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Abstract Uniform grids have been the common choice of
domain discretization in the topology optimization litera-
ture. Over-constraining geometrical features of such spatial
discretizations can result in mesh-dependent, sub-optimal
designs. Thus, in the current work, we employ unstructured
polygonal meshes constructed using Voronoi tessellations
to conduct structural topology optimization. We utilize the
phase-field method, derived from phase transition phe-
nomenon, which makes use of the Allen-Cahn differential
equation and sensitivity analysis to update the evolving
structural topology. The solution of the Allen-Cahn evo-
lution equation is accomplished by means of a centroidal
Voronoi tessellation (CVT) based finite volume approach.
The unstructured polygonal meshes not only remove mesh
bias but also provide greater flexibility in discretizing com-
plicated (e.g. non-Cartesian) domains. The features of the
current approach are demonstrated using various numeri-
cal examples for compliance minimization and compliant
mechanism problems.
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1 Introduction

Topology optimization has emerged as a popular technique
for structural optimization which deals with distribution
of material in a given domain with variable connectivity
so as to satisfy certain design objectives. In manufactur-
ing industries, topology optimization is often used as a
tool to obtain preliminary conceptual designs. Some of
the early works include Bendsøe and Kikuchi (1988) and
Suzuki and Kikuchi (1991), in which the homogenization
method was used to determine macroscopic structure prop-
erties, such as elastic modulus, based on the microstructure
configuration. Subsequently, its variant, such as the Solid
Isotropic Material with Penalization (SIMP) method, was
proposed (Bendsøe 1989; Rozvany et al. 1992; Bendsøe
and Sigmund 1999), which provided a simple approach to
determine intermediate material densities.

Recently, a new set of approaches for topology opti-
mization have emerged which use implicit functions rather
than explicit parameterization, as illustrated by Fig. 1.
The level-set method is one such approach (Osher and
Sethian 1988; Sethian 1999; Osher and Fedkiw 2003) that
uses the Hamilton–Jacobi equation to track fronts and free
boundaries. Allaire and Jouve (2004), Wang et al. (2003),
among others, explored the application of level-sets in
shape and topology optimization. Since its inception, it has
been applied in a variety of fields such as fluid mechanics
(Pingen et al. 2010) and image processing (Osher and
Fedkiw 2003). In general, level-set functions become too
flat or too steep during the course of evolution and thus, for
numerical accuracy, they need to be reinitialized periodi-
cally, for example, to a signed distance function.

In order to avoid the need for reinitialization, which
can be costly, another implicit function approach has come
forth, known as the phase-field method. It has been widely
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Fig. 1 Explicit (a) versus implicit (b) representation

used in the field of materials science as a means to study
phase transition phenomenon. For instance, it is especially
suitable to investigate the stability of systems with multi-
ple unstable phases. Cahn and Hillard (1958) and Allen and
Cahn (1979) used the theory of phase transition to study
liquid phases with variable densities. In essence, the phase-
f ield method is a dif fuse interface model where the bound-
ary between phases is not sharp, but considered to have a
f inite thickness, thus providing a smooth transition for the
physical quantities between the phases. In the phase-field
method, explicit interface tracking is avoided and topolo-
gies are evolved by solving the governing equations over
the complete design domain without prior information about
the location of phase interfaces. Caginalp (1986) provided
a mathematical analysis of the phase transition method.
Contrary to the traditional phase-field approach with finite
thickness diffuse interfaces, Sun and Beckermann (2007)
presented an advection equation based phase-field method
which explicitly defines and tracks sharp interfaces. In the
technical literature, the phase-field method has been used in
a wide variety of fields such as fracture mechanics (Aranson
et al. 2000), visual reconstruction (March 1992), and crystal
growth simulations (Kobayashi 1993).

The phase-field method is especially attractive and suit-
able for topology optimization (Bourdin and Chambolle
2003). Wang and Zhou (2004a) used van der Waals-Cahn-
Hillard phase transition theory to propose a phase-field
method for topology optimization by considering a design
domain consisting of bi-material phases of solids. Later
they extended the approach to three-phase systems (Wang
and Zhou 2004b). Burger and Stainko (2006) introduced a
phase-field based relaxation scheme for structural topology
optimization problems with local stress constraints. Zhou
and Wang (2007) used the Cahn-Hilliard theory and the
multi-grid method to study minimum compliance problems.
Recently, Takezawa et al. (2010) utilized a time dependent
reaction-diffusion equation, known as Allen–Cahn equation
(Allen and Cahn 1979), for the evolution of topologies in
a structural optimization problem. With a suitable choice
of double well potential function, the evolution equation

can be approximately represented as a conventional steepest
decent method. Also, Wallin et al. (2011) presented a
topology optimization procedure which uses a volume pre-
serving Cahn-Hillard model and an adaptive finite element
formulation.

For simplicity, topology optimization problems are often
solved on Cartesian meshes. The orientation of mem-
bers in the evolving topologies are thus biased because
of the geometrical constraints of such meshes. Accurate
representation of general design domains and boundary
conditions requires additional effort. Moreover, it is well
known that traditional density based topology optimiza-
tion on Cartesian meshes suffer from numerical artifacts
such as checkerboard patterns and one-node connections
(Diaz and Sigmund 1995; Sigmund and Peterson 1998).
Techniques such as filters (Sigmund and Peterson 1998;
Bourdin 2001; Guest et al. 2004) may alleviate numerical
anomalies and mesh bias. However, Rozvany et al. (2003)
indicated that such heuristic schemes can result in (consider-
able) weight increase. Polygonal elements address some of
the aforementioned problems. They not only provide con-
venience and flexibility in discretizing complicated design
domains but also lead to optimal designs that are not biased
by the mesh discretization. For instance, polygonal ele-
ments alleviate one-node connection problems and prevent
checkerboard pattern from occurring in density methods
(Talischi et al. 2010). The Voronoi diagram has been a pop-
ular choice for generating polygonal meshes in the field of
computer graphics, robotics, pattern recognition, etc (Ghosh
and Mukhopadhyay 1991; Ghosh 2011) and is the method
of choice in this work.

In this paper, we utilize unstructured polygonal meshes,
constructed using Voronoi tessellations, for structural topol-
ogy optimization employing the phase-field method. In
order to evolve the partial differential equation (PDE),
known as the Allen–Cahn equation, a centroidal Voronoi
tessellation based finite volume approach (Vasconcellos and
Maliska 2004) is used. We also present a heuristic finite
difference approach, as an alternate scheme, which can be
used for assessing the accuracy of results obtained from the
finite volume approach. To generate polygonal meshes, we
use PolyMesher (Talischi et al. 2011), which is an exten-
sion of the work by Bolander and Saito (1998) and Yip et al.
(2005).

The remainder of this paper is organized as follows. In
Section 2, we discuss the formulation for the topology opti-
mization problem followed by a review of the polygonal
finite element method. Section 3 reviews the phase-field
method and addresses the finite volume and finite difference
approaches for solving the Allen–Cahn equation on non-
Cartesian domains discretized using unstructured polygonal
meshes. Section 4 provides several numerical examples.
Finally, we conclude with some remarks in Section 5.
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2 Basic formulation

The linearized elastic system considered in this work is
defined as follows:

∇∇∇ · (CCCεεε(uuu)) = fff in �,

uuu = 000 on �D,

(CCCεεε(uuu)) · nnn = ggg on �N. (1)

The bounded open set � ⊂ R2 is composed of a lin-
ear isotropic elastic material with elasticity tensor CCC . The
boundary of � consists of two disjoint components, ∂� =
�D ∪ �N, with Dirichlet-type boundary conditions on �D,
and Neumann-type boundary conditions on �N. Here εεε and
uuu represent the linearized strain and displacement fields,
respectively. Moreover, fff is the body force, and ggg repre-
sents the surface loads. The finite element method is used to
solve the above elastic system.

2.1 Topology optimization

In this work, we shall concentrate on two classes of prob-
lems, compliance minimization and linear compliant mech-
anisms. The first class is the compliance minimization
problem. Compliance, which is work done by the loads, is
given by:

J1 (φ) =
∫

�

fff · uuu d� +
∫

�N

ggg · uuu d�

=
∫

�

CCC(φ)εεε(uuu) · εεε(uuu) d� (2)

where φ is the phase-field function. The topology optimiza-
tion problem of compliance minimization refers to finding
the stiffest configuration under applied loads and boundary
conditions.

The second class of problems addresses the design of
linear compliant mechanisms. The task of the optimiza-
tion problem is to maximize the displacement uout per-
formed on the specimen modeled by a spring with stiffness
kout (cf. Fig. 2.18 in the book by Bendsøe and Sigmund
2003). The magnitude of kout controls the output displace-
ment amplification. Thus, the linear compliant mechanism
problem is written as:

J2 (φ) = −uout (φ) (3)

For nontrivial solutions, we impose a volume constraint:

P (φ) =
∫

�

φ d� (4)

on the problems (2) and (3) using the Lagrange multiplier
method to obtain the following unconstrained optimization
problem:

inf
φ

J̄ (φ) = Ji (φ) + λP (φ) for i = 1, 2 (5)

where λ is a positive Lagrange multiplier.

2.2 Polygonal finite elements

In the literature, often uniform grids of linear quads/
triangles (2D) or bricks/tetrahedra (3D) are used for topology
optimization problems. Because of their intrinsic geometri-
cal constraints, such spatial discretizations bias the orienta-
tion of members and hence can result in mesh-dependent,
sub-optimal designs (cf. Fig. 21 in Talischi et al. 2010).
In the current work, we use polygonal meshes constructed
using Voronoi tessellations (Ghosh and Mukhopadhyay
1991; Talischi et al. 2010, 2011; Ghosh 2011) to imple-
ment the phase-field method. The use of such unstructured
meshes not only circumvents mesh bias but also provides
greater flexibility in discretizing complicated domains (as
demonstrated later) with accurate representation of bound-
ary conditions.

We use Voronoi diagrams to generate polygonal meshes.
In this approach, the given design domain with smooth
boundaries is first populated with a set of random
points/seeds. Using the concept of signed distance func-
tion, a set of points are generated which are the reflections
of the seeds, lying near the boundary, about the boundary.
The Voronoi diagram is generated for the set of random
seeds and their reflections. The Voronoi cells correspond-
ing to the random seeds represent the discretized design
domain. The Voronoi diagram is forced to be centroidal in
order to generate high quality meshes. The Lloyd’s algo-
rithm (Lloyd 1982) is used for the construction of centroidal
Voronoi tessellations (CVTs). For more details on the polyg-
onal mesh generation scheme, the reader is referred to
Talischi et al. (2010, 2011). It should also be noted that
due to the random placement of seeds, the node and ele-
ment numbering will be random, resulting in a stiffness
matrix of large bandwidth. If needed, the heuristic reverse
Cuthill-McKee (RCM) (Cuthill and McKee 1969) algorithm
is used to reduce the bandwidth of the stiffness matrix.
Other equivalent algorithms can also be employed (Paulino
et al. 1994a, b).

In this work, we use the natural neighbor scheme based
Laplace interpolants to construct finite element shape func-
tions for the polygonal elements (Sukumar and Tabarraei
2004). Here we briefly review the finite element scheme for
convex polygons. Two points are natural neighbors of each
other if they have a common Voronoi edge. Consider a point
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q qi si

hi

Fig. 2 Definition of the Laplace shape function. The parameter si
denotes the length of the common Voronoi edge associated with q and
qi , and hi is the distance between q and qi

q and let the set of nodes Q = {q1, q2, ..., qn} be its natu-
ral neighbors. The Laplace shape function for the node qi is
given by:

Ni (xxx) = αi (xxx)∑
Q α j (xxx)

, αi (xxx) = si (xxx)

hi (xxx)
, xxx ∈ R2 (6)

where xxx is the location of q, αi (xxx) is Laplace weight func-
tion, si (xxx) is the length of the common Voronoi edge
associated with q and qi , and hi (xxx) is the distance between
q and qi (Fig. 2).

These shape functions satisfy all the desirable properties
in the context of a conforming Galerkin approximation such
as non-negativity, Kronecker-delta property, and partition of
unity:

0 ≤ Ni (xxx) ≤ 1, Ni
(
xxx j

) = δi j ,
∑
Q

Ni (xxx) = 1 (7)

Here, xxx j represents the location of node q j . These functions
are also linearly precise or complete:

∑
Q

xxxi Ni (xxx) = xxx (8)

which indicates that a linear function is represented exactly
by these shape functions. Furthermore, on the boundary of
the domain, the Laplace shape functions are linear which
along with Kronecker-delta property ensures that linear
essential boundary conditions can be imposed.

3 Phase-field method

Recently, phase-field methods have been used for struc-
tural topology optimization. In the current work, we employ
the approach proposed in Takezawa et al. (2010). In this
method, the working domain D is considered to be com-
posed of two phases �1, �0 and the boundary between the
phases, ξ , which is called the diffuse interface (Fig. 3).
The diffuse interface is represented by a function which
interpolates between the two phases. The working domain
D contains all the admissible shapes �, i.e., � ⊂ D.
Here � ⊂ (�1 ∪ ξ). Thus, the phase-field function φ is
defined as:

⎧⎪⎨
⎪⎩

φ = 1 xxx ∈ �1,

0 < φ < 1 xxx ∈ ξ, Diffuse interface

φ = 0 xxx ∈ �0.

(9)

The solid phase �1 is filled with material having elasticity
tensor CCC and the region �0, which mimics a void, is filled
with elasticity tensor kminCCC . Here kmin is arbitrarily chosen

1

0

x
010

x

D

0

1

DN

D
DD

D0

Fig. 3 Phase-field function domain. The working domain D consists of all admissible �. Its boundary ∂D consists of ∂DD (Dirichlet-type
boundary), ∂DN (non-homogeneous Neumann-type boundary) and ∂D0 (homogeneous Neumann-type boundary). Dirichlet-type boundary con-
ditions for � are applied on �D. The parameters �1, �0 and ξ represent solid phase, void phase and diffuse interface, respectively. Here
� ⊂ (�1 ∪ ξ) and φ is the phase-field function
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to be 10−4. The effective elasticity tensor CCC∗ for the entire
design domain, shown in Fig. 3, is obtained as:

CCC∗ (φ) = [
kmin + (1 − kmin) φ p]CCC (10)

In the current study, the penalization parameter, p, is set
to 3 for all numerical examples. The scheme is similar to
the SIMP method (Note that p = 3 is also in the range
p ≥ 3 recommended in the SIMP model). Using the above
definition of effective elasticity tensor, the elasticity equa-
tions (1) for the state uuu are extended to the entire working
domain D as shown below:

∇∇∇ · (
CCC∗εεε(uuu)

) = fff in D,

uuu = 000 on ∂ DD,(
CCC∗εεε(uuu)

) · nnn = ggg on ∂ DN,(
CCC∗εεε(uuu)

) · nnn = 000 on ∂ D0. (11)

The boundary of the working domain ∂ D consists of three
disjoint components, ∂ D = ∂ DD∪∂ D0∪∂ DN, where ∂ DD,
∂ D0, and ∂ DN correspond to Dirichlet-type boundary con-
ditions, homogeneous Neumann-type boundary conditions,
and non-homogeneous Neumann-type boundary conditions
with ggg 
= 000, respectively. For all the examples in this study,
the body force fff = 000. Also, the original design � is con-
strained to satisfy, �N = ∂ DN ∪ �0 and �D ⊂ ∂ DD.
�0 corresponds to the boundary of � with homogeneous
Neumann boundary conditions.

The phases evolve over time based on the Allen–Cahn
equation (reaction-diffusion equation), given by:

∂φ

∂t
= κ∇∇∇2φ − f ′ (φ) ,

∂φ

∂nnn
= 0 on ∂ D (12)

where κ is the diffusion coefficient, and f (φ) is a double
well potential function. The optimization proceeds in the
direction which minimizes the design objective if f (φ) is
chosen such that it satisfies the conditions (refer to Fig. 4):

f (0) = 0, f (1) = η
J̄ ′(φt )∥∥ J̄ ′(φt )

∥∥ , and f ′(0) = f ′(1) = 0

(13)

where η is a scaling constant. One such f (φ) is given by:

f (φ) = 1

4
φ2(1 − φ)2 + η

J̄ ′ (φt )∥∥ J̄ ′ (φt )
∥∥

(
6φ5 − 15φ4 + 10φ3

)

(14)

where J̄ ′ (φt ) represents the sensitivity of the reformulated
objective function J̄ with respect to φ at time t . Sensitivity

Fig. 4 Illustration of double
well potential function. Here
f (φ) is the double well
potential function, J̄ ′ (φt )

represents the sensitivity of the
reformulated objective function
with respect to φ at time t and η

is a scaling constant

analysis of objective functions, such as (2) and (3), is avail-
able in the book by Bendsøe and Sigmund (2003). Thus, the
Allen–Cahn equation (12) reduces to:

∂φ

∂t
= κ∇∇∇2φ + φ (1 − φ)

×
[
φ − 1

2
− 30η

J̄ ′ (φt )∥∥ J̄ ′ (φt )
∥∥φ (1 − φ)

]
(15)

The evolution equation (15) can be regarded as a modified
version of the steepest decent method (Takezawa et al.
2010). The phase φ evolves in the direction of the nega-
tive gradient of the objective function thus minimizing the
objective function. We next discuss two approaches, CVT-
based finite volume method and finite difference method, to
solve (15) on unstructured meshes.

3.1 CVT-based finite volume (FV) method
for unstructured meshes

The finite volume (FV) method is a popular method of
choice for solving PDEs when dealing with unstructured
grids. We employ a scheme similar to that of Vasconcel-
los and Maliska (2004) who proposed a centroidal Voronoi
tessellation (CVT) based finite volume method for fluid
flow. Consider a point p and let the set of points P =
{p1, p2, . . . , pn} be its natural neighbors. The integral form
of (12), over time t and on each Voronoi cell Dp, can be
expressed as:

∫
t,Dp

∂φ

∂t
dtd D =

∫
t,�p

κ∇∇∇φ · nnndtd� −
∫

t,Dp

f ′ (φ) dtd D

(16)

Each term in (16) can be integrated as shown below (also
refer to Fig. 5). First,

∫
t,Dp

∂φ

∂t
dtd D =

∫
Dp

(φn+1 − φn)d D ≈ (φn+1
p − φn

p)Vp

(17)

where φn
p is the value of φ for the nth iteration at the cen-

ter of the Voronoi cell corresponding to point p and Vp
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p

pi

Si

Hi

Dp

Fig. 5 Illustration of the CVT-based finite volume scheme. The
parameter Si represents the length of the common Voronoi edge asso-
ciated with points p and pi , and Hi denotes the distance between the
points p and pi

represents the area of the control volume, in the form of
Voronoi cell, centered at p. Next,

∫
t,�p

κ∇∇∇φ · nnndtd� ≈
∫

t

∑
P

[
κ∇∇∇φn · nS

]
i dt

=
(∑

P

[(
κ

∂φn

∂nnn

)
p,pi

Si

])
t = P3

(18)

where Si is the length of the common Voronoi edge asso-
ciated with points p and pi . The directional derivative
(∂φn/∂nnn)p,pi

can be calculated taking advantage of the
local orthogonality property of Voronoi cells:

(
∂φn

∂nnn

)
p,pi

= φn
pi

− φn
p

Hi
(19)

where Hi is the distance between points p and pi . Because
an explicit scheme forces the function φ to diverge when
φ /∈ [0, 1], we use a semi-implicit method to simplify the
final term in (16) as shown below (Warren et al. 2003):
∫

t,Dp

f ′ (φ) dtd D ≈ Vpt f ′ (φn
p

)

= Vpt

⎧⎪⎨
⎪⎩

φn+1
p

(
1 − φn

p

)
r
(
φn

p

)
for r

(
φn

p

)
≤ 0

φn
p

(
1 − φn+1

p

)
r
(
φn

p

)
for r

(
φn

p

)
> 0

(20)

where

r
(
φn

p

)
= φn

p − 1

2
− 30η

J̄ ′ (φt )∥∥ J̄ ′ (φt )
∥∥φn

p

(
1 − φn

p

)
(21)

The semi-implicit FV updating scheme for φ in (12) can
thus be expressed as:

φn+1
p =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Vpφ
n
p + P3

Vp

(
1 −

(
1 − φn

p

)
r
(
φn

p

)
t

) for r
(
φn

p

)
≤ 0

Vpφ
n
p

(
1 + r

(
φn

p

)
t

)
+ P3

Vp

(
1 + φn

pr
(
φn

p

)
t

) for r
(
φn

p

)
> 0

(22)

3.2 A finite difference (FD) method on unstructured
meshes

Another method to solve the Allen–Cahn equation is the
finite difference (FD) scheme. As before, a semi-implicit
scheme is used to discretize the reaction term. The dis-
cretized evolution equation on a structured grid follows:

φn+1
i, j − φn

i, j

t

= κ

(
φn

i−1, j −2φn
i, j +φn

i+1, j

(x)2
+ φn

i, j−1 − 2φn
i, j + φn

i, j+1

(y)2

)

+
⎧⎨
⎩

φn+1
i, j

(
1 − φn

i, j

)
r
(
φn

i, j

)
for r

(
φn

i, j

)
≤ 0

φn
i, j

(
1 − φn+1

i, j

)
r
(
φn

i, j

)
for r

(
φn

i, j

)
> 0

(23)

where

r
(
φn

i, j

)
= φn

i, j − 1

2
− 30η

J̄ ′ (φt )∥∥ J̄ ′ (φt )
∥∥φn

i, j

(
1 − φn

i, j

)
(24)

Here x and y are the distances between grid points in
the x and y direction, respectively and φn

i, j is the value φ for
the nth iteration at the grid point xxxi, j . Thus, the scheme to
update φ using the semi-implicit FD scheme is as follows:

φn+1
i, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φn
i, j +t (P1+P2)κ

1−(
1−φn

i, j

)
r
(
φn

i,j

)
t

for r
(
φn

i, j

)≤0

φn
i, j

(
1+r

(
φn

i, j

)
t

)+t (P1+P2)κ

1 + φn
i, j r

(
φn

i, j

)
t

for r
(
φn

i, j

)
>0

(25)

where

P1 = φn
i−1, j − 2φn

i, j + φn
i+1, j

(x)2
,

P2 = φn
i, j−1 − 2φn

i, j + φn
i, j+1

(y)2
(26)

Polygonal meshes are unstructured in nature, i.e., the nodes
of the meshes are irregularly arranged. Regular FD scheme
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L

B

Fig. 6 Illustration of the finite difference scheme. The design domain
D, discretized using polygonal elements, is represented by the ellipse
and is enclosed within an imaginary rectangular box of length L and
width B, represented by dotted lines. The rectangular box is filled with
equidistant grid points, shown by small squares. For the grid points
lying outside the ellipse (solid squares), the phase-field function value
and sensitivity are assigned as zero, whereas, for other grid points, they
are assigned the same value as the polygonal element in which they lie

based on (23) and (24) cannot be directly used to solve the
Allen–Cahn equation on such a mesh with nodes (or ele-
ment centers) as grid points. Thus, we propose the following
approach to perform the FD, as illustrated by Fig. 6.

The ellipse represents the design domain D discretized
using a polygonal mesh. The ellipse is enclosed within an
imaginary rectangular box of length L and width B (repre-
sented by dotted lines). The rectangular box is filled with

F

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n

FV scheme
FD scheme

Fig. 8 Convergence history of the objective function for the cantilever
beam problem of Fig. 7 for mesh discretization of 20,000 polygonal
elements

equidistant grid points (represented by small squares). The
regular FD scheme can be applied on this structured grid.
We need to resolve the phase-field function value on these
grid points. First, a search routine needs to be performed
to find the location of each grid point relative to the polyg-
onal elements. For the grid points lying outside the design
domain (solid squares), the phase-field function φ value is
assigned as zero along with zero sensitivity J̄ ′ (φ). For other
grid points, the phase-field function and sensitivity are taken
to be the same as the corresponding values of the polygonal
element inside which they lie. We have assumed that the
phase-field function and the sensitivity are constant inside

Fig. 7 Cantilever beam
problem with load applied at the
middle of right face. a Problem
description. b Initial topology
on 20,000 polygonal element
mesh. Converged topologies on
mesh discretization of 20,000
polygonal elements using c FV
scheme, d FD scheme, and also
on mesh discretization of 5,000
polygonal elements using e FV
scheme, f FD scheme

(a) (b)

(c) (d)

(e) (f)
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Fig. 9 Cantilever beam
problem with a different initial
topology. a Initial topology with
7 holes. b FV scheme

(a) (b)

Fig. 10 Cantilever beam
problem with another initial
topology. a Initial topology with
9 holes. b FV scheme

(a) (b)

Fig. 11 Bridge problem solved
using different diffusion
coefficients κ for the FV
approach. a Problem
description. b Initial topology. c
κ = 2 × 10−5. d κ = 10 × 10−5

F

2

1.2

(a) (b)

(c) (d)
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each element. After conducting an appropriate number of
updates of the Allen–Cahn equation, the quantities com-
puted on the structured grid need to be mapped backed to
the polygonal mesh. We take the value of phase-field func-
tion for each element as the average of the values at all the
grid points lying inside that element.

In this approach, we need at least one grid point to lie
inside each polygonal element, which can be done by hav-
ing a structured grid of sufficient refinement. Otherwise,
the element’s phase will not change throughout the opti-
mization or, in other words, it will act as a “dead” element,
resulting in an incorrect topology. To estimate the structured
grid size, the number of grid points in the x and y direction
are given by β

√
nelemL/B and β

√
nelem B/L , respectively.

Here nelem is the number of polygonal elements in the finite
element mesh and β is a multiplicative factor lying in the
range 1.5 − 2. The proposed finite difference scheme is
heuristic in nature and possesses some approximations. The
motivation behind its development is to provide an alternate
scheme which gives a general idea of how the converged
topologies should look like and thus can be used for esti-
mating the accuracy of the results obtained from the finite
volume scheme. In general, the CVT-based finite volume
scheme, being more accurate, should be used.

4 Numerical examples

The use of polygonal finite elements makes it possible
to perform topology optimization for complicated geome-
tries. The mesh generator by Talischi et al. (2011) based
on the implicit description of the design domain and cen-
troidal Voronoi diagrams along with the FV/FD scheme
makes this possible. In this section, we first illustrate some
examples with conventional rectangular design domains
for benchmark compliance minimization and linear com-
pliant mechanism problems, followed by examples with
non-conventional design domains. For all the examples, the
parameters adopted are: η = 10, kmin = 10−4, Young’s
modulus E = 1, and Poisson’s ratio ν = 0.3. The time
step t satisfies the CFL condition (Courant et al. 1928;
Takezawa et al. 2010) and consistent units are employed.
Note that the solution of the elasticity problem (1) is com-
putationally expensive compared to one update step of the
Allen–Cahn equation. Therefore, for fast convergence, after
each FE iteration, we perform 20 FV/FD update steps of
the Allen–Cahn equation (Takezawa et al. 2010; Allaire and
Jouve 2004).

4.1 Cantilever beam problem

We first consider cantilever beam with load applied at
the middle of right face. The objective is to obtain the

stiffest configuration while using the least amount of mate-
rial. The domain size is 2 × 1, discretized with 20,000
polygonal elements. The Lagrange multiplier λ is fixed at
95.

The diffusion coefficient is set to κ = 1 × 10−5 for all
the examples in which the FD scheme is used to solve the
Allen–Cahn equation. When the FV scheme is used to update
the Allen–Cahn equation, the diffusion coefficient is taken
as κ = 2 × 10−5, unless otherwise specified. The reason
we chose a slightly higher diffusion coefficient for the FV
approach is that the diffusion coefficient affects the thick-
ness of diffuse interface and convergence is hindered if the

fin
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(b)

(c)

Fig. 12 Inverter problem on a polygonal mesh with 6,000 elements. a
Problem description. b Initial topology. c Final configuration utilizing
FV scheme
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thickness is too small. A suitable value needs to be chosen
based on level of mesh refinement. Finer meshes require a
higher diffusion coefficient. In case of the FD scheme, the
superimposed structured grid, on which FD operations are
performed, is finer than the polygonal mesh thus a smaller
value of diffusion coefficient is needed. The FV scheme is
performed on the polygonal mesh itself, so a slightly larger
diffusion coefficient is chosen. Figure 7b is chosen as the
initial topology for the cantilever beam problem. Since the
phase-field method can’t generate holes, the initial topol-
ogy needs to have enough holes so that it can converge to
a meaningful topology. The resulting topologies, Fig. 7c
(FV scheme is used to update Allen–Cahn equation) and

F

1
2

(a)

(b)

(c)

Fig. 13 Cantilever beam problem on a circular segment design
domain. a Problem description. b Initial topology. c Converged
topology using FV scheme

Fig. 7d (FD scheme is used to update Allen–Cahn equation),
are consistent with the ones seen in the literature (Allaire
and Jouve 2004; Takezawa et al. 2010). For comparison
purposes, we also solve the cantilever beam problem on a
coarser mesh with 5,000 elements. All the parameters are
chosen the same as before except κ = 4 × 10−5 for FD and
κ = 8 × 10−5 for FV. Converged topologies (Figs. 7e and
f) are similar to the ones on the finer mesh.

The convergence history of the objective function (5) for
the above problem, for mesh discretization of 20,000 polyg-
onal elements (Fig. 7c and d), is shown in Fig. 8. The FV
scheme curve has a steeper slope, indicating a faster rate of
convergence. This makes sense because the FD scheme is
an approximate scheme which is less accurate than the FV
scheme. But, both methods ultimately converge to similar
objective function values.

The phase-field method converges to a local minimum,
which, like other implicit function methods for topology
optimization, such as level set method, is strongly depen-
dent on the initial topology. This is due to the fact that this
method can not generate holes in the domain—holes can
only collapse. Converged topologies using the FV scheme
are shown in Figs. 9b and 10b for the two other initial
guesses of Figs. 9a and 10a, respectively. All parameters
are kept the same as before.

2

F

(a)

(b)

(c)

Fig. 14 Bridge problem on semi-circular design domain. a Problem
description. b Initial topology. c FV scheme
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4.2 Bridge problem

We next look at the bridge problem and study the influence
of the diffusion coefficient, κ , on the optimization. The
size of the design domain is a rectangle of size 2 × 1.2,
discretized with 15,360 polygonal elements. The bottom
corners are restrained by pin and roller supports, and a
unit vertical force is applied at the middle of the bottom
face (Fig. 11a). The objective (same as the last example)
is to obtain the stiffest configuration while using the least
amount of material. The parameter λ is chosen as 60 and
κ = 2 × 10−5, 10 × 10−5. Approximately 200 finite
element iterations are needed for convergence of both the
results, with the initial guess shown in Fig. 11b. The CVT
based finite volume scheme is used to solve the evolution
equation.

It is evident from Fig. 11c and d that κ influences the
thickness of the diffuse interface. For κ = 2 × 10−5 and
κ = 10 × 10−5, 28.2% and 46.3% elements, respectively,

have phase-field values between 0.01 and 0.99 (Note that
the design boundary ∂� lies in the region 0 < φ(xxx) < 1).
Thus, larger κ leads to a thicker interface. The current
phase-field method implicitly possesses perimeter control
effect which can be varied through κ . Bigger voids (larger
perimeter) are obtained for lower κ (Fig. 11c) and smaller
voids for larger κ (Fig. 11d). From this one may con-
clude that the smaller the value of κ , the better resolved
the interface is. However, our numerical experiments using
the current phase-field method have shown that, in order
for the topologies to evolve smoothly, an appropriate value
of κ has to be chosen for a particular mesh discretization.
Hence, κ can not be indefinitely reduced to get a sharp
interface. If a sharp, perfectly resolved interface is desired
then an adaptive mesh refinement strategy near the inter-
faces may be adopted (cf. Feng and Wu 2008; Wallin et al.
2011) along with adaptive reduction in κ . Although per-
tinent, this investigation is beyond the scope of the cur-
rent work.

Fig. 15 Curved cantilever beam
problem. a Problem description.
b Initial topology. c FV scheme.
d 3D visualization of (c). e FD
scheme. f 3D visualization of (e)

F
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(c) (d)

(f)(e)
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Fig. 16 Convergence history of the objective function for the curved
cantilever beam problem of Fig. 15

4.3 Inverter problem on rectangular design domain

The phase-field method (discussed here) can also be used to
solve compliant mechanism problems. We look at the clas-
sical inverter problem discussed in, for example, Bendsøe
and Sigmund (2003). The problem is shown in Fig. 12a.
The domain is a square of size 2 × 2, discretized using
6,000 polygonal elements. It is fixed on the top and bottom

corners on the left face. The objective of the optimiza-
tion problem is to maximize the output displacement uout.
Spring stiffnesses kin and kout are taken to have the same
values of the components of the global stiffness matrix at
the corresponding degrees of freedom. In order to obtain
the sensitivities needed for the double well potential func-
tion, an adjoint system needs to be solved (see, for example,
Bendsøe and Sigmund 2003). The FV scheme is used to
solve the Allen–Cahn equation, and we set λ = 0.02 and
κ = 10×10−5. For the initial guess of Fig. 12b, the conver-
ged configuration is shown in Fig. 12c, which is similar to
Fig. 5.5 of Bendsøe and Sigmund (2003).

4.4 Cantilever beam problem on a circular segment domain

The benchmark example of cantilever beam problem, with
vertically downward load applied on the midpoint of the
right face, is now solved on a design domain in the shape
of a circular segment (Fig. 13a). Figure 13b is chosen as
the initial guess. The design domain is a symmetric polygo-
nal mesh (about the horizontal axis) with 12,800 elements.
Figure 13c shows the converged topology, utilizing the FV
scheme and λ = 95. Although the design domain chosen
here is different from the conventional one, the converged

Fig. 17 Evolution of the
topology for the curved
cantilever beam problem using
FV scheme for a different initial
guess. a Initial topology.
b Iteration 13. c Iteration 19.
d Iteration 29. e Iteration 51.
f Converged topology

(a) (b)

(c) (d)

(e) (f)
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topologies are similar to the ones with rectangular design
domains (cf. Figs. 13 and 7).

4.5 Bridge problem on a semi-circular domain

Next, we consider the bridge problem on a semi-circular
design domain (Fig. 14a). The boundary conditions are the
same as the ones for the bridge problem on a rectangular
domain discussed before. The polygonal mesh used to dis-
cretize the design domain consists of 11,000 elements, and λ

is chosen as 60. The optimization is performed with Fig. 14b
as the initial guess and it converges to Fig. 14c for the FV
updating scheme, which resembles the result obtained on
the rectangular domain (Fig. 11c).

4.6 Curved cantilever beam problem

In the literature, rectangular/cuboidal design domains have
been the preferred domain shapes for topology optimization.
To depart from this trend, consider the problem of can-
tilever beam on a doubly curved design domain (Fig. 15a).
The domain is discretized using 20,000 polygonal elements.
The Lagrange multiplier λ is chosen as 250. Converged
topologies for the chosen initial design, Fig. 15b, are shown
in Fig. 15c for the FV scheme and Fig. 15e for the FD
scheme. Figure 15d and f are the 3D visualizations of the
corresponding phase-field functions.

Figure 16 shows the convergence history of the objective
function (5) for the above curved cantilever beam problem
(Fig. 15). Although both FV and FD schemes seem to con-
verge to similar objective function values, the converged
topologies are somewhat different. As stated before, the FD
scheme involves more approximation than the FV scheme
(refer to Section 3.2). In the FD scheme, the phase-field
function values at the grid points (lying inside the design
domain) are assumed to be the same as the corresponding
value of the polygonal element inside which they lie. This
leads to inefficient evaluation of ∇∇∇2φ in (12) which results
in a different converged topology when compared to the
FV scheme. This inefficiency reduces as the mesh becomes
finer. The differences between the schemes are amplified
because of the unstructured nature of the polygonal meshes
used here. When structured quad elements are used and only
one grid point lies inside each quad for the FD scheme, then
both methods produce exactly the same result.

To demonstrate the previously stated fact that, in the
phase-field method, converged topologies depend on the ini-
tial guess, we solved the doubly curved cantilever problem
on a different initial guess (Fig. 17a). Figures 17b–f show
the evolution of topologies over time for the new initial
guess.

4.7 Inverter problem on circular segment domain

Finally, we consider the inverter problem on a non-
rectangular design domain. The domain is in the shape of
a circular segment, discretized into 6,000 polygonal ele-
ments. All the other parameters are kept same as the inverter
problem on the rectangular domain discussed before (cf.
Fig. 12). The problem description is shown in Fig. 18a. The
design domain of circular segment chosen here, although
non traditional, has similar boundary and loading condi-
tions to the traditional example on a rectangular domain
(see Bendsøe and Sigmund 2003). The converged topology

2
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kin kout

2

0.05

fin uout

(a)

(b)

(c)

Fig. 18 Inverter problem on a circular segment design domain. a
Problem description. b Initial topology. c FV updating scheme
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(Fig. 18c for FV updating schemes) is similar to the one
with rectangular design domain (cf. Figs. 18c and 12c).

5 Concluding remarks

In the current paper, we employ a fully unstructured polyg-
onal finite element based mesh to implement a phase-field
method for structural topology optimization. The polygonal
meshes are based on Voronoi tessellations (Talischi et al.
2011) which not only facilitate non-mesh biased designs but
also provide greater flexibility in discretizing non-Cartesian
design domains. A CVT-based finite volume method is
used to solve the phase-field evolution equation (Allen–
Cahn PDE) on unstructured polygonal meshes. An alternate
approach using a finite difference scheme is also presented
to solve the phase-field equation.

Phase-field methods, similar to the one discussed in
this work, bear a resemblance to the level-set methods
in the sense that the topologies are represented in terms
of implicit functions and evolved using certain govern-
ing PDEs. The most characteristic difference between the
two is the fact that in level-set methods the interface is
explicitly defined and tracked (φ = 0 contour), whereas,
in the phase-field approach the interfaces have a finite
thickness (requiring no tracking of the interfaces). In the
phase-field method, topologies are evolved by solving the
governing equations over the complete design domain with-
out any prior knowledge of location of phase boundaries.
In order to resolve the phase interfaces (obtaining a 0-1
design) an adaptive mesh refinement strategy or other alter-
native approaches may be used, e.g. Sun and Beckermannn
(2007).

The present approach has been used to solve 2D com-
pliance minimization and compliant mechanism problems
on complicated design domains. It can also be used to
solve structural optimization problems such as eigenvalue
problems, design dependent load problems, and nonlinear
elasticity problems on any desired design domain. For this
purpose, sensitivities need to be evaluated, for each particu-
lar objective function, to define the double well potential
function. Since the phase-field method employed in this
work has no embedded hole generation mechanism, the
final topologies are greatly influenced by the initial shapes.
Topological derivatives (Eschenauer and Schumacher 1994;
Sokolowski and Zochowski 1999; Céa et al. 2000) can be
used to alleviate this issue. In future work, we plan to
extend our scheme to 3D using polyhedral meshes, and
explore possible applications such as craniofacial segmen-
tal bone replacement in the field of biomedical engineering
(Sutradhar et al. 2010; Nguyen et al. 2010, 2011). The work
by Wicke et al. (2007) and Martin et al. (2008) on poly-
hedral finite elements can be useful for that purpose. In

closing, we remark that phase-field method, with sharpness
control of diffuse interfaces, offers an attractive frame-
work for phononic metamaterial cloaking device designs
(see Pendry et al. 2006).

Nomenclature

uuu Admissible displacement field satisfying equilib-
rium

εεε Strain field
fff Body force
ggg Surface loads
CCC Elasticity tensor
CCC∗ Effective elasticity tensor
φ Phase-field function
� Admissible design for the optimization problem
D Working domain which contains all the admissible

shapes �

�1 Solid phase domain
�0 Void phase domain
ξ Diffuse interface
Ji (φ) Objective function
J̄ (φ) Reformulated objective function
J̄ ′(φ) Sensitivity of the reformulated objective function
λ Lagrangian multiplier used to reformulate the ob-

jective function
kin Input spring stiffness
kout Output spring stiffness
uout Output displacement
P,Q Set of natural neighbors
Ni Laplace shape function
αi Laplace weight function
si Length of the common Voronoi edge associated

with point q and node qi

Si Length of the common Voronoi edge associated
with the points p and pi

hi Distance between point q and node qi

Hi Distance between the points p and pi

kmin Scaling factor to determine lower limit of CCC∗
f (φ) Double well potential function
η Scaling constant
κ Diffusion coefficient
nnn Normal to the edge of a Voronoi cell
Dp Domain of the Voronoi cell centered at p
�p Boundary of the domain Dp

Vp Area of the Voronoi cell centered at p
φn

p φ for the nth iteration at the center of the Voronoi
cell associated with p

φn
i, j φ for the nth iteration at the grid point located at

xxxi, j

nelem Number of polygonal elements in the finite element
mesh
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L Length of the imaginary rectangular grid circum-
scribing the design domain D

B Width of the imaginary rectangular grid circum-
scribing the design domain D

β Parameter to control structured FD mesh refinement
t Time step
x Distance between grid points in x direction
y Distance between grid points in y direction
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