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SUMMARY

Unlike the traditional topology optimization approach that uses the same discretization for finite element
analysis and design optimization, this paper proposes a framework for improving multiresolution topol-
ogy optimization (iMTOP) via multiple distinct discretizations for: (1) finite elements; (2) design variables;
and (3) density. This approach leads to high fidelity resolution with a relatively low computational cost. In
addition, an adaptive multiresolution topology optimization (AMTOP) procedure is introduced, which con-
sists of selective adjustment and refinement of design variable and density fields. Various two-dimensional
and three-dimensional numerical examples demonstrate that the proposed schemes can significantly reduce
computational cost in comparison to the existing element-based approach. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Structural topology optimization has been successfully applied to a variety of practical engineering
problems in the past decades [1, 2]. However, challenges still remain in enhancing computational
efficiency despite the rapid improvement in computer performance. This is because the requirement
of high fidelity is also increasing constantly, especially for three-dimensional (3D) applications.
In general, computational cost depends on those of the analysis and the optimization process. This
study aims to develop an approach to reduce the computational cost in both the analysis and the opti-
mization while maintaining high resolution designs. Our development includes two parts: reducing
the number of design variables and adaptively improving multiresolution topology optimization by
using appropriate elements at suitable locations.

In general, the topology optimization method seeks an optimal distribution of material in the
design domain to optimize the performance of a structure under given constraints. In the material
distribution method, topology of a structure is defined through the density of pixels/voxels in the
domain [3]. The density can be considered as a design variable and can assume an intermediate
value between 0 (void) and 1 (solid). To obtain a well-defined solution, a relatively large number of
finite elements and design variables are often required, which naturally makes the problem computa-
tionally expensive or intractable. Studies devoted to developing efficient approaches for large-scale
topology optimization problems have been focused on the solution of finite element analysis because
of its dominance in the computational cost [4, 5]. These approaches [4–13] can be broadly divided
into three groups: (1) employing powerful computing resources; (2) introducing efficient solution
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for the analysis; and (3) reducing the number of degrees of freedom of the analysis model. In the
first approach, parallel computing is often used to handle a large number of finite elements [5–8].
In the second approach, fast iterative solvers are developed to handle large-scale three-dimensional
finite element analysis [4, 7–9]. Additionally, in reanalysis procedures [10], finite element analyses
are performed only at an interval of several iterations, while the displacements are approximated
at other iterations. Thus, the total number of finite element analyses is reduced in comparison to
the full analysis at every optimization iteration. In the third approach, multiple mesh size strategies
[11–13] have been studied to reduce the computational cost by solving the problem first on a coarse
mesh and later on a refined mesh during the topology optimization process. The above-mentioned
studies employ the same discretization for the finite elements and design variables.

There have been some studies to decouple the models used for analysis and design optimization.
Traditional topology optimization methods, such as the element-based approach, utilize the den-
sity of each finite element as a design variable. The design variables can be located at the centers,
at the nodes, or at the midpoints of the edges of the finite elements [14–17]. The topology defi-
nition function is also utilized to decouple the topology definition and the finite element analysis
[18]. The super-element approach [19] represents the densities of several finite elements by a single
design variable. The aforementioned decoupling approaches utilize two meshes: the finite element
(FE) mesh, and the design variable mesh. In these approaches, the design variable mesh is similar
or coarser than the finite element mesh. A multiresolution topology optimization (MTOP) approach
[20] has been recently proposed using three meshes (not necessarily uncorrelated): the finite element
mesh for the analysis, the design variable mesh for the optimization, and the density element mesh
for material distribution representation. In this approach, the design variable and density element
meshes are finer than the finite element mesh. The governing equation is solved on the coarser finite
element mesh while the optimization is performed on the finer design variable mesh. In Reference
[20], the design variable mesh and the density mesh are the same. Because the computational cost
for solving the governing equation is dominant in a problem using traditional topology optimization
approaches (e.g., element-based approach) [4,5], this approach can deal with large-scale problems at
a relatively low computational cost [20]. The approach can promote high-resolution topology opti-
mization in various problems including biomedical problems such as optimal design of craniofacial
segmental bone replacements [21], and reliability-based topology optimization [22, 23].

In the first part of this paper, we propose an efficient scheme for improving multiresolution topol-
ogy optimization (iMTOP) by using multiple distinct discretizations: a relatively coarse mesh for
finite elements, a moderately fine mesh for design variables, and a relatively fine mesh for density
elements as shown in Figure 1. Compared with our previous study in [20], the present work further
reduces the computational cost while maintaining the resolution by using a coarser mesh for design
variables. In topology optimization, one is usually motivated to refine the finite element mesh to
obtain topology with smooth material boundaries. This is desirable especially for three-dimensional
structures. For instance, after the optimal topology is obtained, the solution can be interpreted by
using isosurfaces to define the contour of the solid part of the structure, which can be verified by
means of finite element analyses. If the original mesh is coarse, a jagged isosurface may be obtained,
which may require mesh repair and smoothening before it can be used for volume mesh generation.
To a certain extent, we achieve this desirable effect (smooth boundaries) with our algorithm without
having to refine the finite element mesh.

Figure 1. Displacement, density and design variable meshes.
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In the second part of this paper, we propose an adaptive multiresolution topology optimization
(AMTOP) scheme to further increase the efficiency. The adaptive mesh refinement approach [24–26]
has been proposed to reduce the total number of finite elements by representing the void with fewer
(coarser) elements and the solid with more (finer) elements. Lin and Chou [11] proposed a two-stage
approach in which the first-stage is performed with coarse finite elements and the optimal topology
at the end of the first stage is used as the starting point for the second stage, which uses a fine FE
mesh. In another investigation, Costa and Alves [24] employed a sequence of optimizations and
mesh refinement, and used a converged solution on a coarse mesh to guide the refinement on the
next refined mesh. Additionally, Stainko [25] used a slightly different approach in which the mesh
is refined only on the material boundary. Recently, de Sturler et al. [26] refined the mesh in the solid
regions and coarsened the mesh in the void regions dynamically, that is, during the optimization
process. Maute and Ramm [27] proposed an adaptive scheme to separate the design optimization
and analysis models. They performed shape and topology optimization separately and mapped the
results to each other. They employed the adaptive mesh refinement strategy on the finite element
mesh to change the design patch of the topology optimization. Kim and Yoon [28] utilized wavelet
space to perform the design optimization progressively from low to high resolution while using
the same finite element mesh. Moreover, Kim et al. [29] developed a multiscale wavelet-Galerkin
method and used it as an adaptive solver. The analysis and the design optimization are integrated
in a multiresolution framework so that both the analysis resolution and the design resolution can
be adaptively adjusted. In their approach, at all levels, the design resolution is similar or coarser
than the analysis resolution. Recently, Guest and Genut [30] used a separate design variable mesh
and finite element mesh such that the density of the finite element is obtained by projection of the
design variables. They utilized the finite element mesh and an adaptive design variable field where
the design variables can be activated and deactivated during the optimization process depending
on the structural regions. This approach provides the optimal design that has the same resolution
with the finite element mesh [30]. The proposed adaptive multiresolution topology optimization
(AMTOP) approach in this paper is based on the iMTOP scheme described in the first part. The
motivation for the adaptive approach is to use iMTOP elements only where and when needed; oth-
erwise, the conventional elements are used — the finite element mesh stays the same during the
optimization process.

The remainder of this paper is structured as follows: Section 2 proposes multiple distinct
meshes for improving multiresolution topology optimization; Section 3 describes the formulation
for improving multiresolution approach; Section 4 proposes the adaptive multiresolution topology
optimization procedure; Section 5 provides two-dimensional (2D) examples; Section 6 provides
three-dimensional (3D) examples; and finally Section 7 concludes the paper.

2. MULTIPLE DISCRETIZATIONS FOR TOPOLOGY OPTIMIZATION

Existing topology optimization approaches such as the element-based and nodal-based approaches
can be interpreted with a design variable mesh and a finite element (displacement) mesh. For exam-
ple, the element-based approach considers a uniform density of each finite element as a design
variable for optimization as shown in Figure 2(a). By contrast, the nodal-based approaches [14–16]
consider the densities at the finite element nodes as the design variables. Another option is to locate
the nodal design variables at the midpoints of the four edges of the quadrilateral elements [17]. The
design variables can be independent of the finite element mesh and can be adaptively reduced during
the topology optimization process [30]. In the above-mentioned approaches, the topology design is
defined via the density of the finite element mesh. Therefore, the highest achievable resolution is
that of the finite element mesh.

Recently, Nguyen et al. [20] proposed the use of three meshes: finite element mesh, design vari-
able mesh, and density element mesh for multiresolution topology optimization. For example, each
Q4 element is divided into a number of density elements (e.g., n D 25). Design variable is defined
as the density at the center of the density element. The number of design variables, therefore, equals
the number of density elements as shown in Figure 2(b). The uniform density of a density element
is computed from the values of the design variables via a projection function.
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Figure 2. Topology optimization elements: (a) Element-based approach (Q4/U); and (b) MTOP approach
(Q4/n25).

Figure 3. iMTOP elements: (a) Q4/n25/d9 element; and (b) Q4/n16/d5 element.

2.1. Finite element, density and design variable meshes

Here, we present an efficient procedure for improving multiresolution topology optimization
(denoted as iMTOP). A relatively coarse mesh is employed for finite elements, a moderately fine
mesh for design variables, and a relatively fine mesh for density elements. In comparison to our
previous study (MTOP; [20]), we use fewer design variables, therefore, the computational cost can
be further reduced in the optimization, sensitivity analysis and projection. For example, Figure 2(a)
shows the element-based approach with Q4/U element while Figure 2(b) shows Q4/n25 element
where n D 25 is the number of density elements/design variables per Q4 finite element. With the
proposed improvement, we use fewer design variables per Q4 element than in Figure 2(b). For
instance, Figure 3(a) shows the proposed iMTOP element: Q4/n25/d9 where n D 25 and d D 9

are the number of density elements and design variables, respectively. The number of design vari-
ables in Q4/n25/d9 element (Figure 3(a)) is relatively smaller than that in the original Q4/n25
element (Figure 2(b)). Figure 3(b) shows another choice of density elements and design variables
(Q4/n16/d5).

2.2. iMTOP elements for two-dimensional and three-dimensional topology optimization

The concept of three distinct meshes can be applied to other two-dimensional and three-dimensional
element types in which the number of design variables is less than the number of density elements.
For two-dimensional problems, Figure 4(a) shows triangular element with 16 density elements per
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Figure 4. Two-dimensional iMTOP elements: (a) triangular T3/n16/d6 and T3/n16/d4 elements; and
(b) polygonal P5/n20/d6 and P5/n20/d5 elements.

Figure 5. Three-dimensional iMTOP elements: (a) brick B8/n125/d8 and B8/n125/d15 elements; and
(b) tetrahedral TET4/n64/d8 and TET4/n64/d10 elements.

finite element and 6 or 4 design variables to create T3/n16/d6 or T3/n16/d4 elements, respectively.
We can also apply the iMTOP approach to polygonal finite elements [31] to improve the resolution
design. For example, Figure 4(b) shows a polygonal element with five edges (P5) using n D 20

density elements. We introduce here P5/n20/d6 and P5/n20/d5 elements where 6 and 5 are the
number of design variables per polygonal element, respectively. For three-dimensional problems,
Figure 5(a) shows 125 density elements per B8 element with 8 and 15 design variables, denoted
by B8/n125/d8 and B8/n125/d15; and Figure 5(b) shows 64 density elements of a tetrahedral ele-
ment with 8 and 10 design variables, denoted as TET4/n64/d8 and TET4/n64/d10, respectively. It
is noteworthy that the iMTOP elements in this paper utilize the locations of design variables asso-
ciated with the finite elements to develop systematic element types. We actually can use the design
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variables located at any points in the design space [32]. Thus, future work may seek the optimal
number and locations of the design variables.

2.3. Projection of design variables to density elements: a minimum length scale approach

Studies have been conducted to improve the manufacturability of the topology design and alleviate
the numerical instability [33–36]. Imposing a prescribed length scale feature might also alleviate
numerical instability and checkerboard effect. Mesh independent filtering techniques have been
developed as restriction methods for the density-based topology optimization such as the sensi-
tivity filter [37], density filter [38, 39], and projection function [14]. For comparison of the filtering
techniques, readers are referred to the Reference [40]. The latter two approaches have some simi-
larity; the density filter method in [38] uses the finite element density design variables, while the
projection method in [14] uses the finite element nodal design variables. In our study, we refer to
the approach as the projection method [14,41] to compute the element density from the design vari-
ables. The projection method uses the design variables associated with the design variable mesh to
compute the element densities that belong to the density element mesh.

Here, dn denotes the design variable associated with the design variable mesh, and ¡i represents
the density of element i associated with the density element mesh. If the change of material density
occurs over a minimum length rmin, as shown in Figure 6, then the element density ¡i is obtained
from the design variable dn as

¡i D f .dn/, (1)

where f ../ denotes the projection function. For example, if a linear projection is employed, the uni-
form density of a density element is computed as the weighted average of the design variables in the
neighborhood as follows:

¡i D

P
n2Si

dnw.rni /P
n2Si

w.rni /
, (2)

where Si is the subdomain associated with density element i , as shown in Figure 6, and rni is the
distance from the point associated with design variable dn to the centroid of density element i . The
corresponding weight function is defined as

w.rni /D

´
rmin�rni
rmin

if rni 6 rmin

0 otherwise
. (3)

Note that the physical radius rmin (see Figure 6) is independent of the mesh. Using the projection
function with a minimum length scale, one thus obtains a mesh independent solution.

Figure 6. Projection function from the design variables to the density element (Q4/n25/d9).
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3. IMPROVING MULTIRESOLUTION TOPOLOGY OPTIMIZATION FORMULATION

In this section, the problem formulation for iMTOP is presented. For illustration purposes, a com-
pliance optimization problem is considered in which the compliance is minimized under a volume
constraint.

3.1. Problem statement and formulation

The basic problem statement is expressed in the discrete form using finite element method
as follows:

min
d

C.¡, u/D fTu

s.t. W ¡D f .d/

K.¡/uD f

V.�/D

Z
�

¡dV 6 Vs

0 < ¡min 6 d6 1

, (4)

where C is the compliance, d is the vector of design variables, f ../ is the projection function,
¡ D ¡.x/ is the density at position x, respectively, K is the global stiffness matrix, Vs is the pre-
scribed volume, and f and u are the global load and displacement vectors. The desirable solution
indicates whether the density at any point in the domain is either 0 (void) or 1 (solid). However,
it is impractical or computationally intractable to solve the integer optimization problem [42]. In
a relaxed problem, the density can have an intermediate value between 0 and 1. For example, in
the popular solid isotropic material with penalization (SIMP) [3,43,44] model, Young’s modulus is
parameterized using solid material density as follows:

E.x/D ¡.x/pE0, (5)

where E0 is the original Young’s modulus of the material in the solid phase, corresponding to the
density ¡D 1, and the exponent p is the penalization parameter. To prevent singularity of the stiff-
ness matrix, a small positive lower bound, for example, ¡min D 10

�3, is placed on the density. When
the penalization parameterp is greater than 1, the intermediate density approaches either 0 (void) or
1 (solid). We also impose the same density bounds on the design variables d in Equation (4).

3.2. Integration of stiffness matrix

In the traditional element-based approach, the density of each finite element is represented by one
value ¡e and the global stiffness matrix K is expressed as

KD
NelX
eD1

Ke.¡/D

NelX
eD1

Z
�e

BTD.¡/Bd�, (6)

where Ke.¡/ is the stiffness matrix of the element e, B is the strain–displacement matrix (shape
function derivatives), and D.¡/ is the constitutive matrix, which depends on the material density
(D.¡/D ¡pD0 where D0 is the constitutive matrix of the solid material).

By contrast, in the iMTOP approach, each finite element consists of a number of density elements,
and the density is assumed to be uniform inside each density element. The stiffness matrix of the
finite element is computed as the summation of the integration of the stiffness integrand over each
density element. For example, for a Q4 element with unit thickness, the formulation to compute the
stiffness matrix in the reference domain is as follows [45]:

Ke D

Z
�e

BTDBd�D

1Z
�1

1Z
�1

BTDBJdŸd˜, (7)
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where .Ÿ,˜/ denote the intrinsic coordinates in the interval [–1,1], J is the Jacobian, and B is the
strain–displacement matrix in the reference (parent) domain. The standard formulation of matrix B
in the reference domain can be found in the literature [45]. The integration of the stiffness matrix
integrand over the reference domain �0 (Figure 7) can be computed as follows:

Ke D

NnX
iD1

 Z
�0
i

BTDBJdŸd˜

!
D

NnX
iD1

 Z
�0
i

BTDBJd�0i

!
, (8)

where �0i is the domain of the density element i (area A0i for 2D, and volume V 0i for 3D) in the
reference domain �0 and Nn is the number of the integration elements in the displacement element
domain. NoteNn is also equal to the number of density elements per displacement element,Nn D n.

The SIMP interpolation model is employed to evaluate the stiffness matrix in (8) as follows:

Ke D

NnX
iD1

 
.¡i /

p

Z
�0
i

BTD0BJd�0i

!
=
NnX
iD1

.¡i /
pIi , (9)

where D0 is the constitutive matrix corresponding to the solid phase and Ii is

Ii D
Z
�0
i

BTD0BJd�0i . (10)

When a large number of density elements are employed in a displacement element (e.g. nD 25 for
Q4 element, n D 125 for B8 element), the integration of the stiffness matrix in (9) can be approx-
imated by the summation of the integrand evaluated at the center of each density element [20, 32].
Thus, the integral (10) can be simplified as

Ii =
�
BTD0BJ

�ˇ̌
i
A0i . (11)

Figure 8(a) shows a Q4 with 25 density elements, Figure 8(b) shows the exact integration scheme
in (10), and Figure 8(c) shows the approximated integration scheme in (11).

3.3. Sensitivity

The solution of the gradient-based optimization problem (4) requires the computation of sensitiv-
ities of objective function and constraint. The sensitivity of the compliance requires the compu-
tation of the sensitivity of the stiffness matrix with respect to the design variable, which can be

Figure 7. Isoparametric element: (a) initial domain; and (b) reference domain.
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Figure 8. Integration points for Q4/n25 element: (a) spatial distribution of the density; (b) Gauss quadrature;
and (c) approximation.

calculated as

@Ke

@dn
D
X @Ke

@¡i

@¡i

@dn
D
X @

 
NnP
jD1

.¡j /
pIj

!

@¡i

@¡i

@dn
D
X

.¡i /
p�1Ii

@¡i

@dn
, (12)

where dn and ¡i are the design variable and element density, respectively. The sensitivities of the
compliance and the volume are computed as follows:

@C

@dn
D
X @C

@¡i

@¡i

@dn
D
X
�uT @K

@¡i
u
@¡i

@dn

@V

@dn
D
X @V

@¡i

@¡i

@dn
D

Z
�i

dV
@¡i

@dn

. (13)

The sensitivities of the element density with respect to design variables are derived as

@¡i

@dn
D

w.rni /P
m2Si

w.rmi /
. (14)

The above derivation of sensitivity analyses of the compliance and volume constraint are for the
minimum compliance problem. When other topology optimization problems such as ‘compliant
mechanism’ [42, 46] are considered, the objective function and constraints are derived from the
chain rule. For example, if an objective function or constraint is described as a function of the den-
sity such as displacement, that is, g.�/, then the sensitivity of this function with respect to the design
variable is computed as follows:

@g../

@dn
D
X @g../

@¡i

@¡i

@dn
. (15)

3.4. iMTOP ratio — measuring efficiency and resolution

The efficiency of a topology optimization model can be measured directly using the normalized
computer run time. However, this comparison may not be always appropriate. For example, one
may employ a very fast solver, and then the computational cost of the element-based approach on
fine mesh will get closer to that of the MTOP approach. Also, implementation of the code in different
programming languages may also lead to different efficiency levels. The efficiency depends on code
structures as well. Thus, we need a measure to describe and compare the efficiency and resolution
in terms of the number of finite elements, density elements and design variables. Table I com-
pares the iMTOP elements with the conventional element-based approach. First, the total number of
finite elements is related to the total degrees of freedom in the linear equations of equilibrium. Sec-
ond, the number of density elements determines the resolution of the design. In the element-based
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Table I. Summary iMTOP ratio of elements.

Number of

Finite Density Design iMTOP ratio
Approaches Element types elements elements variables k: n: d

2D: Q4 Element-based Q4/U 1 1 1 1 : 1 : 1
MTOP Q4/n25 1 25 25 1 : 25 : 25
iMTOP Q4/n25/d9 1 25 9 1 : 25 : 9

Q4/n25/d4 1 25 4 1 : 25 : 4

3D: B8 Element-based B8/U 1 1 1 1 : 1 : 1
MTOP B8/n125 1 125 125 1 : 125 : 125
iMTOP B8/n125/d15 1 125 15 1 : 125 : 15

B8/n125/d8 1 125 8 1 : 125 : 8

approach, each finite element contains one density element whereas in the super-element approach,
each density element represents the densities of several neighboring finite elements. By contrast,
in the iMTOP approach, each finite element consists of a number of density elements. When the
number of density elements increases, the resolution of the design increases. However, the com-
putational cost related to stiffness matrix calculation, sensitivity analysis, and projection increases
as well. Finally, the number of design variables determines the computational cost in optimization,
sensitivity analysis, and projection. A ratio is introduced to measure the efficiency and resolution of
an iMTOP element type, termed as the ‘iMTOP ratio’, which is defined as follows:

iMTOP ratioD k W n W d D .the number of finite elements) : (the number of density
elements) W .the number of design variables)

. (16)

For models with the same number of finite elements (k/, the larger the number of density elements
(n/ is, the higher resolution is obtained. On the other hand, a smaller number of density elements and
design variables indicate higher efficiency. Therefore, when models are considered with the same
number of finite elements (k/, it is desirable to have a larger number of density elements (n/ and a
smaller number of design variables (d/. Table I shows the iMTOP ratio for element-based, MTOP,
and iMTOP approaches.

4. ON ADAPTIVE MULTIRESOLUTION TOPOLOGY OPTIMIZATION

We hereby present a heuristic adaptive scheme that can be used in conjunction with multiresolution
topology optimization. The motivation is to further reduce the design space by reducing the number
of design variables and/or density elements in the multiresolution framework. For more detailed
accounts on adaptivity theory and approaches, the readers are referred to the literature [24–26, 47].
Here our approach focuses on selective adjustment of the design space for topology optimization.

4.1. Reducing design variable and density fields

We propose here a simple and heuristic adaptive multiresolution topology optimization (AMTOP)
procedure, which is based on the scheme described in Section 2. As demonstrated by means of
numerical examples, the approach leads to high resolution design with relatively low computational
cost by using iMTOP elements (e.g., Q4/n25/d4) rather than conventional elements (e.g., Q4/U).
However, we only use iMTOP elements where and when needed; otherwise, we use conventional
elements (e.g., Q4/U). During the optimization process, some regions may have uniform mate-
rial distribution such as void regions or solid regions. In the regions where material distribution is
uniform, the iMTOP elements (e.g., Q4/n25/d4) are replaced by the conventional elements (e.g.,
Q4/U). On the other hand, the iMTOP elements are used in regions where the material density gra-
dient is high. In these regions, structural boundaries are forming, and therefore we need a higher
resolution to represent the material distribution.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 92:507–530
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4.2. Adaptive multiresolution design space

The adaptive scheme consists of using iMTOP elements only in the regions where they are needed;
otherwise, conventional elements are used via a criterion based either on design variables or on den-
sity elements. The procedure is shown here in terms of density elements. For illustrative purpose,
Q4/U and Q4/n25/d4 elements are used in the explanation; however, more than one type of iMTOP
elements can be used in a particular optimization problem. During the optimization process, element
types are tracked using an ‘element index array.’ Each finite element e is assigned an ‘element index’
ei, where ei D 1 indicates a conventional element (e.g., Q4/U), and ei D n (e.g., nD 25) indicates
an iMTOP element (e.g., Q4/n25/d4).

Initially, when the material distribution is uniform, all elements are assigned as conventional ones
(e.g., Q4/U). The optimization is performed until the objective function is converged. The iMTOP
element type is determined for each finite element based on element densities. We propose an alter-
native approach that determines the element type based on the gradient of the material density. For
example, iMTOP elements are used where the material density gradient is relatively high and con-
ventional elements are used where the material is relatively more uniform. However, in the current
implementation, an element e is changed from conventional to iMTOP when it is sufficiently ‘gray’,
that is, ¡L < ¡e < ¡U , where ¡L and ¡U are predefined thresholds, for example, ¡L D 0.015 and
¡U D 0.99. On the other hand, an iMTOP element is changed to conventional when all of their den-
sities are sufficiently ‘black’ or ‘white’, that is, ¡i > ¡U or ¡i < ¡L. The ‘element index’ ei is then
updated whenever the element is changed either from iMTOP to conventional or from conventional
to iMTOP. The criteria for the above element type updating scheme is based on the convergence of
the objective function. For example, the element type is updated if the relative change of the objec-
tive function is less than a threshold (e.g., 1%) after a certain number of optimization iterations (e.g.,
20). The process of element type updating and optimization iterations are repeated until the conver-
gence criteria on maximum number of iterations (e.g., 100 iterations) or the relative change in the
objective function (e.g., 0.1%) is satisfied. The flow chart of the adaptive procedure is explained in
Figure 9.

In summary, an adaptive procedure is proposed to utilize the iMTOP elements only in the selected
regions in the domain during the optimization process using a simple algorithm. The procedure is
demonstrated via numerical examples in the subsequent sections. Our proposed adaptive approach
has some similarity with the adaptive approach of Reference [30] in that both approaches keep the
same finite element mesh during the optimization process. However, while the approach of Refer-
ence [30] utilizes a coarser design variable mesh than the finite element mesh, our approach consists
of the opposite in the sense that we use a finer design variable mesh. In addition, the resolution of the
design (density element mesh) in our approach is adaptively changed and finer than the finite ele-
ment mesh during optimization process while the approach of Reference [30] maintains the design
resolution always the same as the finite element mesh (one density element per finite element). As
indicated, our proposed adaptive approach is the opposite of the one of Reference [30].

5. TWO-DIMENSIONAL NUMERICAL EXAMPLES

In this section, the proposed approaches are demonstrated with various two-dimensional applica-
tions. First, the minimum compliance problem of a beam under a concentrated load is considered
(Figure 10(a)). Second, the compliant mechanism design of a displacement inverter is investigated
(Figure 10(b)). Third, a cantilever beam is investigated to demonstrate the adaptive procedure. In
these examples, the SIMP model is employed to interpolate the stiffness tensor of the intermedi-
ate material density. The method of moving asymptotes (MMA) [48] is used as the optimizer. For
simplicity, all the quantities are given dimensionless. Thus, Young’s modulus is chosen as 1 and
Poisson’s ratio as 0.3 for all examples. Instead of using prescribed volume constraint Vs , we use
volume fraction volfrac, which is defined as the ratio of the prescribed volume Vs to the total vol-
ume of the domain. All the computations are performed on a single PC with an Intel Core(TM)2
Duo 2.00 GHz 32-bit processor, 3 GB RAM of memory, Windows OS, and the code is implemented
in MATLAB.
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Figure 9. Flow chart of the adaptive MTOP scheme (Q4/n25/d4 and Q4/U).

Figure 10. Configurations: (a) MBB beam; and (b) displacement inverter.

5.1. Minimum compliance of a Messerschmitt–Bolkow–Blohm beam

This example presents the solution for minimum compliance of a beam subjected to a concentrated
vertical load, the so-called Messerschmitt–Bolkow–Blohm (MBB) beam. Because of the symmetry,
only half of the beam is taken into consideration with the length of 60, height of 20, and unit width
as shown in Figure 10(a). The volume fraction constraint volfrac is taken as 60%, the penalization
parameter p is set equal to 3, and the projection radius rmin is set equal to 1/10 of the height of
the beam.

First, the element-based topology optimization is performed on a fine FE mesh of 300�100 and a
coarse FE mesh of 60�20 Q4/U elements — the optimal topologies are shown in Figures 11(a) and
(b), respectively. The topology obtained from the fine FE mesh has higher resolution than that from
the coarse mesh. Next, we utilize the previous MTOP approach [20] using 60�20 Q4/n25 elements
and obtain the topology shown in Figure 11(c). The topologies in Figures 11(a) and (c) have higher
resolution than the topology in Figure 11(b) obtained from a coarse FE mesh.

Second, using the iMTOP approach, we vary the number of design variables for the same reso-
lution (or the same number of density elements). Instead of using MTOP Q4/n25 elements where
the number of design variables equals to the number of density elements, we reduce the number
of design variables per Q4 finite element to 16, 9, and 4. As a result, we have a coarse FE mesh
of 60�20, a fine density element mesh of 300�100, and the design variable meshes of 240�80,
180�60, and 120�40, respectively. The optimal topologies shown in Figures 11(d), (e) and (f) corre-
spond to iMTOP Q4/n25/d16, Q4/n25/d9, and Q4/n25/d4 elements, respectively. These topologies
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Figure 11. Optimal topologies of MBB beam: (a) element-based Q4/U FE mesh 300 � 100 .CD187.71/;
(b) element-based Q4/U FE mesh 60 � 20 .C D 181.04/; (c) MTOP Q4/n25 .C D 181.90/; (d) iMTOP
Q4/n25/d16 .CD 181.95/; (e) iMTOP Q4/n25/d9 .CD 181.99/; and (f) iMTOP Q4/n25/d4 .CD 181.96/

Figure 12. Results of MBB beam optimization after 100 iterations: (a) convergence history; and (b)
computational times.

are similar to the optimal topology obtained with MTOP Q4/n25 elements in Figure 11(c). More-
over, we can observe close values of compliances of the optimal topologies that are obtained by the
same number of density elements and different number of design variables.

In this example, the approximate integration of the stiffness matrix in Equation (11) is used for the
multiresolution approach. The optimal topology in Figure 11(c) is obtained using MTOP Q4/n25
with 25 integration points and the corresponding optimal compliance is CD181.90. Finite element
analysis using MTOP elements is performed on the topology in Figure 11(c) using the exact integra-
tion in (10), 4 Gauss points for each density element, so that each MTOP Q4/n25 element employs
100 Gauss points. The resulting compliance of 181.52 is obtained, which is only 0.21% different
from the approximation scheme in Equation (11). Although more tests are needed, these results
indicate that the approximation scheme in Equation (11) may be useful in practice because of its
simplicity and uniform applicability.

The convergence history of the iMTOP and the element-based approaches are compared in
Figure 12(a). During the optimization process, the compliance convergence history from the
iMTOP and element-based approaches are very similar. The computational costs are compared in
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Figure 12(b). As expected, the element-based approach on a fine mesh has the largest computa-
tional cost. The lower computational cost for iMTOP approach is attributed to a lower number of
finite elements, in comparison to element-based approach on a fine FE mesh, and a lower number
of design variables, in comparison to MTOP approach on the same FE mesh. Figure 12(b) shows
that MTOP Q4/n25 is about three times less expensive than the element-based approach on a fine
mesh. Moreover, the computational cost is further reduced for iMTOP Q4/n25/d16, Q4/n25/d9,
and Q4/n25/d4. In this example, the computational cost of iMTOP Q4/n25/d4 is about 3.5 times
less than that of MTOP Q4/n25 and about 10 times less than that of the element-based approach
on a fine mesh. The computational cost saving in iMTOP Q4/n25/d4 is attributed to a much less
number of design variables in comparison to that of MTOP Q4/n25. Therefore, the cost in the MMA
optimization, the sensitivity analysis, and the projection is also reduced.

The MBB example is further investigated using a minimum length scale equal to 5% of the height
of the beam. First, for the same coarse FE mesh, the element-based approach results in undesirable
checker board effects (Figure 13(b)); while the MTOP and iMTOP approaches (Figures 13(c) and
(d)) provide results comparable to the element-based approach on a fine mesh (Figure 13(a)). This
is because the element-based approach cannot utilize a length scale smaller than or equal to the ele-
ment size while both MTOP and iMTOP approaches can. Second, the optimal topology by iMTOP
Q4/n25/d4 in Figure 13(d) is slightly different from that by MTOP Q4/n25. However, these two
designs have close optimal objective function values. The difference of these two optimal objective
functions is only 0.3%. Thus, these results demonstrate the advantages of the iMTOP and MTOP
approaches over the element-based approach when the same coarse FE mesh is employed.

One may refine the finite element mesh to obtain the topology with smooth material bound-
aries. The MBB example shows that we achieve this desirable effect (smooth boundaries) with our
algorithm without having to refine the finite element mesh as shown in Figure 11. Additionally,
Figure 13 shows that our algorithm can generate a fine structural resolution when the traditional
element based algorithm results in checkerboard. Specifically, by using iMTOP elements, for exam-
ple, Q4/n25/d4, we can obtain high resolution topology comparable to MTOP Q4/n25 and the
element-based approach on a fine mesh with lower computational cost.

5.2. Compliant mechanism of a displacement inverter

The second example presents a 2D compliant mechanism problem, a displacement inverter as shown
in Figure 10(b). The goal is to design a structure to convert the input displacement on the left edge
to a displacement on the right. The topology optimization seeks for the solution of maximum output
displacement with a certain volume fraction of the domain. In this example, we employ a domain of
the size 40�20, volume fraction of 0.3 and length scale of 1.2. The input force is Fin D 1, the input
and output spring stiffnesses are kin D kout D 0.025.

Figure 13. Topologies of MBB beam with rmin D 5% of height of the beam: (a) element-based Q4/U FE
mesh 300� 100 (CD 177.30); (b) element-based Q4/U FE mesh 60� 20 (CD 163.58); (c) MTOP Q4/n25

(CD 170.48); and (d) iMTOP Q4/n25/d4 (CD 171.07) (b–d: FE mesh 60�20).
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Similarly to the previous example, the element-based approach is performed on a fine mesh
of 200�100 Q4 elements and on a coarse mesh of 40�20 Q4 elements. The optimal topologies
from a fine mesh and a coarse mesh are shown in Figures 14(a) and (b), respectively. Next, the
MTOP approach is performed using Q4/n25 elements, and the iMTOP approach is performed
using Q4/n25/d16, Q4/n25/d9 and Q4/n25/d4 elements — the optimal topologies are shown in
Figures 14(c)–(f), respectively. Similar conclusions in the performance of the proposed approach on
the previous MBB example also hold for the displacement converter problem, as shown in Figure 15.
It can be seen that the topologies from MTOP and iMTOP approaches using a coarse FE mesh have
comparable resolution to the topology from element-based approach using a fine FE mesh, whereas
the topology obtained from element-based approach on coarse FE mesh is slightly different. This
example illustrates that the proposed iMTOP approach can be applied not only to minimum compli-
ance problems but also to compliant mechanism problems. Note that for the mechanism problem,
the numerical results are sensitive to the parameter inputs (e.g., spring stiffnesses, moving limit in
the MMA optimizer, etc.); therefore, this problem should be solved with care.

Figure 14. Topologies of the displacement inverter: (a) element-based Q4/U FE mesh 200� 100 (objective
function displacement d D –4.4121); (b) element-based Q4/U FE mesh 40�20 (d D –4.2872); (c) MTOP
Q4/n25 (d D –4.2728); (d) iMTOP Q4/n25/d16 (d D –4.2650); (e) iMTOP Q4/n25/d9 (d D –4.2644); and

(f) iMTOP Q4/n25/d4 (dD –4.2624) (noted b–f: FE mesh 40�20).

Figure 15. Results of the displacement inverter example after 100 iterations: (a) convergence history; and
(b) computational times.
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5.3. Minimum compliance of a cantilever beam

This example demonstrates the adaptive multiresolution topology optimization (AMTOP) proce-
dure proposed in Section 4. A domain with the length of 32, height of 16, and unit width is taken
into consideration as shown in Figure 16(a). The beam is fixed at the left edge and a unit point load
is applied downward at the midpoint of the right end. A volume fraction constraint volfrac is taken
as 45%, the penalization parameter p is set equal to 4, and projection radius rmin is set equal to 1.2.

First, the topology optimization of the beam is performed by the element-based approach (Q4/U)
on a fine FE mesh and also on a coarse FE mesh with the obtained topologies shown in Figures
16(b) and (c), respectively. The MTOP Q4/n25 and the iMTOP Q4/n25/d4 approaches provide the
topologies shown in Figures 16(d) and (e), respectively. Finally, we perform the adaptive procedure
using Q4/U and Q4/n25/d4 elements and obtain the results shown in Figure 16(f). Notice that the
solution obtained by the adaptive scheme has comparable resolution in comparison to the topologies
obtained by MTOP, iMTOP, and element-based approach on a fine mesh.

Figure 17 explains the adaptive optimization process. At the initial stage, we begin the optimiza-
tion problem with a uniform distribution of the density over the domain. Therefore, only Q4/U
elements are employed (a total of 512 elements) as shown in Figure 17(a) with the corresponding
topology shown in Figure 17(d) and all the components of the ‘element index’ array are initial-
ized as 1. As the optimization progresses, for regions with uniform density (void or solid), we use
Q4/U elements. At the ‘gray’ regions, that is, where structural boundaries are forming and thus
more information is required, the iMTOP Q4/n25/d4 elements are used to increase the resolution.
Figure 17(b) shows the mesh of an intermediate iteration with 244 Q4/U and 268 Q4/n25/d4 ele-
ments, and the corresponding topology is shown in Figure 17(e). Figure 17(c) shows the mesh at
the final iteration with 222 Q4/U elements and 290 Q4/n25/d4 elements, and the corresponding
topology is shown in Figure 17(f). The adaptive procedure to decide where and when to use Q/U or
Q4/n25/d4 element is simple because of the ‘element index’ array described in Section 4.

The iMTOP approach reduces the number of density elements and number of design variables in
comparison with the element-based approach on a fine mesh. By employing the adaptive approach,
we can further reduce the number of density elements and design variables to achieve higher effi-
ciency. For this specific example, we observe that the computational time for adaptive approach
using Q4/U and Q4/n25/d4 elements (Figure 16(f)) is about 70% of that using iMTOP with
Q4/n25/d4 elements (Figure 16(e)).

In summary, this example demonstrates that the adaptive procedure can further improve the effi-
ciency of the iMTOP approach while maintaining the design resolution. In this example, Q4/U

Figure 16. Cantilever example considering adaptive topology optimization: (a) geometry; (b) element-
based Q4/U FE mesh 160�80 (C D 90.11); (c) element-based Q4/U FE mesh 32�16 (C D 87.41); (d)
MTOP Q4/n25 (C D 88.01); (e) iMTOP Q4/n25/d4 (C D 88.03); and (f) adaptive Q4/U and Q4/n25/d4

(CD 88.71), (c–f: FE mesh 32�16).
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Figure 17. Adaptive topology optimization: (a) initial mesh (512 Q4/U); (b) intermediate mesh (244 Q4/U
and 268 Q4/n25/d4); (c) final mesh (222 Q4/U and 290 Q4/n25/d4); and (d-e-f) initial, intermediate and final

adaptive topologies, respectively.

and Q4/n25/d4 are used in the adaptive procedure; however, it is noted that more than one iMTOP
element type can be employed in the proposed approach.

6. THREE-DIMENSIONAL NUMERICAL EXAMPLES

This section demonstrates the capability of the proposed schemes to handle relatively large-scale
three-dimensional applications. First, a cube with a concentrated load at the bottom and a building
subjected to a torsion load are presented to demonstrate the iMTOP scheme. Second, a three-
dimensional cantilever beam is considered to demonstrate the adaptive procedure. Similarly to
Section 5, all the quantities are dimensionless, Young’s modulus is chosen as 1, and Poisson’s ratio
is 0.3.

6.1. A cube with concentrated load at the bottom center

This example investigates a cube that is constrained at four bottom corners in the vertical directions
and subjected to a vertical load at the center of the bottom face as shown in Figure 18(a). The cube
domain has edge length of L D 48. The domain is divided into 24�24�24 B8 elements, which
results in a total of 13,824 brick elements. Because of the symmetry condition, only one fourth
of the cube is taken into computation. We aim to find the optimal topology with volume fraction
constraint of 10%, minimum length scale L/20, and penalization parameter p D 4.

First, the problem is solved using MTOP B8/n125 elements, which use 125 density elements and
125 design variables per brick element. The optimal topology is shown in Figure 18(b) with iso-
surface density of 0.25. Next, we employ the iMTOP approach and reduce the number of design
variables by using B8/n125/d64, B8/n125/d27, and B8/n125/d8 elements. The corresponding
topologies are shown in Figures 18(c)–(e), respectively. The resolutions of these designs are com-
parable to the design shown in Figure 18(b) using MTOP B8/n125 elements. Additionally, the
values of the compliances of the optimal topologies obtained from MTOP and iMTOP, using the
same number of density elements and different number of design variables, are similar as shown in
Figure 18.

The convergence histories of optimization process are shown in Figure 19(a). Similarly to the 2D
example in Section 5.1, Figure 19(a) shows close convergence history for different iMTOP element
types. The computational cost comparison is shown in Figure 19(b). It can be seen that the compu-
tational times of B8/n125/d64, B8/n125/d27, and B8/n125/d8 elements are much less than that of
the MTOP B8/n125 element. For example, the computational time of B8/n125/d8 element is only
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Figure 18. Topology optimization of a cube (FE mesh 24 � 24 � 24): (a) geometry; (b) MTOP B8/n125
(CD 29.04); (c) iMTOP B8/n125/d64 (CD 29.06); (d) iMTOP B8/n125/d27 (CD 29.08); and (e) iMTOP

B8/n125/d8 (CD 29.33).

Figure 19. Results of the cube optimization after 50 iterations: (a) convergence history; and (b) computa-
tional times.

one tenth of the B8/n125 element. This is because the iMTOP B8/n125/d8 element utilizes about
15 times less design variables than MTOP B8/n125 element.

The computational time can be compared by considering Figure 13(b) (for the MBB example) and
Figure 19(b) (for the 3D cube example). The efficiency of these approaches is compared more effec-
tively if we consider the computational data. Table II shows the computational data for the 2D MBB
beam example and the 3D cube example. It is seen that the MTOP and iMTOP approaches require
less numbers of finite elements and design variables to achieve the same resolution designs by the
conventional approach. For instance, in the cube example, to have the same resolution by the MTOP
and iMTOP approaches using n D 125 density elements per B8, the element-based approach has
to utilize 1,728,000 finite elements. By contrast, the MTOP and iMTOP approaches employ only
13,824 finite elements. Moreover, the iMTOP approach can reduce the number of design variables
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Table II. Computational data of the MBB beam and cube examples.

Number of iMTOP ratio

Element Finite Density Design
Example Approaches types Figure elements elements variables k:n:d

MBB Element-based Q4/U 11(a) 30,000 30,000 30,000 25 : 25 : 25
fine mesh

MTOP Q4/n25 11(c) 1,200 30,000 30,000 1 : 25 : 25
iMTOP Q4/n25/d16 11(d) 1,200 30,000 19,200 1 : 25 : 16

Q4/n25/d9 11(e) 1,200 30,000 10,800 1 : 25 : 9
Q4/n25/d4 11(f) 1,200 30,000 4,800 1 : 25 : 4

Element-based Q4/U 11(b) 1,200 1,200 1,200 1 : 1 : 1
coarse mesh

Cube Element-based B8/U N/A 1,728,000 1,728,000 1,728,000 125 : 125 : 125
fine mesh

MTOP B8/n125 18(b) 13,824 1,728,000 1,728,000 1 : 125 : 125
iMTOP B8/n125/d64 18(c) 13,824 1,728,000 884,736 1 : 125 : 64

B8/n125/d27 18(d) 13,824 1,728,000 373,248 1 : 125 : 27
B8/n125/d8 18(e) 13,824 1,728,000 110,592 1 : 125 : 8

N/A, not available.

from 1,728,000 in the MTOP approach (for B8/n125) to only 110,592 (for B8/n125/d8), while
maintaining the same resolution. Thus, the computational data (the number of finite elements, den-
sity elements and design variables, and the iMTOP ratio) in Table II can serve as an indicator of the
efficiency and resolution levels of the topology optimization model.

6.2. A building with torsion loading

This example demonstrates the iMTOP scheme used for optimization the topology of a building
under torsion. Figure 20(a) shows the domain with with the dimension of L � L � 4L. Four unit
loads are applied at the middle of the four top edges to create a torsion load. The domain is divided
into 10�10�40 B8 elements, which results in a total of 4,000 brick elements. The volume fraction
constraint of 10%, the minimum length scale rmin D 0.12L, and penalization parameter p D 3 are
employed. We utilize different MTOP and iMTOP elements and obtain the topologies as shown in
Figure 20. Similarly to the previous example, iMTOP elements using less number of design variables
than density elements can provide the resolution comparable to the MTOP elements. Moreover, the
arrangement of structural members in Figure 20 is similar to the Michell’s type optimal solution for
space truss subjected to torsion loading [49].

6.3. Cantilever beam with concentrated load

This example demonstrates the capability of the adaptive procedure (AMTOP) for three-dimensional
applications. A three-dimensional cantilever with the domain 2L � L � L shown in Figure 21(a)
is considered. The domain is divided into 24 � 12 � 12 B8 elements, which results in a total of
3,456 brick elements. A volume fraction constraint of 30%, a minimum length scale of one tenth
of the beam height rmin D L /10, and penalization parameter p D 3 are employed. First, the prob-
lem is solved using B8/U elements, which provides the results shown in Figure 21(b). Second,
the iMTOP approach using B8/n125/d8 leads to the topology shown in Figure 21(c). Finally, the
adaptive approach using B8/U and B8/n125/d8 provides the optimal design shown in Figure 21(d).

Table III shows the computational data for the adaptive approach of the cantilever beam for 2D
(Section 5.3) and 3D (Section 6.3). It is seen that the use of the adaptive approach can further
reduce the numbers of density elements and design variables while maintaining the resolution. In
the adaptive approach (AMTOP), the same number of finite elements is considered in the opti-
mization process and the final design has similar resolution as the iMTOP approach. Therefore,
the iMTOP ratio in the adaptive approach with lower numbers of density elements (n/ and design
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Figure 20. Geometry and optimal topologies of the building under torsion load: (a) geometry; (b) MTOP
B8/n125; (c) iMTOP B8/n125/d27; and (d) iMTOP B8/n125/d8.

Figure 21. Topologies from element-based, iMTOP, and adaptivity on FE mesh 24� 12� 12: (a) geometry
of a cantilever beam 3D ( 2:1:1); (b) element-based B8/U (CD 5.088); (c) iMTOP B8/n125/d8 (CD 5.182);

and (d) adaptivity B8/U and B8/n125/d8 (CD 5.283).

variables (d/ means a more efficient model in comparison with the iMTOP approach. For example,
in the 2D cantilever, the ‘iMTOP ratio’ is 1 : 1 : 1 for the element-based approach on a coarse mesh.
This ratio can be improved to 1 : 25 : 25 for MTOP Q4/n25 elements and 1 : 25 : 4 for iMTOP
Q4/n25/d4 elements. The adaptive approach improves the iMTOP ratio from 1 : 1 : 1 to 1 : 14.5 :
2.5 at the final adaptive iteration. Similarly in the 3D case, the iMTOP ratio is changed during the
adaptive optimization process. For example, an intermediate iteration (iteration 5) has 2,288 B8/U
and 1,168 B8/n125/d8 elements and the final iteration (iteration 100) has 2,072 B8/U and 1,384
B8/n125/d8 elements. The iMTOP ratio is improved from 1 : 1 : 1 to 1 : 50.7 : 3.8 at the final adap-
tive iteration. This means that lower numbers of density elements and design variables are employed
by the adaptive approach in comparison to the iMTOP and the element-based approaches while a
design with similar resolution is achieved.
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7. CONCLUSIONS

In this study, we proposed a computational paradigm for improving multiresolution topology
(iMTOP) via three distinct meshes (not necessarily uncorrelated): the finite element mesh, design
variable mesh, and the density mesh. By using a relatively coarse mesh for analysis, a moderately
fine mesh for design variables, and a relatively fine mesh for density elements, we can obtain
high fidelity designs with a relatively low computational cost. A projection scheme is introduced
to compute element densities from design variables and to control the length scale of the den-
sity. Furthermore, we propose a heuristic adaptive multiresolution topology optimization (AMTOP)
procedure to further reduce the computational cost by using iMTOP elements only where and
when needed. Therefore, the number of density elements and the number of design variables are
potentially less than the original iMTOP approach. The proposed techniques and their merits were
demonstrated by various two-dimensional and three-dimensional numerical examples.

This study has shown the features of the iMTOP and AMTOP approaches to obtain high resolu-
tion design over the conventional topology optimization approach. Future studies can further explore
the optimal number and locations of the design variables. Future topics for further investigation also
include the applications of the iMTOP and AMTOP approaches to multiphysics and multiscale
problems [50, 51], stress constraint problems [52], energy harvesting devices [53], reliability-based
design and topology optimization problems [22, 54], and dynamics problems [55].

NOMENCLATURE

d = vector of design variables
C = compliance
Vs = prescribed volume
V = volume
x = position of a point in the domain, coordinate vector
volf rac = volume fraction
Ni ../ = shape function

D0 = constitutive matrix corresponding to the solid material
D = constitutive matrix
B = strain–displacement matrix consisting of shape function derivatives
K = global stiffness matrix
Ke = stiffness matrix of displacement element e

K0
e = stiffness matrix of element e corresponding to the solid material

n = number of density elements per displacement element
E = Young’s modulus
E0 = Young’s modulus corresponding to solid material
¡i = density of element i
dn = design variable n
rmin = minimum length scale
p = penalization parameter

f ../ = projection function
u = global displacement vector
f = global load vector
Ai = area (or volume) of the density element i in the initial domain

A0i = area (or volume) of the density element i in the reference domain

w../ = weight function in the projection scheme
Q4/n25 = MTOP Q4 element with 25 density elements and 25 design variables
Q4/n25/d4 = iMTOP Q4 element with 25 density elements and 4 design variables
B8/n125 = MTOP B8 element with 125 density elements and 125 design variables
B8/n125/d8 = iMTOP B8 element with 125 density elements and 8 design variables
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