1. Case 1: no pattern repetition

Fig. 7 illustrates the first case, where there is no pattern repeti-
tion. This case is used as a reference for the other two cases. This
case has the largest solution space, once the solution spaces of
the other two cases are contained in this solution space.

5.2. Case 2: with pattern repetition

Fig. 8 illustrates the second case, where it is imposed a pattern
repetition, with no gradation between the patterns, i.e., all patterns
have the same size (indicated in the dimension lines). This case has
a smaller solution space than the case 1, because the available
solutions are limited to those that have a topology with repeated
patterns. In this case, the design variables are concentrated in the
design domain indicated in Fig. 8 and the pseudo-density values
under the design domain are symmetric with respect to the x axis.
The pseudo-densities in the other patterns are mapped with re-
spect to the first pattern.

5.3. Case 3: with pattern gradation

Fig. 9 illustrates the third case adopted, where it is imposed a
pattern gradation in the domain. The adopted gradation ratio is gi-
ven by 5, 4, 3, 2, and 1. These values mean that the first pattern is 5
times bigger than the last one, the second pattern is 4 times bigger
than the last one, and so on.
Fig. 7. Case 1: no pattern repetition.

Fig. 8. Case 2: with pattern repetition.

Fig. 9. Case 3: with pattern gradation.
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5.4. Results and discussions

It is known that piezocomposite materials provides a better
performance than pure piezoelectric materials. However, firstly a
design domain of pure PZT-5A is simulated, shown in Fig. 13a, in
order to serve as a reference for the other three cases. The first res-
onance frequency and the electric power generated in the load
resistor are listed in the right side of the figure, which are
1020 Hz and 100 lW, when the structure is excited at an excitation
frequency of 1000 Hz.

Regarding the choice of the initial material distributions, differ-
ent initial guesses are tested (uniform distribution of materials, lin-
ear or circumferential gradation distribution along the design
domain, among others). The procedure adopted in this work con-
sists of using a set of 20 random initial material distributions.
Approximately half of the simulations converge to the same result,
which generates the highest electric power for this design domain
(with no pattern repetition or gradation constraint). The other half
(random initial material distributions) results in different topolo-
gies, which means that these topologies correspond to different
local minima.

To clarify these issues, Fig. 10 shows the response of the electric
power generated as a function of the excitation frequency for de-
sign domain with no pattern repetition. This figure shows three
examples obtained from different random initial material distribu-
tions without using pattern repetition constraint, whose topologies
differ dramatically. These three examples illustrate that the prob-
lem has many local minima.

In this chart it is also possible to notice the best solution ob-
tained without pattern repetition (which generates 163 lW and
it has the first resonance frequency at 1001 Hz) and the solution
obtained by considering a slight variation of the design variable
values. This slight variation is obtained in a subsequent iteration
step from the best topology. This example shows that the dynamic
optimization of the design domain with no pattern repetition is
very sensitive to the design variables, having a negative impact
in the convergence of the solution and leading to local minima.
In fact, small variations in design variables may drastically change
the behavior of the objective function. This problem is common
when using gradient based optimization methods. In the example
shown in the figure, a small variation of the optimized topology
causes the electric power of 163 lW to decrease to less than
10 lW when the model is excited at 1000 Hz.
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The same procedure is applied to the other two design
domains with pattern repetition and pattern gradation – see
Figs. 11 and 12, respectively. The proportion of topologies
converging to the same result remains the same as before, i.e.,
about half of the simulations. These converged results are also
those that generated the highest electric power for each case,
as illustrated in Fig. 13.

Thus, considering pattern repetition or pattern gradation con-
straints, the problem becomes more stable, as seen in Figs. 11
and 12. Fig. 11 shows the response of the electric power as a func-
tion of the excitation frequency for the best topology obtained with
pattern repetition constraint and for a topology considering a small
variation of design variable values in relation to this topology. In
this chart, it is easy to notice that both topologies present similar
behavior, thus, facilitating the convergence of the problem. This
same effect occurs in the case of the pattern gradation constraint,
illustrated in Fig. 12. This means that the pattern repetition con-
straint can generate more stable solutions and helps to achieve
better local minima.

The difference between the performance obtained with pattern
repetition and pattern gradation constraint can be illustrated by
the electromechanical coupling coefficient k (see Eq. (6)). Although
more piezoelectric material is needed to convert the energy, its
stiffness is too high, causing less deformation of the structure
and, consequently, less energy is converted. On the contrary, flex-
ible structures have less piezoelectric material, converting less en-
ergy. The best topology obtained using pattern repetition has a k
equal to 0.098, whereas the best topology obtained using pattern
gradation has a k equal to 0.139. These values show that more effi-
cient energy conversion is obtained with the pattern gradation
constraint.

All the obtained results are shown in Fig. 13b–d. The first res-
onance frequency and the electric power generated in the load
resistor are listed by the side of each material distribution. For
the first case, where no pattern repetition is considered, the first
resonance frequency is 1001 Hz, which is very close to the excita-
tion frequency, and the electric power generated is 163 lW, i.e., it
is achieved a gain of 63% with respect to the pure PZT-5A. The sec-
ond case analyzes the influence of patterns along the domain. The
first resonance frequency is 999 Hz, which is also close to the exci-
tation frequency, and the electric power is 152 lW, achieving a
gain of 52% with respect to the pure PZT-5A. In the third case,
where it is applied the pattern gradation constraint, the first
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Fig. 11. Electric power as a function of the excitation frequency, for different local minima.
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Fig. 12. Electric power as a function of the excitation frequency, for different local minima.

Fig. 13. Best performances for each case.
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resonance frequency is 995 Hz, which is the farthest from the
excitation frequency of all three cases, and the electric power gen-
erated is 191 lW, achieving a gain of 91% with respect to the pure
PZT-5A. From these results, it can be seen that the highest value of
the electric power generated in the load resistor is obtained with
the pattern gradation constraint, even though this design domain
presents a smaller solution space in relation to the first case. It
shows that, once the optimization of the dynamic problem has
many local minima, the pattern gradation constraint can be used
to modify the solution space, so a better local minima can be
achieved.

An important aspect to be evaluated is the response of the elec-
tric power generated as a function of the excitation frequency,
shown in Fig. 14. From this graphic it is clear that, although the
optimized result obtained with pattern gradation constraint pre-
sents a difference of 5 Hz with respect to the excitation frequency,
even when the structure is excited with a force operating at 1 kHz,
this case generates the highest electric power.
6. Concluding remarks

This paper studies the influence of pattern gradation in the de-
sign of vibrating piezoelectric energy harvesting devices, based on
bending behavior, using topology optimization. Maximization of
the electric power presents many local minima, making it difficult
to obtain the global optimum. From the numerical results pre-
sented, it can be seen that the highest value of the electric power
generated in the load resistor is obtained with the pattern grada-
tion constraint, even though this design domain presents a smaller
solution space. Because the optimization of the dynamic problem
has many local minima, the pattern gradation constraint modifies
the solution space and guides the problem toward a more stable
solution, so a better local minima can be achieved. In addition,
the difference between the performance obtained with pattern
repetition and pattern gradation resides in the electromechanical
coupling coefficient k, whose values show that more efficient en-
ergy conversion is obtained with the pattern gradation constraint.
As future work, new parameters can be added as design variables
to the design of piezocomposite energy harvesting devices, such
as the number of patterns and the variation of the pattern dimen-
sions along the design domain.
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