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aspects of optimal geometry for braced frames to understand the underlying behavior and provides a the-
oretical benchmark to compare numerical results. The influence of the initial assumptions for the inter-
action between the quadrilaterals and the frame members are discussed. Numerical examples are given
to illustrate the present technique on high-rise building structures.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Topology optimization is common in mechanical and aeronau-
tical engineering, and it has been, in recent years, progressively
embraced for structural engineering applications. Examples are
the multi-story building design or long span bridge design applica-
tions presented in Stromberg et al. [1], Allahdadian and Boroo-
mand [2], Neves et al. [3], or Huang and Xie [4]. Despite a variety
of applications within the civil engineering field, the focus of this
work is towards high-rise buildings, where engineers are faced
with the challenge of identifying the optimal topology of the lateral
bracing system that minimizes material usage and corresponding
cost. Therefore, the scope of this work is to introduce a methodol-
ogy using topology optimization for isotropic, homogeneous mate-
rial that enables engineers to develop the lateral system from the
conceptual optimal bracing angles to the final sizing of the
members.

The methodology presented in Stromberg et al. [1] represents
an initial attempt at identifying optimal bracing angles. However,
it presents some limitations as illustrated in the problem of
Fig. 1, which shows a schematic for a high-rise building subject
to wind loading. The previous work (see Fig. 1b) was limited due
to high concentrations of material towards the edges of the do-
ll rights reserved.
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main, consistent with the flange versus web behavior, described
in Section 4 of Stromberg et al. [1]. Such concentrations impede
the identification of the working points of the column to the diag-
onal intersections. In addition, the columns are so wide that they
possess high flexural stiffness. In practice, this is not realistic be-
cause the columns are relatively narrow compared to the width
of the building. Moreover, since the continuum topology optimiza-
tion problem has a constraint on the volume fraction and a large
amount of material forms the column members, a relatively low
volume is available for the diagonals. As a result, there is an incom-
plete diagonalization in the frame (i.e. missing diagonals at the
base of the frame). Thus, one would have to introduce an additional
constraint to distribute material between the columns and the
diagonals to prevent concentrations at the edges.

This paper introduces a combination of discrete (beam/column)
members and continuum quadrilateral members to overcome the
aforementioned issues. In Fig. 1c and d, six discrete (truss) mem-
bers are added to model each column while maintaining the same
total volume of material as the problem in Fig. 1b. As a result, the
concentration of material at the edges is eliminated, and a com-
plete diagonalization with clear working points emerges.
1.1. Motivation for braced structural systems

Braced frame and moment frame structural systems are com-
monly deployed in the lateral design of high-rise buildings. Braced
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Nomenclature

A0 cross-sectional area of column sized for constant
stress

Ai cross-sectional area of member i
B half the width of a frame
c compliance of the design
E Young’s modulus computed through SIMP
E0 Young’s modulus of solid material
Ei Young’s modulus of member i
f global load vector
Fi internal force in member i from real system
fi internal force in member i from virtual system
H overall height of a frame
I moment of inertia
k proportionality constant
K global stiffness matrix
Li length of member i
m number of diagonal members
n index of module in a frame
N total number of modules
p penalization factor for SIMP
Pi point load at point i

rmin minimum radius of projection
u global displacement vector
ui horizontal displacement of node i
v i vertical displacement of node i
V total volume
Vs maximum volume constraint
Wext external work of a frame
Wint internal work of a frame
x a point in the design domain
xi x-coordinate of node i
yi y-coordinate of node i
zi height of the ith bracing intersection point
D deflection
Dreq target or allowable deflection
� strain
hi pseudo-rotation at node i
k Lagrange multiplier
m Poisson’s ratio
q density
ri stress in member i
X design domain

Fig. 1. Comparison of existing topology optimization techniques with technique proposed in this work considering the same total volume of material: (a) problem statement
for continuum approach, (b) topology optimization result using quadrilateral elements, (c) problem statement for combined approach, and (d) topology optimization result
with quadrilateral and discrete ‘‘column’’ elements.
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frames have been used in several noteworthy buildings like the
John Hancock Center (Chicago, IL), Broadgate Tower (London, UK)
and Bank of China Tower (Hong Kong), as shown in Fig. 2. The de-
sign of such systems is traditionally based on diagonal braces ar-
ranged according to a 45� or 60� angle and variations in-between
these two angles. However, there have been few engineering stud-
ies in the past to identify the optimal bracing angle and the param-
eters affecting such angles [5]. The scope of this paper consists of
exploring optimal bracing layouts to maximize structural perfor-
mance while minimizing material. Various measures of structural



Fig. 2. Existing buildings featuring remarkable braced frame systems: (a) John Hancock Center in Chicago, IL (http://en.wikipedia.org/wiki/John_Hancock_Center), (b)
Broadgate Tower in London, UK (http://en.wikipedia.org/wiki/Broadgate_Tower), and (c) Bank of China Tower in Hong Kong (http://en.wikipedia.org/wiki/Bank_of_China).
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performance could include tip displacement, frequency, compli-
ance, critical buckling load, etc. The examples of this paper focus
on minimizing the compliance and relating this quantity to build-
ing behavior and design.

The utilization of the optimization techniques described in this
paper in the initial conceptual phase of design informs engineers of
the most efficient layout of material. Design decisions on the topol-
ogy of the lateral system can therefore be streamlined with savings
in material costs and minimization of impact on natural resources.

1.2. On existing frame optimization techniques

Currently, structural engineering optimization techniques can
be classified into two distinct categories: discrete member optimi-
zation using beam or truss elements [6–10] and continuum meth-
ods [11–13].

Within the class of discrete member techniques for structural
systems, Takezawa et al. [14] proposed a method for frame ele-
ments where the design variables consist of the cross-sectional
properties, including principle direction of the second moment of
inertia. Fredricson [15] used a joint penalty and material selection
approach with flexible joints. Kaveh and Shahrouzi [16] employed
the ideas of graph theory to determine the member connectivity
between the supports and load paths for bracing systems. Wang
[17] optimized frame structures using the maximum bending mo-
ment as the design criteria.

On the other hand, in Bendsoe and Sigmund [13] several exam-
ples are given for the continuum topology optimization problem
where ‘‘beams’’ are added by creating a long row of solid elements
across the design domain, as in the case of a two-dimensional
bridge where the solid area represents the deck. Similarly, Allahda-
dian and Boroomand [2] proposed a technique using continuum
elements to determine the optimal bracing system for dynamic re-
sponse in designing or retrofitting structures. In that method, the
floor levels were modeled as solid rigid elements.

Another technique, explored in the work of Neves et al. [3], tai-
lors the topology optimization design framework for stability prob-
lems. In such formulation, the objective function is the critical
buckling load, rather than minimum compliance. The paper by
Neves et al. [3] considers the design of a portal frame and a five-
story frame, similar to the examples presented in this work. How-
ever, this previous approach models the structural frames with so-
lid quadrilateral (Q9) elements, instead of discrete (beam)
elements, as presented in what follows. Furthermore, structural
frame studies were presented with a specific natural frequency
as the objective in the work of Diaz and Kikuchi [18].

While each of the aforementioned techniques in the literature is
valuable in itself, better structural engineering tools may be devel-
oped by combining such ideas. Several attempts have been made at
proposing an integrated structural optimization framework. For in-
stance, Liang’s technique [19,20] uses a performance index based
on strain energy density for the optimization of multistory steel
building frameworks. An existing frame is modeled of discrete
steel elements with an underlying continuum mesh of quadrilater-
als, which are removed based on the lowest performance indices.
Mijar et al. [21] uses Reuss and Voigt mixing rules for effective
stiffness with topology optimization to design bracing systems.
Beam elements are used to model an unbraced system and contin-
uum elements model the bracing layout. In Lagaros et al. [22], opti-
mization has been taken a step further into the structural
engineering industry by combining sizing, shape and topology
optimization to design three-dimensional steel structures with
web openings in compliance with modern design codes. Size opti-
mization was used to determine the cross-sectional area of the
beams and columns, while shape and topology optimization was
implemented for the number and size of web openings. Here, we
use a topology optimization approach with Solid Isotropic Material
with Penalization (SIMP) where beam elements are included in the
finite element analysis portion to achieve more meaningful bracing
layouts. These layouts are derived analytically to verify the numer-
ical results as well.

1.3. Paper scope and organization

This paper is organized as follows: in the next section, we dis-
cuss the main concepts of an energy-based method to efficiently
size structural frames using the least amount of material. Follow-
ing, energy methods, in conjunction with the Principle of Virtual
Work (PVW), are used to mathematically derive the optimal geom-
etry of a discrete braced structure in Section 3. Then, we outline the
main concepts behind the combination of Q4 and beam elements,
including several methods to attach the two types of elements. In
Section 5, the topology optimization framework is introduced and
extended to include simultaneous use of several element types in
the context of structural framing systems. Some fundamental mod-
eling aspects associated with the combination of beam and quad-
rilateral elements on a single module of a frame are investigated
in Section 6 and compared to the results from Section 3. Finally,
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numerical results are illustrated in Section 7 and conclusions are
drawn on the application of the proposed methodology in the last
section.

2. A sizing technique for frame optimization

In this section, energy methods and the PVW are explored to
compliment the methodology for topology optimization of struc-
tural braced frames by introducing a sizing technique for the final
beam, column and bracing members.

2.1. Applying energy methods to size braced frames

Baker [23] derived a method to calculate the optimal cross-sec-
tional area for a statically determinate frame to limit the tip dis-
placement of a building under wind load to a target deflection, D,
by combining the PVW and the Lagrangian multiplier method. This
methodology is based on the assumption that given a frame with
axial forces due to a lateral load (e.g. wind load), Fi, length of mem-
bers, Li, and cross-sectional area, Ai, the target deflection can be
achieved through strategic sizing of the cross-sectional areas. In
this procedure, two load cases are analyzed: the real (wind) load
case to calculate the strains and displacements (Fig. 3 (left)), and
the virtual (unit) load case to calculate the stresses and forces
(Fig. 3 (right)). Using the PVW, the work done by the virtual (unit)
system for the displacement and deformation of the real (wind
load) system can be written as follows:

D � 1 ¼
X

i

Z Li

0
f�dx ¼

X
i

Z Li

0
f

F
EA

dx ¼
X

i

FfL
EA

� �
i

ð1Þ

where � ¼ F= EAð Þ represents the strain in the real system, and f is
the internal force of a member in the virtual (unit) system. Thus,
the virtual work yields the following expression:

D ¼
X

i

FfL
EA

� �
i

ð2Þ

Combining the PVW with the Lagrangian multiplier method,
one obtains

D ¼
X

i

FifiLi

EiAi
þ k

X
j

AjLj � V

 !
ð3Þ
Fig. 3. Illustration of the PVW: real (wind) load case (left) and virtual (unit) load
case (right).
where k is the Lagrange multiplier, Ai is the unknown cross-sec-
tional area of a member and

P
jAjLj � V

� �
is a constraint on the vol-

ume V of material. We note that additional constraints could be
introduced using additional Lagrange multipliers.

By differentiating the above expression with respect to Ai and
performing several numerical manipulations, the optimal cross-
sectional area of a member for the target deflection, Dreq, is deter-
mined from

Aið Þreq ¼
1

DreqE
Fifið Þ0:5

X
j

Lj Fjfj
� �0:5

" #
ð4Þ

The above expression provides optimal cross-sectional areas for a
statically determinate braced frame. As shown in Baker [23],
expressions similar to Eq. (4) can be derived for moments, shear
and torque. Therefore, this sizing technique can be extended to mo-
ment frames provided that the moment of inertia, I, of the member
is a linear function of the area, A, in the form I ¼ kA, where k is a
proportionality constant.

2.2. Overall design process

The optimization techniques described previously help stream-
line the design decisions at various stages of a project from the
conceptual characterization of a braced frame layout to the final
sizing of the members. Once the overall shape of the building is
known, the optimal brace layout could be established assuming
that frame columns are arranged at its outer perimeter at a regular
spacing to ensure that the tributary areas for the columns are sim-
ilar. At each floor level, a horizontal beam (spandrel) would span
between two adjacent columns. Beams and columns would be
modeled using beam elements while the space bounded by two
columns and two beams would be meshed using quadrilateral ele-
ments. After the finite element mesh is completed the following
steps can be applied in sequence in the design flow process (Fig. 4):

� size vertical line elements (columns) according to gravity load
combinations (accounting for dead, superimposed dead and live
loads);
methodsenergygnisu  
membersfinalSize

onoptimizati topology Use
develop toresults

systembracingconceptual

loadslateralfor
meshralquadrilateover

onoptimizati topology Perform

loadsgravity  rofsystem
incolumnsandbeamsSize

loadgravityDefine
systemstructural

econvergencCheck 

Fig. 4. Schematic for the overall optimization process of a braced frame.
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� run topology optimization on the quadrilateral elements for lat-
eral load combinations (accounting for wind and seismic loads);
� identify the optimal bracing layout based on the previous step

and create a frame model consisting of beam elements;
� optimize the member sizes using the virtual work methodology

The above steps indicate a potential path from a conceptual de-
sign to the final sizing of a braced frame. However, each optimiza-
tion step could be applied independently depending upon the
specific need of the engineer. Notice that the distribution of loads
shifts in the frame throughout the optimization process due to
re-sizing of the members. Therefore, the process is iterative and
should be repeated until convergence is achieved.

3. Optimal braced frames – analytical aspects

Important analytical aspects of optimal braced frames are ex-
plored in this section to establish a benchmark for comparison of
the numerical results later presented in this paper.

3.1. Fully stressed design and optimal frames

The energy-based design method presented in Baker [23] and
described in the previous section implies that any frame with opti-
mal cross-sectional members subject to a point load at the top is
under a state of constant stress (fully stressed design) as demon-
strated in the following derivation. By taking the derivative of Eq.
(3) with respect to the areas Ai and solving for the Lagrangian mul-
tiplier, we obtain:

k ¼ Fifi

EA2
i

ð5Þ

Considering a linear analysis, for the case of a point load at the top
of the frame fi ¼ k � Fi, where k is a proportionality constant, the fol-
lowing expression holds:

k ¼ Fi

Ai

� �2 k
E
¼ const ð6Þ

In the above expression the Lagrangian multiplier is a constant,
therefore the stress in the ith member, ri ¼ Fi=Ai is constant. The
latter conclusion applies to any member i of the frame, thus the
stress level is constant throughout the structure.

In the context of the statically determinate braced frame sys-
tems considered in this paper, the equivalence between a constant
state of stress and minimum compliance is generalized from the
single point load described above to multiple point loads Pi applied
to the frame. Assuming that the displacements at each point of
load application are ui, the compliance can be expressed as:

Wext ¼
X

i

Piui ¼
X

j

F2
j Lj

EAj
¼Wint ð7Þ

where Wext and Wint are the work done by the external and internal
forces respectively. By introducing the Lagrangian multiplier con-
straint on the areas of the members,

Wext ¼
X

j

F2
j Lj

EAj
þ k

X
j

AjLj � V

 !
ð8Þ

In order to minimize the compliance of the system with various
member sizes, the right-hand side of this equation is differentiated
with respect to the areas Ai and solved for the Lagrangian multiplier
k to obtain the following:

k ¼ Fi

Ai

� �2 1
E
¼ const ð9Þ
The above result is similar to Eq. (6) and confirms that, in the pres-
ent context, minimum compliance leads to constant stresses. In
general, for the compliance minimization problem, a state of con-
stant strain energy density represents the condition of optimality
[13]. Since the strain energy density is related to the Von Mises
stress [24,25], the effective stresses in optimal structures are con-
stant. Additionally, for the case of a single point load, minimum
tip displacement coincides with minimum compliance. The con-
stant stress condition is verified later for the continuum approach
in Section 6.4.

3.2. Optimal single module bracing

Using the ideas from the previous section, we study the optimal
geometry of the braced frame shown in Fig. 5, where the overall
height of the frame is given as H, the total width as 2B, and the
height of the bracing intersection point as z. Notice that the prob-
lem in Fig. 5 (left) is simplified into the problem in Fig. 5 (right) by
taking advantage of symmetry. Letting the height of the bracing
point, z, be the design variable, we are looking for the optimal loca-
tion that minimizes the deflection at the top of the structure using
the PVW.

The frame shown in Fig. 5 is statically determinate, so by apply-
ing a unit load at the location of unknown deflection, D, the inter-
nal forces of the members can be solved for as follows:

f1 ¼
H � z

B
ð10Þ

f2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ z2

p
B

ð11Þ

and

f3 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ H � zð Þ2

q
B

ð12Þ

Note that the forces in the frame induced by a wind load P ap-
plied at the same location as the unit load would simply be Fi ¼ Pfi.
Now, using Eq. (2) and assuming each member to have a constant
stress, r ¼ Fi=Ai, the tip deflection is

D ¼ Fi

EAi

X
i

fiLi ¼
rB
E

X
i

fiLi

B
ð13Þ

The tip deflection of the frame is minimal when the following rela-
tionship holds:

@D
@z
¼ rB

E
@

@z

X
i

fiLi

B

 !
¼ 0

¼ rB
E

@

@z
H

H � z

B2

� �
þ B2 þ z2

B2 þ B2 þ H � zð Þ2

B2

 !
¼ 0

¼ rB
E
�H

B
þ 2z

B
� 2 H � zð Þ

B

� �
¼ 0

ð14Þ

Thus, the brace work point height for minimal deflection is

z ¼ 3
4

H ð15Þ

This result is not surprising if we consider the problem in Fig. 6
(top). In this problem, a point load representing the wind (lateral)
force acting on the frame is applied at the top left corner and sym-
metry is enforced. The topology optimization of the continuum
mesh does not lead to a simple 45� bracing angle due to the inter-
action of shear and axial forces in a similar fashion to the one de-
scribed in Section 4 of Stromberg et al. [1]. The 45� bracing angle
would be the outcome of a pure shear problem as shown in
Fig. 6 (bottom). However, the cantilever problem (used to model



Fig. 5. Geometry and notation for the single module frame optimization problem with even number of diagonals.

Fig. 6. Illustration of the differences between the case of a cantilever structure (top) and the pure shear problem (bottom).
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a high-rise) is never pure shear because the overturning moment
PH does not appear in a pure shear problem. Therefore, the topol-
ogy optimization results in a ‘‘high-waisted’’ cross bracing. The ac-
tual location of the intersection point of the braces at 75% of the
height H as shown in Eq. (15) is confirmed in Fig. 6 (top right).

This result has been further confirmed by running a simple Mat-
lab code for discrete members as shown in Fig. 7. In the Matlab
code, the intersection of the bracing was constrained to move
along the centerline of the module due to symmetry, the height ra-
tio, z=H, was varied from 0.5 to 1 (z being the distance of the brace
work point from the base) and the corresponding tip deflection
was calculated (see Fig. 7b). The optimal z=H ratio (i.e. the one that
minimizes the deflection at the top of the frame) is shown to be
0:75H in Fig. 7b. The results here are contingent upon the assump-
tion of constant stresses in the discrete members, which was dem-
onstrated in the previous section.

3.3. Optimal multiple modules bracing for point load

The analysis conducted for a single module braced frame can be
extended to a frame with multiple modules along the height and a
single load applied at the top by observing the relationships be-
tween the geometry of the frames and the forces in its members
as described by Figs. 5 and 8. The forces fi in the diagonal members
due to a unit point load at the top are (Fig. 5 (right) and Fig. 8
(right)):

fi ¼
Li

B
ð16Þ

while the forces in the columns are given by

fi ¼
ðH � ziÞ

B
ð17Þ

where ðH � ziÞ indicates the moment arm of the unit force in the
module under consideration (see Figs. 5 (right) and 8 (right)).
According to Eq. (16), the forces in the braces are dependent upon
the length of the members and, in turn, are a function of the coor-
dinates of the nodal elevations zi. Combining Eq. (13) with Eqs. (16)
and (17), the displacement at the top of the frame is

D ¼ rB
E

X
i

fiLi

B

¼ rB
E

X
i

L2
i

B2

 !
braces

þ
X

j

H � zj
� �

Lj

B2

� �
columns

" #
ð18Þ

This expression is only a function of the nodal elevations zi. There-
fore, the frame of minimal tip deflection is obtained by taking the
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partial derivatives of the above function with respect to the eleva-
tions zi. For the frame in Fig. 8, as an example, the displacement is

D ¼ rB
E

X
i

L2
i

B2

 !
braces

þ
X

j

H � zj
� �

Lj

B2

� �
columns

" #

¼ rB
E

H � z2ð Þ2

B2 þ z2 � z1ð Þ2

B2 þ z2
1

B2 þ
H � z1ð Þz2

B2

" #
ð19Þ

The frame with minimal top displacement is defined by the fol-
lowing equations:

@D
@z1
¼ 0) �3z2 þ 4z1 ¼ 0

@D
@z2
¼ 0) �H þ 4z2 � 3z1 ¼ 0

ð20Þ

Therefore,

z1 ¼
3
4

z2; z2 ¼
4
7

H ð21Þ

We observe that in the above equations the brace work point z1
is still located at 75% of the height of the module z2, similarly to the
example described in Fig. 5. In addition, the top brace is parallel to
the lower one, which hints to the presence of a pattern in the opti-
mal solution.

3.4. Application to high-rise building patterns

The equations for the optimal work point elevations in a frame
can be generalized to the case of the nth module of such a frame
(see Fig. 9 for notation), where the top displacement of the frame
can be expressed in terms of the dimensionless quantity,
ED=ðrBÞ, as follows:

ED
rB
¼
XN

n¼1

z2n � z2n�1ð Þ2 þ B2

B2 þ z2n�1 � z2n�2ð Þ2 þ B2

B2

þ H � z2n�1ð Þ2

B2 z2n � z2n�2ð Þ ð22Þ

Here N is the total number of modules and it is assumed that
z2n�2 < z2n�1 < z2n. By differentiating with respect to the nodal ele-
vations z2n (column work point) and z2n�1 (brace work point):



Fig. 9. Notation for the nth module of a frame (e.g. high-rise building).
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@

@z2n�1
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rB

� �
¼ 0) �3z2n þ 4z2n�1 � z2n�2 ¼ 0

@

@z2n

ED
rB

� �
¼ 0) �z2nþ1 þ 4z2n � 3z2n�1 ¼ 0

ð23Þ
Fig. 10. Notation and geometric proportions for a fram
These equations can be rewritten as follow:

z2n ¼
z2n�1 þ z2nþ1

2
� z2nþ1 � z2n�1

4

z2n�1 ¼
z2n�2 þ z2n

2
þ z2n � z2n�2

4

ð24Þ

From the above expressions, two important geometric features of
optimal braced frames are inferred:

1. The braced frame central work point z2n�1 is always located at
75% of the module height.

2. The module heights are all equal.

The last geometric property is easily verified in Fig. 10 where, after
substitution, we obtain the relationship z2 ¼ z4=2 for the two low-
est modules. Similar relationships can be derived for the other
modules.
3.5. Verification

To compare the validity of our results with those presented pre-
viously in the literature, we consider the optimum frameworks gi-
ven in Hemp [26] based on the mathematics of optimal layouts
first introduced in Michell [8]. In these previous works of literature,
the authors aim to find the minimum volume required for a given
structural framework and derive the conditions associated with
such layouts. Using these conditions, Hemp derived the optimal
geometry for the strip 0 6 y 6 h consisting of cycloids. This prob-
lem can then be applied to the optimum design of ‘shear bracing’
of a long cantilever under a tip shear, F (given in 4.17 of Hemp
[26]). The results of this study (see Fig. 11) are compared with
e with multiple modules and a single point load.



Fig. 11. Comparison of results with those of the literature: (a) Discrete truss
showing the optimum shear bracing similar to that with a continuous array of
orthogonal cycloids given in Hemp [26] (rotated by 90�) and (b) optimal geometry
of a single module of the truss.
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those presented in this work. Based on the angles of the optimal
geometry derived by Hemp,

H ¼ B
ffiffiffi
3
p
þ B

ffiffiffi
3
p

3
¼ 4

ffiffiffi
3
p

3
B ð25Þ

we obtain

z ¼ B
ffiffiffi
3
p

4
ffiffi
3
p

3 B
¼ 3

4
ð26Þ

thereby verifying the approach used by the authors.

3.6. Optimal number of modules for single point load

The results presented in the previous section identify geometric
principles for optimal frames of minimum tip deflection and are
independent of the aspect ratio H=B of the frame (see Eq. (24)).
Therefore, one may wonder what is the optimal number of modules
for a frame of given aspect ratio. This question is answered by min-
imizing the volume of the frame, which is written as follows:

V ¼
X

i

AiLi ¼
X Fi

r
Li ¼

P
r
X

i

fiLi ¼
PB
r
X

i

fiLi

B
ð27Þ

where P is the magnitude of the unit load applied at the top of the
frame, B is the width of each (symmetric) frame, and r is the con-
stant stress in each member. Noting the similarities between the
above equation and Eq. (13), it follows:

V ¼ PE
r2 D ð28Þ
Therefore, by minimizing the tip deflection D, the volume of the
frame is also minimized. In summary, the optimal frame for a point
load is characterized by minimum tip deflection, minimum compliance,
minimum volume and constant stress in the members.

The problem for the optimal number of modules is formulated
in terms of m, the optimal number of diagonals in the frame, as
illustrated in Fig. 12. For example, with the geometry shown in
Fig. 5 (or m ¼ 2 in Fig. 12) the volume is

V ¼ PB
r
X

i

fiLi

B
¼ PB

r
H2

4B2 þ
B2 þ 9H2

16

B2 þ
H2

16 þ B2

B2

 !

¼ PB
r

2þ 7
8

H
B

� �2
 !

ð29Þ

Similarly to the example above, the dimensionless frame vol-
ume Vr=ðPBÞ is derived for the other geometric configurations of
Fig. 12 and the result is generalized for systems with m diagonal
members in Table 1.

The dimensionless volume from Table 1 is computed and plot-
ted in Fig. 13 for various aspect ratios H=B. The plot illustrates
when the frame structure should transition, for example, from 1
to 3 diagonal members (see Fig. 13a), or 2 to 4 diagonal members
(see Fig. 13b) and so on, by which volume curve is the lowest. The
transitional aspect ratios are shown in the figure with a dashed
vertical black line. The transition points can be derived analytically
by equating the dimensionless volume of the frame with m diago-
nals to the one with mþ 2 diagonals as follows:

Vr
PB

� �
mdiagonals

¼ Vr
PB

� �
mþ2diagonals

ð30Þ

Using the formulas derived in Table 1 for frames with an odd
number of diagonals,

mþ mþ 2
2mþ 1

	 

H
B

� �2

¼ mþ 2þ mþ 4
2mþ 5

	 

H
B

� �2

) H
B

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1ð Þ 2mþ 5ð Þ

3

r
ð31Þ

Similarly for a frame with an even number of diagonals,

H
B
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

m 2mþ 4ð Þ
r

ð32Þ

In conclusion, the designer can first identify the optimal number of
modules for a braced frame depending on the H=B ratio, then later
identify the optimal bracing layout according to the geometric rela-
tionships described by Eq. (24).

Using this methodology, a conceptual design for a competition
entry featuring optimal bracing work point locations was proposed
by Skidmore, Owings & Merrill, LLP as shown in Fig. 14.

3.7. Optimal multiple modules bracing for multiple loads

The results for a frame with a single point load applied at the
top are here generalized to the case of multiple point loads. Within
this context, the optimality criteria followed is compliance minimi-
zation, which leads to a fully stressed design as described previ-
ously. The compliance (or external work of the applied forces
Wext) is written in the following dimensionless form:

EWext

rBF
¼
XN

n¼1

N � nþ 1ð Þ z2n � z2n�1ð Þ2 þ B2

B2

"

þ N � nþ 1ð Þ z2n�1 � z2n�2ð Þ2 þ B2

B2

þ
XN

j¼n

z2j � z2n�1

B2

 !
z2n � z2n�2ð Þ

#
ð33Þ



Fig. 12. Geometry and notation for optimal braced frames with m diagonal members.

Table 1
Frame volumes for various numbers of diagonals.

Number of diagonals,
m

Dimensionless frame volume,
Vr=ðPBÞ

1
1þ H

B

� �2

2
2þ 7

8
H
B

� �2

3
3þ 5

7
H
B

� �2

4
4þ 11

16
H
B

� �2

5
5þ 7

11
H
B

� �2

m (odd)
mþ mþ 2

2mþ 1

	 

H
B

� �2

m (even)
mþ 1

2
þ 3

4m

	 

H
B

� �2

L.L. Stromberg et al. / Engineering Structures 37 (2012) 106–124 115
The above equation is very similar to Eq. (22) derived for the case of
a single point load. The minimum compliance is obtained by taking
Fig. 13. Plot of dimensionless volume versus height to width ratio, H=B
partial derivatives of this equation, as given for the case of the brac-
ing work point location z2n�1 below:

@

@z2n�1

EWext

rBF

� �
¼ 0) N � nþ 1

B2 �3z2n þ 4z2n�1 � z2n�2ð Þ ¼ 0

ð34Þ

This equation yields the same results presented in Eq. (23). There-
fore, it is confirmed that even in the case of multiple point loads ap-
plied to the frame, the optimal bracing work point is located at 75%
of the height of the module. Furthermore, the optimal height of a
module can be derived by taking the partial derivative of Eq. (33)
with respect to the column work point elevation z2n. The frame
modules are considered to be of constant height in what follows.
4. Combining Q4 and beam elements

In this section, the integration of beam and Q4 elements for
two-dimensional problems is discussed with emphasis on the
node-to-node connections or, more specifically, on the interaction
among the coincident degrees of freedom.
: (a) odd number of diagonals and (b) even number of diagonals.



Fig. 14. Rendering of a competition entry showing an optimal bracing system
(image courtesy of Skidmore, Owings & Merrill, LLP).
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4.1. Element combination alternatives

In the proposed technique, the element types used are the stan-
dard two-node beam elements with six degrees of freedom (two
translations and one rotation at each node) and the four-node bilin-
ear quadrilateral elements with eight degrees of freedom (two
translations per node). In order to effectively connect the finite ele-
ments, the interaction between the rotational and translational de-
grees of freedom must be taken into account. This interaction can
be carried out using the three methods outlined in Fig. 15:

� the beam element is attached only at the extreme ends of the
quadrilateral mesh so interior nodes of the quadrilateral mesh
along the beam move independently of the interior nodes of
the beam element (Fig. 15a),
� the beam is discretized into many smaller beam elements

which are attached at every node of the quadrilateral mesh
along the beam line, forcing the quadrilateral nodes to translate
together with the beam elements (Fig. 15b),
� the beam elements share all the degrees of freedom with the

enriched quadrilaterals along the beam line, meaning each node
of both quadrilaterals and beams must translate and rotate con-
currently as opposed to the previous methodologies where the
quadrilaterals were limited to pure translations (Fig. 15c).

Details of these implementations are discussed next, and a com-
parison of results based on these techniques is given later, in
Section 6.2.

4.2. Beam and quadrilateral elements connected at extreme ends only

The first method for combining continuum and discrete finite
elements consists of simply connecting the beam ends to the ex-
treme corners of the quadrilateral mesh. As displayed in Fig. 15a,
the beam elements share two translational degrees of freedom at
each end (highlighted in red1) with the quadrilaterals. Thus, the
1 For interpretation of color in Figs. 2, 6, 14, 15, 21, 24, and 27–29, the reader is
referred to the web version of this article.
end rotation of the beam has no influence on the quadrilateral finite
elements because the rotational degree of freedom is decoupled.
Additionally, all the interior nodes along the length of the beam
are free to move independently of the quadrilateral node transla-
tions (see Fig. 16). Here, the effect of the beam elements is only glo-
bal on the mesh, that is, the beams provide translational and
rotational stiffness at the column node locations (Fig. 16).
4.3. Beam and quadrilateral elements attached continuously along
beam line

In the second method for connecting the discrete and contin-
uum elements (as shown in Fig. 15b), the horizontal beam is dis-
cretized into beam elements with nodes that coincide with the
nodes of the quadrilateral mesh. Consequently, the translational
degrees of freedom of both beam and quadrilateral elements are
shared throughout the beam’s length (shown in red). Thus, the
quadrilateral elements are constrained to move jointly with the
beam elements when the frame deforms. This behavior is illus-
trated in the sketch shown in Fig. 17.

Note that the connection between beams and columns in a
structural steel frame can be designed for various degrees of mo-
ment transfer (i.e. shear connections, flexible moment connections,
moment connections (see Fig. 18), which correspond to various
rotational stiffness levels for the connection. The influence of the
connection stiffness on the topology optimization results is studied
later through numerical examples.
4.4. Beam and enriched (drilling) quadrilateral elements attached
continuously along beam line

Bilinear quadrilateral (Q4) elements behave poorly in in-plane
bending; however, inclusion of additional drilling degrees of free-
dom allows the enriched elements (Q4D4), illustrated by Fig. 19,
to perform better than the four-node quadrilateral elements (Q4)
while using less degrees of freedom than the eight-node quadrilat-
eral (Q8) [27]. Here, the two translations at the middle nodes in the
Q8 are converted to one rotation at each corner in the Q4D4 ele-
ment (see Fig. 19). The equations for the drilling degrees of free-
dom can be derived from the basic Q8 formulation [27] as follows:

um

vm

� �
¼ 1

2
ui

v i

� �
þ 1

2
uj

v j

� �
þ hj � hi

8
yj � yi

xi � xj

� �
ð35Þ

where ui and v i are the horizontal and vertical translations at node i,
hi is the pseudo-rotation at node i, m represents a mid-span node,
and i and j are the corner nodes of the element.

Though the additional drilling degrees of freedom allow the
quadrilateral elements to rotate or bend with the beam elements
along the beam line, as observed in Fig. 20, no significant influence
has been observed on the optimization (compliance) results. This
behavior can be explained by observing that the additional rota-
tions provided by the drilling degrees of freedom capture only a lo-
cal bending effect. Therefore, standard Q4 elements are sufficiently
accurate to represent the structural behavior of the examples
shown in this paper since the translational behavior is dominant.
Note also that the Q4D4 implementation is computationally more
expensive than that using ordinary Q4 elements.
5. Topology optimization formulation

The integration of beam and quadrilateral elements described
in the previous section can be incorporated into the classical topol-
ogy optimization formulation by introducing a few modifications
as described below.



Fig. 15. Connection types for beam and quadrilateral finite elements: (a) attached at global beam ends, (b) attached at all concurrent mesh nodes, and (c) attached at all
concurrent mesh nodes with enriched (drilling) Q4 elements.
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5.1. Problem statement

Despite several objectives (tip displacement, frequency, buck-
ling, compliance, etc.) in topology optimization, in this work we
choose to maximize the overall stiffness of a building; thereby,
minimum compliance is used as the objective function of the opti-
mization. The design domain of the buildings considered in this pa-
per is the outer skin or shell. The optimal layout in terms of
minimum compliance can be stated in terms of the density, q,
and the displacements, u, as follows:

min
q;u

cðq;uÞ ð36Þ

s:t: KðqÞu ¼ fZ
X
qdV 6 Vs

qðxÞ 2 ½0;1� 8x 2 X
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move tofree
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Fig. 16. Simple moment frame demonstrating a sample displacement field where
beam elements rotate independently of the nodal translations of the quadrilateral
elements along the beam line.

with beams
 translateQuadrilaterals

Fig. 17. Example of a displacement field with beam and quadrilateral elements
attached continuously along beam line.

118 L.L. Stromberg et al. / Engineering Structures 37 (2012) 106–124
In the above equations c represents the overall compliance of
the structure while KðqÞ represents the global stiffness matrix
which depends on the material densities, u and f are the vectors
of nodal displacements and forces, respectively, Vs is the volume
connectionPinned ri-Semi
connect

Inflec
poi

Inflection
point

Fig. 18. Analytical representation of the beam to column connections of various stiffness
moment connection, moment connection.
fraction constraint which represents the maximum volume of
material permitted for the design of the structure, and q is the
material density for each design variable where q ¼ 0 signifies a
void and q ¼ 1 represents solid material.

The ill-posedness of the topology optimization problem, or lack
of a solution in the continuum setting [28–30], can be overcome
through relaxation. A continuous variation of density in the range
½qmin;1� is applied in relaxation rather than restricting each density
to an integer value of 0 or 1 thereby guaranteeing the existence of a
solution. A small parameter greater than zero, qmin, is specified to
avoid singularities of the global stiffness matrix, KðqÞ.

The topology optimization problem is solved by means of the
SIMP model [31,32,12,33], however, other material models may
be used, such as the Rational Approximation of Material Properties
(RAMP) [34,13]. In the SIMP formulation, a power-law relation be-
tween the stiffness and element density is introduced in the form:

EðxÞ ¼ qðxÞpE0 ð37Þ

where E0 describes Young’s modulus of the solid material and p is a
penalization parameter with p P 1. This formulation prescribes
that the material properties continuously depend on the material
density at each point. The penalization parameter, p, forces the
material density towards 0 or 1 (void or solid respectively) as op-
posed to forming regions of intermediate densities (gray zones)
where q assumes a value somewhere between 0 and 1. The optimi-
zation procedure presented in this work uses continuation, where
the penalization parameter, p, is increased over the range of 1 to
4, in increments of 0.5 until convergence at each value is achieved.

5.2. Projection methodology with continuum and discrete elements

To avoid the common problem of checkerboarding over the
quadrilateral mesh, a projection technique, similar to that of Guest
et al. [35], was implemented. In addition to eliminating the check-
erboarding patterns, projection is used as a means to specify the
minimum member size (characteristic length) in a structure. The
projection method in this work was performed only over the quad-
rilateral mesh since the discrete members already have a given
cross-sectional area. Moreover, the presence of the beam or col-
umn elements should have no influence over the topology optimi-
zation of the bracing members since they are already members as
gid
ion

connectionRigid

Inflection
point

tion
nt

and corresponding moment diagrams. From left to right: shear connection, flexible



Fig. 19. Addition of drilling degrees of freedom using the mid-side displacements: (a) 8-node quadrilateral element (Q8) and (b) 4-node quadrilateral element with additional
rotations (Q4D4).

with beams

 translateQuadrilaterals
rotateand

Fig. 20. Example of a displacement field with enriched (drilling) quadrilateral
elements (Q4D4).

Fig. 21. Minimum length scale for projection technique over quadrilateral ele-
ments; beam and column elements that lie within the radius have no effect on
continuum topology optimization.
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illustrated in Fig. 21. The optimality criteria [36] is used for the
optimization process.
6. Discussion on finite element modeling assumptions

In this section, the behavior of a single module of a high-rise
building is studied to understand some fundamental modeling as-
pects that arise from combining discrete and continuum elements.
Furthermore, we discuss how various modeling assumptions affect
the final topology of the lateral bracing system for a high-rise
building. For the following problems, we assume an equal height
and width of 10 ft with W10�30 steel columns (as specified). For
the topology optimization problem, the volume fraction is 30%

with a projection radius of 6 in.

6.1. Influence of point load application in the context of symmetry

The application of the symmetry constraint is studied for the
load case in Fig. 22. If only one load is applied at the top left corner
of the mesh and symmetry is enforced, the top member is crucial
to transfer the load to the column on the far side. This conclusion
holds when the mesh has quadrilateral elements only (Fig. 23a), as
well as when beam elements are introduced for the columns
(Fig. 22a). With the application of two loads (one at each top corner
in the same direction) there is no need for the horizontal member
to transfer the load to the far sided column. Therefore, such mem-
bers disappear from the topology optimization layout (Fig. 22b and
23b).

Moreover, in Fig. 23, column elements were absent from the
mesh and the resulting K-brace in Fig. 23a shows almost disap-
pearing columns. This is consistent with the static equilibrium at
the node illustrated in Fig. 24 (left). Similarly, the result in
Fig. 23b is consistent with the free body diagram in Fig. 24 (right).
Moreover, in the presence of vertical loads the column members
would always be required to transfer such loads from the building
structure to its foundation.

In the numerical examples in this paper, the symmetry condi-
tion was applied using the schematic illustrated in Fig. 22b since
the lateral load considered is a wind load which has a windward
and a leeward component.

6.2. Effect of beam to quadrilateral element connection on the optimal
topology

The effect of the various beam to quadrilateral element connec-
tions as described in Section 4 are investigated in Fig. 25. Fig. 25a
corresponds to the situation described in Fig. 16 where only the ex-
treme beam ends (black nodes) are attached to the Q4 mesh. Since
the nodes are unattached along the beam line and the column line,
and the moment is transferred from the beam to the column, the
bracing developed stiffens the moment frame.

Fig. 25b corresponds to the situation described in Fig. 17 where
the beam and column displacements are tied to those of the



Fig. 22. Influence of symmetry constraint on mesh with 6400 quadrilateral (Q4)
elements and 2 beam (W10�30) elements: (a) single point load with symmetry
applied to the optimization and (b) anti-symmetric point loads with symmetric
result.

Fig. 23. Influence of symmetry constraint on mesh with 6400 quadrilateral (Q4)
elements (no columns): (a) single point load with symmetry applied to the
optimization and (b) anti-symmetric point loads with symmetric result.

 transferredForce
membersbothto

forceZero
member

Fig. 24. Effect of asymmetric versus anti-symmetric load application on column
elements: (left) K-brace develops zero-force ‘‘columns’’; (right) presence of forces in
column members of high-waisted brace.
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quadrilaterals (at the black nodes). Thus, the optimal bracing en-
gages the frame at intermediate working points along the lengths
of the beams and columns.

Fig. 25c represents a situation similar to Fig. 25b, the only dif-
ference being the moment release (drawn as a hollow circle) at
the extreme ends of the beam. As a consequence, the moment is
no longer transfered between the beam and column and a stiffen-
ing pattern for the corners develops. In order to evaluate the solu-
tion with the best structural performance, we consider the final
compliance of the three frames in Fig. 25: (a) 0.3287, (b) 0.3397,
and (c) 0.3525. Since the volume of material is the same for all
the frames, from an engineering standpoint, if no other constraints
are present, the best performing frame would be the braced frame
in Fig. 25a.

6.3. Influence of the column stiffness on the bracing layout

The effect of varying the column area while keeping the contin-
uum mesh unchanged subject to anti-symmetric point loads at the
top corners (see Fig. 22b) is demonstrated in Fig. 26. The dimen-
sions of this module are taken to be 48 m by 41:5 m. An anti-sym-
metric point loading of P ¼ 2 MN is applied to the top corners. The
area, A0, of the column elements in Fig. 26a were sized to achieve a
uniform stress in accordance with the conditions of optimality for
compliance described in the previous sections. Thus, we select an
area of A0 ¼ 0:0021 sq m for the column elements, a thickness of
t ¼ 0:002 m for the Q4 elements and E ¼ 200;000 MPa (steel).
For the topology optimization, a volume fraction of 20% is used
with a projection radius of rmin ¼ 3 m.

As the area, A, is increased from the optimal area, A0, the inter-
section of the cross-brace (working point) moves vertically down-
ward towards the 45� bracing solution. Fig. 26 shows the
importance of proper sizing of the columns to obtain the theoreti-
cal optimal solution. Correspondingly, the proportions between the
radius of gyration of the columns and the overall width of the do-
main would also be of influence to the bracing point, i.e. the higher
this ratio, the lower the bracing point. However, in practice the col-
umns would first be sized for gravity loads and later designed for
lateral loads. Therefore, the column area may be higher than the
optimal area, and furthermore demonstrate a lower work point
than the 75% solution.

6.4. Verification of the constant stress condition

As described earlier in Section 3.1, the constant stress condition
is verified in the continuum approach for the previous structure in
Fig. 27 (left) which was derived using a Q4 element mesh. As
shown in Fig. 27 (right), the Von-Mises stresses are nearly constant
within each optimized member.

7. Optimal braced frames – numerical results

Numerical applications of the methodology developed in this
paper are presented in this section for the case of a



Fig. 25. Effect of different beam to quadrilateral connection types as presented in Section 4: (a) attached at global beam ends with mesh of 6400 Q4 and 3 W10�30 beam
elements, (b) attached at all concurrent mesh nodes with mesh of 6400 Q4 and 120 W10�30 beam elements, and (c) attached at all concurrent mesh nodes with moment
release for mesh of 6400 Q4 and 240W10�30 beam elements. Nodes shown in black indicate beam to quadrilateral connection.

Fig. 26. Effect of varying the stiffness of the column elements on the optimal bracing layout with mesh of 6400 Q4 elements and two beam elements: (a) A ¼ A0, (b) A ¼ 2A0,
(c) A ¼ 5A0, and (d) A ¼ 10A0. Intersection of bracing approaches 50% of height as column area is increased from the optimal solution.
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two-dimensional high-rise building frame. Such examples portray
several features of optimal frames that were described in the pre-
vious sections.

First, the problem given in Hemp [26] is solved using the com-
bined approach in Fig. 28. In this problem, the overall dimensions
of the structure are given as H ¼ 276 m by 2B ¼ 41:5 m. The load-
ing considered is a lateral load of P ¼ 1000 kN applied at the top
center with a symmetry constraint across the y-axis. This structure
is assumed to be made of steel, with E ¼ 200 GPa. Using the virtual
work methodology to satisfy the drift limit requirements as de-
scribed in Section 2 and assuming constant stress as described in
Section 3.1 applied to the analytical solution for 11 diagonals based
on the truss geometry of Fig. 12, the total volume of the structure
was computed to be 48 m3, where the columns account for 35 m3

of this value and the bracing accounts for 13 m3. The column sizes
established using the analytical solution were carried over to the
numerical solution.

Using the discrete/continuum element combination, the topol-
ogy optimization problem is run with continuation on the penali-
zation from p ¼ 1 to 4 in steps of 0:5 with a projection radius of
rmin ¼ 3. As seen in Fig. 28b the thick areas of material are no longer
concentrated at the edges of the domain. Furthermore, the braces
are now complete and clearly defined and the final geometry
produces the same angles as shown in the benchmark example
of Fig. 11. Moreover, the resulting diagonal ‘‘members’’ are equal
in size and the stresses are nearly constant throughout the height.
As was stated previously, for intermediate densities the Von Mises
stresses will be constant since the strain energy is constant. The re-
gions where the stresses are higher (or lower) are when the densi-
ties are at the endpoints of the [0,1] range (i.e. a density of 1 gives a
higher stress and a density of 0 gives a lower stress than the con-
stant). This example verifies the numerical methodology to iden-
tify the optimal bracing layout.

Next, in reference to the results shown in the introduction, we
study the addition of discrete truss elements (columns) from
Fig. 1c in more detail here. In this problem, the overall dimensions
of the structure are given as H ¼ 288 m by 2B ¼ 41:5 m. The load-
ing considered is a lateral load of P ¼ 2000 kN applied at each
module with a symmetry constraint across the y-axis. This struc-
ture is assumed to be made of steel, with E ¼ 200 GPa. Using the
virtual work methodology to satisfy the drift limit requirements
as described in Section 2 and assuming constant stress as described
in Section 3.1 applied to the analytical solution for six modules
based on the truss geometry of Fig. 12, the total volume of the
structure was computed to be 240 m3, where the columns account
for 35% of this value and the bracing accounts for 20%. The column



Fig. 27. Topology optimization of a frame using 6400 quadrilateral elements (left) and corresponding plot of Von Mises stresses (right).

Fig. 28. Topology optimization for braced frame given in Hemp [26]: (a) problem statement, (b) topology optimization result, and (c) stress distribution.
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sizes established using the analytical solution were carried over to
the numerical solution. Similarly, the volume fraction for the topol-
ogy optimization problem was then taken to be 20% of solid
material.
The results of the topology optimization problem with the com-
bined approach using continuation and a volume fraction of 20%

with a projection radius of rmin ¼ 3 are shown in Fig. 29b. Similar
to the previous example, the thick areas of material are no longer



Fig. 29. Topology optimization for braced frame: (a) problem statement, (b) two-dimensional result, (c) stress distribution, and (d) three-dimensional rendering of result.
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concentrated at the edges of the domain and the braces are com-
plete and clearly defined. One interesting feature of this result
shows the densities increase for the bracing members as the load
increases throughout the height indicating that the sizes of the fi-
nal members should increase accordingly. The Von Mises stresses
for this geometry featuring modules of the same height are plotted
in Fig. 29c, which are not constant throughout the structure due to
the increasing densities along the height. In Fig. 29d a three-
dimensional rendering of this result is given to show how these
findings might be used to design a high-rise building.
8. Concluding remarks

The methodology presented in this work for developing a lateral
braced frame system in a high-rise building enables the structural
engineer to quickly and efficiently identify the optimal diagonal
layout. In summary, the main contributions of this work are as
follows:

� Several methodologies to connect discrete and continuum ele-
ments were explored.
� A technique was proposed for the design of an optimal braced

frame system.
� The constant state of stress in an optimized frame under certain

conditions was verified.
� The relevance of this new methodology in the context of high-

rise building mechanics was demonstrated.
� The optimal geometry for a braced frame was analytically

derived and numerically confirmed.
As an extension of the work presented in this paper, the use of
shell elements with three-dimensional beam elements for large
structural systems is currently under exploration by the authors.
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