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In this work, we investigate a Tikhonov-type regularization scheme to address the ill-posedness of the
classical compliance minimization problem. We observe that a semi-implicit discretization of the gradi-
ent descent flow for minimization of the regularized objective function leads to a convolution of the ori-
ginal gradient descent step with the Green’s function associated with the modified Helmholtz equation.
The appearance of ‘‘filtering’’ in this update scheme is different from the current density and sensitivity
filtering techniques in the literature. The next iterate is defined as the projection of this provisional den-
sity onto the space of admissible density functions. For a particular choice of projection mapping, we show
that the algorithm is identical to the well-known forward–backward splitting algorithm, an insight that can be
further explored for topology optimization. Also of interest is that with an appropriate choice of the projec-
tion parameter, nearly all intermediate densities are eliminated in the optimal solution using the com-
mon density material models. We show examples of near binary solutions even for large values of the
regularization parameter.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The lack of existence of solutions to the classical topology opti-
mization problem is well-known (see, for example, [29,2] and ref-
erences therein). The problem of minimizing compliance in
structural optimization, for example, favors non-convergent mini-
mizing sequences of shapes that exhibit progressively finer fea-
tures. The commonly used density formulations, such as the
popular Solid Isotropic Material with Penalization (SIMP) approach
[6,42,41], wherein characteristic functions representing the shapes
are replaced by density fields, continue to suffer from this pathol-
ogy as the built-in penalization mechanism recovers solutions that
are nearly binary in the optimal regime. A manifestation of this
behavior in the finite element discretization of the problem is the
dependence of solutions on the level of refinement of the spatial
discretization. The problem of mesh dependency, just as the ill-
posedness of the continuum problem, has led many researchers
to devise formulations that are stable under mesh refinement.
The search for a robust and yet mathematically consistent ap-
proach continues as evidenced by the growing number of publica-
tions on this issue [10,39,25,26,51,43,27,50].

We limit the following literature survey to density formulations
but, as discussed above, the difficulty stems from a fundamental
property of the original topology optimization problem and there-
fore similar measures are needed for other parameterizations of
geometries, most notably the implicit functions methods (e.g., le-
ll rights reserved.
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vel sets). Placing a restriction on the perimeter of the admissible
shapes is perhaps the oldest approach in the field. The set of admis-
sible characteristic functions is restricted to a subset of functions of
bounded variation with a prescribed upper bound on their total
variation [3]. Existence of solutions follows from relative compact-
ness of bounded sequences in BV in the L1-topology and carries
over to the corresponding density formulation [37]. Due to the dif-
ficulty of discretization of functions of bounded variation and ro-
bust linearization of the total variation functional [53], the
perimeter formulation has perhaps fallen out of favor in the topol-
ogy optimization community though it remains a significant point
of reference. More recent approaches are based on the concept of
filtering, which consists of implicitly imposing regularity on each
admissible density function by means of convolution of an auxil-
iary field with a fixed and smooth filter. With such construction,
all the admissible densities inherit the regularity of the filter,
thereby ensuring compactness of the design space in the L1-topol-
ogy [10]. The filtering approach works well in practice since no ex-
plicit constraints on regularity of density functions are needed.
Moreover the level of complexity of the final solutions (in fact all
the admissible densities) is controlled directly by the regularity
of the filtering kernel. Herein lies the major drawback: the smoother
the filtering kernel, the larger the amount of the intermediate densities
since the transition between the extreme values of density over the do-
main cannot occur too rapidly. Therefore, with more complexity
control comes more ‘‘gray’’ regions and this, in some respect,
undermines the basic premise of the density approach in that near
characteristic functions are no longer recovered in the optimal re-
gime (i.e., ‘‘0–1’’ or ‘‘black-and-white’’ designs are not obtained).
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1 That is, CD \CN ¼ ;; @X ¼ CD [ CN , and CDj j – 0.
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We note that a similar issue arises in the slope constraint method
of Petersson and Sigmund [38] where regularity is imposed explic-
itly by placing a constraint on the pointwise magnitude of the den-
sity gradient.

A recent trend [25,43,27,50] has focused on the so-called non-
linear filtering approaches. As pointed out in [49], the introduced
nonlinearity usually amounts to a modification of the material
interpolation model (e.g., SIMP) rather than a change in the filter-
ing operation. For example, in the Heaviside filtering approach
[25], both power law relations of SIMP—dependence of Young’s
modulus on qp and volume on q—are augmented by the use of a
smoothed Heaviside function. The additional parameter defining
the sharpness of the Heaviside function controls the amount of
gray that appears. To obtain good solutions, these parameters are
often carefully increased throughout the course of the optimization
algorithm.

It is no surprise that more fine-tuning is needed as one moves
away from the simplicity of the original penalized density formu-
lation. These schemes contain multiple penalty parameters in addi-
tion to the averaging effect of the underlying filter, which can
adversely affect the quality of the reciprocal approximations of
the objective function in the commonly used optimization algo-
rithms, such as MMA [46], ultimately slowing down convergence
rate or compromising the quality of the final solutions.

In this work, we examine the use of a simple Tikhonov-type reg-
ularization scheme for topology optimization. The admissible den-
sities are defined as a subset of H1 space with a uniform bound on
their norm. In practice, this is achieved by appending the H1 semi-
norm of the density function as a penalty term to the objective
function. Existence of solutions follows from the compact embed-
ding of H1 in L1. Such an approach has been previously studied by
Borrvall in a review paper [8] where he examines penalty terms
involving the Lp-norm of the density gradient (recovering the total
variation regularization for p ¼ 1 and the slope constraint method
for p ¼ 1Þ. This term also appears in phase field methods
([11,52,13,54,47,20]) as an interfacial energy term and is accompa-
nied by a double-well potential penalizing intermediate densities.
The two terms taken together with appropriately chosen coeffi-
cients (cf. Eq. (4.4)) serve as an approximation to the perimeter
of the interface.

As we shall see in the present setting, filtering, in the form of in-
verse of the Helmholtz operator, naturally appears when the opti-
mization iterations are obtained from a semi-implicit
discretization of gradient flow associated with the regularized
objective function. In contrast to the density and sensitivity filters,
the effects of regularization term appear through smoothing of the
gradient descent steps associated with the unregularized objective
function. The next iterate is obtained from projection of the provi-
sional density onto the space of admissible densities in order to en-
force the 0–1 (void-solid) box constraint (and the pointwise move
limit commonly introduced to stabilize the density evolution). We
will show that, with a particular choice of projection map, this up-
date scheme recovers the well-known forward–backward splitting
algorithm [31,16,19,12]. This provides an alternative perspective
on the proposed approach, which can be used to further investigate
the theoretical and computational aspects of the algorithm lever-
aging the abundant literature of operator splitting and related
methods. In particular, the uncoupled treatment of the Tikhonov
term in the forward–backward method can be useful for more gen-
eral (possibly nonsmooth) regularization approaches for topology
optimization.

Finally, we note that the separation of filtering (i.e., the smooth-
ening effect of regularization term) and projection operation in the
general case offers some flexibility. In the extreme case of the L2-
projection, this algorithm, with the aid of SIMP penalization, elim-
inates nearly all intermediate densities regardless of the level of
regularization and complexity of the final shapes. Numerically
we have observed qualitatively good solutions obtained in moder-
ate number of iterations without the need for continuation on the
SIMP penalty parameter.

The remainder of the paper is organized as follows: the mini-
mum compliance problem is stated in Section 2 and well-posed-
ness of the regularized problem is discussed. The optimization
algorithm and its relation to the forward–backward algorithm
are discussed in Section 3. Several numerical results using the pro-
posed framework are shown in Section 4. The paper is concluded
with some remarks in Section 5.

Before concluding this section, we briefly describe the notation
adopted in this paper. As usual, LpðXÞ and HkðXÞ denote the Lebes-
gue and Sobolev spaces defined over domain X. We also define the
space LpðX; KÞ :¼ f 2 LpðXÞ : f ðxÞ 2 K for a:e: x 2 X

� �
given K # R.

Of particular interest are the inner product and norm associated
with L2ðXÞ, which are written as �; �h i and jj � jj, respectively. Simi-
larly, the inner product, norm and semi-norm associated with
H1ðXÞ are denoted by �; �h i1, jj � jj1 and j � j1, respectively. For
u; v 2 H1ðXÞ, we shall also define the inner product
u;vh ia :¼ 1� að Þhu;vi þ ahu;vi1. Observe that for 0 < a < 1, the

associated norm given by jj � jja :¼ �; �h i1=2
a is equivalent to the stan-

dard norm jj � jj1.

2. Model problem and regularization

Let X # Rd ðd ¼ 2;3Þ be a bounded set with a sufficiently
smooth boundary representing the design domain for the problem
and consider a nontrivial partition1 of the boundary @X into disjoint
sets CD and CN (cf. Fig. 2.1). In this paper, we focus our attention to
the problem of compliance minimization where the objective func-
tion is given by

JðqÞ ¼
Z

CN

uq � tdsþ k
Z

X
qdx ð2:1Þ

The displacement field uq here solves the elasticity boundary value
problem given by

div½Cq : eðuÞ� ¼ 0 in X

½Cq : eðuÞ� � n ¼ t on CN ð2:2Þ
u ¼ 0 on CD

where eðuÞ ¼ ruþruT
� �

=2 is the linearized strain tensor,
t 2 L2ðCNÞd denotes the prescribed traction vector, and n is the unit
normal vector to @X. The system of Eq. (2.2) and its solution depend
on density function q through the elasticity tensor Cq. In the SIMP
model,

Cq ¼ �þ 1� �ð Þqp½ �C0 ð2:3Þ

where p > 1 is the penalty parameter, C0 is the elasticity tensor of
the constituent material, and 0 < �� 1 is a positive parameter
ensuring well-posedness of the governing equations for every
non-negative q 2 L1ðXÞ. In particular, given a measurable density
function q taking values between zero and one, (2.2) admits a un-
ique weak solution uq in H1ðXÞd. Since the second term in (2.1) rep-
resents a penalty on the volume of the material used, minimizing
this objective amounts to finding the stiffest arrangement of C0

while using the least amount of material. The parameter k > 0
determines the trade-off between the stiffness provided by the
material and the amount of material that is used. Because of the
monotonicity of these competing terms, it is expected that in the
optimal regime, the density functions take extreme values of 0
and 1 throughout most of X provided that the penalty parameter
p is sufficiently large. This fact was proven in [44,40,32] within
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Fig. 2.1. Illustration of the prescribed boundary conditions defined on the design
domain X. In a density formulation, each admissible shape x# X can be associated
with some density function q 2 L1 X; 0;1½ �ð Þ.

3 A remark is in order regarding the regularity of q and its boundary conditions
implied by (3.4). We will essentially use the variational form of the gradient flow
(3.2):

hdq=dt;wi ¼ deJðqÞ½w�; 8w 2 H1ðXÞ

e
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the discrete setting where existence of solutions follows from the
finite dimensionality of the problem.

We remark that frequently in the formulation of the minimum
compliance problem, instead of using a penalty term as in (2.1), an
explicit constraint of the formZ

X
qdx 6 v Xj j; 0 6 v 6 1 ð2:4Þ

is placed on the volume of the design. The two approaches are
equivalent in the sense that for any prescribed volume fraction v ,
there exists a penalty parameter k such that the minimizer of
(2.1) is also a solution to the problem with the explicit volume con-
straint. The converse is also true in that given k > 0, we can define
the equivalent v to be jXj�1 R

X q�kdx where q�k is a minimizer of J(q).
The drawback of the present formulation is that one needs to find a
suitable value for the penalty parameter k, which may not be imme-
diately obvious. One the other hand, it has been our experience that
for the compliance minimization problem, the penalty approach is
more forgiving (the volume can exceed the final volume in the
course of the algorithm) and leads to qualitatively better solutions.

As discussed in the introduction, to guarantee existence of solu-
tions to the minimum compliance problem, the space of admissible
densities must be restricted to a sufficiently regular subset of
L1ðX; ½0;1�Þ. One sufficient condition, investigated here, is to re-
quire each admissible q to belong to H1ðXÞ with jqj1 6 M for some
fixed positive constant M (see also, [7,8]). An alternative to adding
this constraint is to modify the objective function as follows

eJðqÞ ¼ JðqÞ þ b
2
jqj21 ð2:5Þ

where b is a positive coefficient. The existence of minimizers for the
regularized objective eJ can be established in a straight-forward
manner. Any minimizing sequence qn is bounded in H1ðXÞ, since
jjqnjj 6 Xj j for all n, and b

2 jqnj
2
1 remains finite. Therefore, there exists

q̂ 2 H1ðXÞ and a subsequence, again denoted by qn, such that
qn * q̂ weakly in H1ðXÞ and by lower semicontinuity of norm under
weak convergence, jq̂j1 6 lim infn qnj j1. Moreover, by Rellich–Kond-
rachov theorem ([23]) and going to another subsequence, qn ! q̂ in
L1ðXÞ.2 This in turn implies that the corresponding sequence of dis-
placements, up to a subsequence, also converges, that is, uqn

! uq̂ in
H1ðXÞd (see, for example, [9]). By continuity of compliance, we have
JðqnÞ ! Jðq̂Þ and so eJðq̂Þ 6 lim infn

eJðqnÞ, which establishes the opti-
mality of q̂. Notice that q̂ is indeed an admissible density function
(satisfies the 0–1 box constraints) since on a subsequence, we have
pointwise convergence of qn to q̂, which shows that 0 6 q̂ 6 1 al-
most everywhere. We remark that existence of solutions to the reg-
ularized problem can be proven in a similar manner for general
objective functions provided that the dependence on ðq;uqÞ is
2 In fact, by Vitali convergence theorem, this convergence holds in LqðXÞ for any
1 6 q <1 since X has finite measure and qn

�� �� 6 1 a.e. (see Theorem 2.24 and
Proposition 2.27 in [24]).
continuous in the strong topology of L1ðXÞ � H1ðXÞd, which is the
case for most problems of interest in engineering applications.

The Tikhonov-type regularization in (2.5) is commonly used for
ill-posed inverse problems and we refer the reader to the abundant
literature available (see, for example, [21] and references therein).
We remark that from a theoretical perspective, regularization of
densities in H1ðXÞ is more restrictive than regularization in
BVðXÞ which is sufficient for guaranteeing existence of solutions
for the compliance problem. However, from a practical point of
view, H1ðXÞ is a simpler space to work with and, unlike total vari-
ation, the Tikhonov regularizer is smooth (differentiable) and has a
quadratic form. Moreover, practical (engineering) considerations of
complexity control in topology optimization (i.e., controlling fea-
ture size and orientation) can be accommodated here. A more gen-
eral form of the regularization term is given by

RðqÞ ¼ 1
2
rq;jrqh i ¼ 1

2

Z
X
rqðxÞ � jðxÞrqðxÞdx ð2:6Þ

where j belongs to L1ðXÞd�d and for some 0 < k1 < k2 satisfies
k1Id 6 jðxÞ 6 k2Id in the sense of quadratic forms for all x 2 X.
The existence of solutions can be shown in a similar manner since
RðqÞ is equivalent to the H1 semi-norm. A suitable choice of j can
ensure a desired regularity of q in various parts of X, a fact illus-
trated later through a numerical example.

3. Optimization algorithm

In this section, we discuss the proposed optimization algorithm
for solving the regularized topology optimization problem

min
q2A

eJðqÞ ¼ JðqÞ þ RðqÞ ð3:1Þ

where JðqÞ is defined in (2.1), RðqÞ ¼ b
2 jqj

2
1, and the space of admis-

sible density functions is given by A ¼ fq 2 H1ðXÞ : 0 6 q 6 1 a:e:g.
The unconstrained gradient flow corresponding to this minimization
is given by

dq
dt
¼ �eJ 0ðqÞ ¼ � J0ðqÞ þ R0ðqÞ

� �
ð3:2Þ

where t is a pseudo-time variable that formally characterizes the
evolution of the density function qðtÞ along this descent flow. The
gradient of compliance in the above expression can be calculated
as ([7])

J0ðqÞ ¼ � 1� �ð Þpqp�1eðuqÞ : C0 : eðuqÞ þ k ð3:3Þ

The first term is a strain energy density field whose evaluation re-
quires the solution uq to (2.2). The gradient of regularization term
is simply

R0ðqÞ ¼ �bDq ð3:4Þ

(where D denotes the Lapacian) provided that @q=@n ¼ 0 on @X.3

An explicit discretization of (3.2) yields the usual gradient descent
update, which due to the presence of the Laplacian term in R0ðqÞ
requires small time increments, governed by the Courant–
Friedrichs–Lewy condition, and subsequently a large number of
iterations. Also, the resulting discrete dynamics may introduce
to evolve the density function (cf. Eq. (3.20)). Here dJðqÞ½w� is the Gateaux derivative
of eJ at q in the direction w. Observe dJðqÞ½w� ¼ hJ0ðqÞ;wiwhere J0ðqÞ is defined in (3.3)
and dRðqÞ½w� ¼ bhrq;rwi. If additionally q 2 H2ðXÞ and @q=@n ¼ 0 on @X, then
dRðqÞ½w� ¼ h�bDq;wi ¼ hR0ðqÞ;wi but we do not need to place any additional con-
straints beyond q 2 H1ðXÞ.
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additional regularization effects depending on the number and size
of time increments, as discussed in [5], which in turn depend on
the spatial discretization of q.

Due to the dependence of J0ðqÞ on the state equation, an implicit
treatment of J0ðqÞ in (3.2) is not possible. Thus we consider a semi-
implicit temporal discretization of the gradient flow equation, an
approach also advocated by Bourdin and Chambolle [11] in their
phase field method. Considering a fixed time increment s and
denoting by qn the current density iterate at t ¼ ns, the semi-im-
plicit discretization of (3.2) takes the form

q�nþ1 � qn

s ¼ �J0ðqnÞ � R0ðq�nþ1Þ ð3:5Þ

where q�nþ1 is the interim or provisional iterate that may lie outside
the admissible space A (i.e., violate the bounds on the admissible
densities). We define the next iterate qnþ1 to be the projection of
q�nþ1 onto A, that is,

qnþ1 ¼ PAðq�nþ1Þ ð3:6Þ

The algorithm consisting of (3.5) and (3.6) may be viewed as a semi-
implicit form of the gradient projection method ([14]), which con-
sists of the projection of an explicit update of (3.2). The proposed
algorithm is similar to the two-step procedures for solution of the
incompressible Navier–Stokes equations (cf. [33]). The standard
optimality criteria (OC) algorithm also has the same two-step struc-
ture where the projection enforcing the box constraints constitutes
the final step [7].

A minor modification to (3.6) allows us to accommodate a
common approach for stabilizing the topology optimization algo-
rithm, which consists of limiting the point-wise change in density
in consecutive iterations. We can simply replace A in (3.6) by the
subset

An ¼ fq 2 A : qn �m 6 q 6 qn þm a:e:g ð3:7Þ

where m 2 ð0;1� is a prescribed move limit. Defining4

qU
n ¼ 1 _ qn þmð Þ and qL

n ¼ 0 ^ qn �mð Þ, we can write

An ¼ q 2 H1ðXÞ : qL
n 6 q 6 qU

n a:e:
n o

ð3:8Þ

The next iterate, accounting for this move limit constraint, is then

qnþ1 ¼ PAn q�nþ1

� �
ð3:9Þ

Although reducing the time step s can also increase the conserva-
tism of the algorithm, based on our numerical experience so far,
the move limit approach tends to perform better in practice and al-
lows the use of a larger fixed step size s. Of course, by setting m = 1,
we get An ¼ A recovering the update (3.6).

The criterion for convergence of the algorithm is based on the
change in the value of objective function jeJðqnþ1Þ �eJðqnÞj=jeJðqnÞj.
Aside from the choice of the projection map PAn , the proposed up-
date scheme contains two algorithmic parameters, namely s and
m, both of which are independent of b and the spatial discretiza-
tion of q. More generally, in an extension of this algorithm, s and
m can be varied during the course of the algorithm to speed up
convergence and/or improve stability.

3.1. Comparison with filtering methods

Substituting (3.4) into (3.5) and rearranging, we can see that the
provisional iterate satisfies the modified Helmholtz equation

q�nþ1 � bsDq�nþ1 ¼ qn � sJ0ðqnÞ ð3:10Þ

with homogenous Neumann boundary conditions. It is interesting
to note that the right-hand side term is the gradient descent update,
4 Here ^ and _ denote the point-wise min/max operations.
with step size s, for the unregularized objective function JðqÞ. Denot-
ing by Gbs the Green’s function associated with Helmholtz operator
in (3.10), we can write

q�nþ1ðxÞ ¼
Z

X
Gbsðx; yÞ½qnðyÞ � sJ0ðqnÞðyÞ�dy ð3:11Þ

This shows that the candidate update q�nþ1 is obtained by filtering
the ‘‘original’’ gradient descent update by the Gaussian kernel Gbs

whose support size depends on bs (see Fig. 3.1). Although the Helm-
holtz equation has been previously used as a means to carry out fil-
tering in topology optimization ([30,27]), the update expression
(3.11) fundamentally differs from both density and sensitivity filter-
ing methods as mentioned in the introduction.

It is in fact instructive to compare the proposed algorithm with
the usual linear density filter, which essentially consists of the
same two steps of smoothening and projection. Defining the filter-
ing operator F ¼ ð1� bsDÞ�1, the update equation for the pro-
posed algorithm can be written succinctly as

qnþ1 ¼ ðPAn � FÞ½qn � sJ0ðqnÞ� ð3:12Þ

In the linear filtering method, the space of admissible densities is
defined by

A ¼ fFðgÞ : g 2 L1ðX; ½0;1�Þg ð3:13Þ

The idea is that each density function automatically inherits its
smoothness from the properties of F while the auxiliary functions
g 2 L1ðX; ½0;1�Þ are updated in the optimization algorithm, and so
the smoothness does not need to be enforced explicitly. If the gra-
dient projection method is adopted5 to do the optimization, the up-
date expression for the auxiliary field is

gnþ1 ¼ PAn
½gn � sJ0gðgnÞ� ð3:14Þ

where J0g denotes the gradient of J with respect to g and, analogously
to (3.7), An consists of g 2 L1ðX; ½0;1�Þ such that jg� gnj 6 m almost
everywhere. The expression for the density update qnþ1 is thus

qnþ1 ¼ Fðgnþ1Þ ¼ ðF � PAn
Þfgn � sF½J0ðqnÞ�g ð3:15Þ

Comparing expressions (3.12) and (3.15), the most notable differ-
ence is the order of projection and filtering. In the density filter,
by construction, the smoothness of the densities is dictated by
properties of F (e.g., the value of bs) while in the proposed algo-
rithm, the projection map also plays a role in the smoothness of
the update. In the density filtering, gn is typically binary in the opti-
mal regime in the presence of SIMP penalization and yet, as dis-
cussed in the introduction, qn ¼ FðgnÞ may contain large regions
of intermediate densities depending on the smoothening effect of
the filtering map F . In the proposed algorithm, the projection
map PAn can be defined such that near binary densities are allowed.
Of course, the two spaces An and An have different structures and
require different projection maps. The precise description of the
projection operation is discussed next.

3.2. Projection map

We proceed to explore the possible definitions for the projec-
tion map. To this effect, consider projection with respect to the
metric generated by jj � jja defined in Section 1. For each
w 2 H1ðXÞ, let

Pa
BðwÞ :¼ argmin

q2B
jjw� qjja ð3:16Þ
5 The optimality criteria (OC) is usually preferred to gradient (steepest) descent in
structural optimization. We refer to [4] on the relationship between the two methods.



Fig. 3.1. Approximate Green’s function computed numerically on a square domain X.
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As noted before, jj � jja defines an equivalent norm to the usual H1

norm for 0 < a < 1. Provided that B is a closed convex subset of
H1ðXÞ, the projection Pa

BðwÞ exists and is unique for any w 2 H1ðXÞ.
It is straightforward to show that An is closed and convex in H1ðXÞ
and since q�nþ1 2 H1ðXÞ (cf. (3.10)), the update qnþ1 is well-defined
if we set PAn ¼ Pa

An
in (3.9). Note that even with the addition of an

explicit volume constraint (cf. (2.4)), the space An remains closed
and convex. However, in a more general setting and when dealing
with nonconvex constraints, the projection operation may not be
well-defined. Extending the present algorithm to such cases would
require replacing the nonconvex constraints by suitable convex
approximations, an approach we hope to pursue in the future.

The parameter a determines the smoothness of the projection
map. Noting that

jjqjj2a ¼ hq;qi þ ahrq;rqi ¼ jjqjj2 þ a qj j21

we can see that the value of a determines the trade-off between min-
imizing the L2 mismatch or matching the gradient values in the pro-
jection operation defined by Pa

B . As shown in the next section, the
choicea ¼ bshas a particular significance for the proposed algorithm.

Also of significance is the case a = 0 when Pa
B reduces to usual

the L2-projection. This is precisely the projection used in the density
filtering algorithm (see Eq. (3.17) below), since the auxiliary func-
tions in An need not be differentiable. Even though An is not closed
with respect to the L2-norm, we nevertheless consider this case and
define qnþ1 ¼ P0

~An
ðq�nþ1Þ where ~An ¼ q 2 L1ðXÞ;qL

n 6 q 6
�

qU
n a:e:g.

In fact, in the continuum setting, we can explicitly write

qnþ1 ¼ q�nþ1 ^ qL
n

� �
_ qU

n ð3:17Þ

Observe that the density qnþ1 resulting from this projection need
not lie in H1ðXÞ and so Rðqnþ1Þ ¼ b

2 qnþ1

�� ��2
1 may not be defined. As

such, the use of L2 projection is inconsistent for solving the optimi-
zation problem (3.1). However, our numerical results show that it
can produce noteworthy results (optimal densities that are nearly
binary even for large b values). At any rate, the intention behind
regularization for the topology optimization problem is controlling
the complexity of final topologies. Restricting densities to H1ðXÞ is
not necessary (or perhaps desirable) from a practical perspective.
In fact, one can ignore the derivation and only focus on update
Eq. (3.12) that features a particular use of filtering.
3.3. Relation to forward–backward splitting method

We next show that the proposed algorithm is related to the for-
ward–backward splitting method (more broadly to the auxiliary
problem principle ([18,17]) and cost approximation ([36]) meth-
ods) when PA ¼ Pbs

An
, i.e., a ¼ bs in the definition of the projection

map. This connection allows us to place the algorithm on a more
solid theoretical grounds and tap into the vast literature on these
methods and explore the use of their many variations.

To this effect, we expand the update Eq. (3.9), which for the pro-
jection map defined in (3.16), can be equivalently written as

qnþ1 ¼ argmin
q2An

jjq�nþ1 � qjj2a ð3:18Þ

Since adding or removing constant terms or multiplying by a scalar
does not affect the minimizer, we have
qnþ1 ¼ argmin
q2An

hq;qi � 2hq�nþ1;qi þ ahrq� 2rq�nþ1;rqi

¼ argmin
q2An

hq;qi � 2½hqn � sJ0ðqnÞ;qi

� bshrq�nþ1;rqi� þ a rq� 2rq�nþ1;rq
	 


¼ argmin
q2An

jjq� qn � sJ0ðqnÞ
� �

jj2 þ a rq;rqh i

þ 2 bs� að Þ rq�nþ1;rq
	 


¼ argmin
q2An

1
2s
jjq� qn � sJ0ðqnÞ

� �
jj2 þ a

bs
RðqÞ

þ 1� a
bs

� �
dRðq�nþ1Þ q½ � ð3:19Þ



604 C. Talischi, G.H. Paulino / Comput. Methods Appl. Mech. Engrg. 253 (2013) 599–608
where dRðq�nþ1Þ½q� denotes the Gateaux derivative of R at q�nþ1 in the
direction of q. Note that in the second equality above, we have used
the fact that q�nþ1 solves the variational form of (3.10) given by

q�nþ1;q
	 


þ bs rq�nþ1;rq
	 


¼ qn � sJ0ðqnÞ;q
	 


; 8q 2 H1ðXÞ
ð3:20Þ

The first term in the minimization problem (3.19) measures the L2

distance of q with the gradient descent step associated with J while
the last two terms give an interpolation between RðqÞ and its deriv-
ative at q�nþ1 as determined by projection parameter a. For a ¼ bs,
this reduces to

qnþ1 ¼ argmin
q2An

1
2s
jjq� qn � sJ0ðqnÞ

� �
jj2 þ RðqÞ ð3:21Þ

which is precisely the iterations defined by the so-called forward–
backward splitting procedure for minimization problem (3.1)
([16]). The intuition behind (3.21) is that the next iterate qnþ1 is
close to the gradient descent update on J, i.e., qn � sJ0ðqnÞ while
minimizing the complexity term RðqÞ. The forward–backward split-
ting allows for separate treatment of the constituent terms of eJ ,
which is particularly useful when RðqÞ is nonsmooth. Defining

Kðq; wÞ ¼ 1
2s
jjq� ½w� sJ0ðwÞ�jj2 þ RðqÞ

it can be readily shown that if q̂ minimizes Kðq; q̂Þ in A, then q̂ is
also a minimizer of eJðqÞ ([18]). This illustrates the fact that if the se-
quence qn produced by iterations (3.21) converges, then the limit is
the solution to the minimization problem (3.1).

It is insightful to note that the forward-back iteration is equiv-
alent to

qnþ1 ¼ argmin
q2An

JðqnÞ þ J0ðqnÞ;q� qn

	 

þ 1

2s
jjq� qnjj

2 þ RðqÞ

ð3:22Þ

We can see that, in the forward–backward subproblem, J is replaced
by a local quadratic model whose curvature depends on 1=s. The
magnitude of s affects how far qnþ1 is from qn. As noted before,
the move limit constraint introduced in An also limits the change
between qn and qnþ1 and so, for a ¼ bs and fixed m, larger values
of s may accelerate convergence of the algorithm. Also, in light of
(3.22), we can improve the performance of the algorithm by varying
the step size parameter in the course of the algorithm. For example,
we may choose step size sn in the nth iteration such that s�1

n I is a
better approximation to the Hessian J00ðqnÞ.
4. Numerical investigations

In this section, we assess the performance of the proposed algo-
rithm and present some numerical results for the compliance min-
imization problem. First we discuss some implementation aspects
and efficiency considerations related to this algorithm. The numer-
ical results are presented next with emphasis placed on the two
extreme choices of the projection parameter, namely a ¼ 0 (the
L2-projection) and a ¼ bs (the forward–backward algorithm).

4.1. Implementation

In this work, the density field is discretized by means of finite
elements which allow for the use of unstructured grids necessary
for representing arbitrary design domains X. Given an appropriate
set of basis functions fNigM

i¼1, each admissible density function is
written as q ¼

PM
i¼1Nizi where 0 6 zi 6 1 for all i and so it is
characterized by the vector of nodal values z ¼ ½zi�Mi¼1. The Galerkin
discretization of (3.10) yields the linear system

ðMþ bsGÞz�nþ1 ¼ Mzn � sFn ð4:1Þ

where ½M�ij ¼ hNi;Nji and ½G�ij ¼ hrNi;rNji are the standard finite
element matrices and ½Fn�i ¼ hJ

0ðqnÞ;Nii. Note that the matrix
Mþ bsG does not change during the course of the algorithm (unless
the mesh is changed) and thus can be factored once in the begin-
ning of the algorithm. The cost of solving (4.1) is then negligible
during the subsequent iterations. We note that for large-scale prob-
lems where factorization is not feasible and iterative solvers are
necessary, one could use Krylov recycling (see, for example,
[22,35]) to take advantage of the fact only the right-hand-side vec-
tor changes in the sequence of linear systems (4.1).

The discrete counterpart to the projection (3.18) is

znþ1 ¼ argmin
zL

n6z6zU
n

ðz� z�nþ1Þ
TðMþ aGÞðz� z�nþ1Þ ð4:2Þ

where zL
n and zU

n are defined in an obvious way. Note that minimi-
zation problem (4.2) is a sparse (strictly) convex quadratic program
subject to simple bound constraints and can be solved efficiently
using, for example, the active set method. However, we can again
exploit the fact that Hessian Mþ aG is fixed in the course of the
optimization. Using the Cholesky decomposition Mþ aG ¼ RT R,
we can write

znþ1 ¼ argmin
zL

n6z6zU
n

Rz� Rz�nþ1

�� ��2 ð4:3Þ

where j � j is the standard Euclidean norm. Therefore, upon calcula-
tion of R once in the beginning of the algorithm, we only need to
solve a bound constrained sparse least squares problem in each iter-
ation, a simpler problem which can be solved efficiently, for exam-
ple, by algorithms proposed in ([1]). In fact, with this approach, the
dominant cost in each iteration of the topology optimization algo-
rithm is computing the compliance sensitivities, i.e., vector Fn,
which requires the solution to the elasticity system (2.2). We re-
mark that this is still the case if one wishes to enforce the volume
constraint explicitly (cf. (2.4)). This requires including an additional
linear constraint of the form vT z 6 v jXjwhere ½v�i ¼

R
X Nidx and the

above-mentioned algorithms for solving sparse quadratic programs
or least squares problems are capable of handling it.

For the sake of simplicity and following the common approach,
we use the same finite element mesh describing the density field to
solve the state equation. The concept of generalized isoparametric
finite elements ([28]) is fitting as the density field (and conse-
quently Cq) and displacement fields are discretized on the same
mesh. Within this framework, two accuracy considerations con-
cerning (3.10) and (2.2) should guide the appropriate choice of fi-
nite element discretization (type of basis functions and level of
mesh refinement). Though, we chose to use a fixed grid for the en-
tire course of optimization for the results in this paper, these crite-
ria can be used to devise an adaptive finite element strategy.

4.2. Results

We consider two benchmark compliance minimization prob-
lems, namely the MBB beam problem ([34]) and the bridge prob-
lem, whose domain geometry and prescribed loading and
boundary conditions are shown in Fig. 4.1. The value of volume
coefficient k was set to 200jXj�1 and 70jXj�1 for these problems,
respectively. For all the results, the constituent material C0 was as-
sumed to be isotropic with unit Young’s modulus and Poisson’s ra-
tio of m = 0.3 and the Ersatz stiffness was set to � ¼ 10�4. The SIMP
penalty parameter, the move limit, and the step size were fixed at
p = 3, m = 0.02 and s ¼ 0:75k�1 throughout the course of



(a) (b)
Fig. 4.1. Design domain and boundary conditions for (a) the MBB beam problem (the design domain has height h = 1 and width w = 6) and (b) the bridge problem (the design
domain has height h = 1 and width w = 2). In both cases, the applied load has unit magnitude.

Fig. 4.2. Solutions to the MBB beam problem using the forward–backward algorithm, i.e, a ¼ bs, and complexity parameter (a) b ¼ 0:01 (b) b ¼ 0:03 and (c) b ¼ 0:06.
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optimization (i.e., no continuation was carried out) and the conver-
gence tolerance of 10�6 was used. The initial guess in all cases was
taken to be uniform density field with value of 0.5.

The first set of results explores the influence of b on the com-
plexity of solutions to the MBB beam problem. The results were
obtained using a uniform mesh of 360 � 60 standard bilinear
quadrilateral elements for both density and displacement fields.
Fig. 4.2 shows the solutions obtained using the forward–backward
algorithm, i.e., a ¼ bs, for various values of b. As expected, increase
in b results in smoother final solutions with fewer but large mem-
bers. The same is true for the L2-projection (with a = 0) as shown in
Fig. 4.3. Note, however, that the final densities are nearly binary
with this type of projection even for large of values of b. In fact,
only 10% of the nodal densities in the solution shown in
Fig. 4.3(c) had values in the range (0.05,0.95) in contrast to the
25% for the solution in Fig. 4.2(c) using the forward–backward
algorithm. For the sake of comparison, we have computed another
measure of discreteness, proposed in [43], and the results are
presented in Table 1.

Next we investigate the influence of mesh size on the final den-
sities. The MBB beam problem was solved using finer grids consist-
ing of 600 � 100 and 900 � 150 elements using the same
complexity parameters as in the previous results. The final topolo-
gies were nearly identical for all the parameters (forward–back-
ward and L2-projection schemes) and due to the similarity with
those obtained from coarser 360 � 60 mesh are not shown. In
the case of L2-projection, even though we evidently have conver-
gence of the final densities under mesh refinement with respect
to the Lp-norm, the regularization term RðqÞ blows up (and conver-
gence does not hold in H1). For b = 0.01, the values of the regular-
ization term for the final solutions were 7.56, 9.89 and 9.93 for the
360 � 60, 600 � 100 and 900 � 150 meshes, respectively. We note,
however, that the perimeter (total variation of optimal density
field) remained bounded under mesh refinement, which suggests
a possible connection with perimeter constraint problem. For the
case of b ¼ 0:01, the total variation of the final solutions were
33.3, 32.9 and 32.7 for these meshes, respectively. Similarly, for
b = 0.05, the total variation of the final solutions were 20.1, 19.7,
and 19.5, respectively.

We intend to investigate this observation more in our future
work but for now we note that the phase field approximation of
the perimeter constraint problem is given by (see, for example
[11,13])

min
q2A

JðqÞ þ c d qj j21 þ
1
d

Z
X

WðqÞdx
 �

ð4:4Þ

where d > 0 and WðqÞ is a strictly positive function that only van-
ishes at q = 0 and q = 1. Observe that the first term is identical to
the present Tikhonov regularization term when cd ¼ 2b. Moreover,
a binary density field (which is what our algorithm nearly produces



Fig. 4.3. Solutions to the MBB beam problem using the L2 projection, i.e, a ¼ 0, and complexity parameter (a) b ¼ 0:01 (b) b = 0.02 and (c) b = 0.05.

Table 1
Summary of the results for the MBB beam problem.

Projection type a ¼ bs a ¼ 0

0.01 0.03 0.06 0.01 0.02 0.05R
CN

uq � tds 101.91 101.32 100.72 95.92 95.16 94.57

k
R
X qdx 15.43 16.22 16.83 16.40 16.73 17.53

b
2

R
X rqj j2dx 5.706 8.626 8.927 7.563 11.11 11.29

4
Xj j
R
X qð1� qÞdx (%) 7.62 13.7 14.7 3.22 5.00 8.65

Table 2
Summary of mesh refinement study for the bridge problem with b = 0.02 and L2-
projection.

Grid size 100� 50 150� 75 200� 100 300� 150

Number of iterations 91 105 94 93R
CN

uq � tds 20.35 20.84 21.22 21.81

k
R
X qdx 25.06 24.43 24.15 23.94

b
2

R
X rqj j2dx 3.340 3.828 4.214 4.544R

X rqj jdx 11.53 11.55 11.54 11.51

606 C. Talischi, G.H. Paulino / Comput. Methods Appl. Mech. Engrg. 253 (2013) 599–608
when a = 0) minimizes the second term in the phase field approxi-
mation. This formal argument supports our numerical observations
and highlights the fact that the underlying penalization mechanism
Fig. 4.4. Solutions to the the bridge problem using (a) L2-projection, isotropic regular
unstructured polygonal mesh (c) equivalent (same b and s as the previous two cases) d
in SIMP (combined with effects of nonsmooth L2-projection) is an
effective replacement for the penalization term in the phase field
approximation of the perimeter constraint problem.
ization and structured square mesh (b) L2-projection, isotropic regularization and
ensity filtering (d) L2-projection scheme with anisotropic regularization term.



Fig. 5.1. The original image (left) with noise added (middle) and its reconstruction (left) using total variation minimization algorithm of the form (5.1). Images courtesy of
[15].
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The last set of numerical results, shown in Fig. 4.4, is for the
bridge problem. The results were obtained for b = 0.02 and a = 0
(i.e., the L2-projection) using a structured square mesh and an
unstructured mesh consisting of linear convex polygons (see
[45,48] for the finite element formulation). Both meshes are made
up of 20,000 elements. The final densities, shown in Fig. 4.4(a) and
(b), are nearly identical despite the difference in the choice of the
spatial discretization. It is interesting to note that even though
the polygonal mesh used was not symmetric about the midspan
axis, the final topology is symmetric. A summary of the mesh
refinement study for the bridge is given in Table 2. Again we can
see that the total variation of final solutions remains constant un-
der mesh refinement while the regularization term grows.

For the sake of comparison, we also solved an equivalent prob-
lem (i.e., with the same parameter values for b and s) using the
density filtering method (cf. Eqs. (3.14) and (3.15)).6 It can be seen
from Fig. 4.4(c) that the final topology is the same but the density
field is heavily smeared. In fact, only less than 48% of the nodal den-
sities are in the range ½0;0:05� [ 0:95;1½ � in contrast to 91% for the
solution using the L2-projection scheme. In terms of the discreteness
measure of [43], the density filtering solution has a value of 33.1%
while it is 7.04% for the L2-projection result.

Lastly, we solved the bridge problem for the more general reg-
ularization term (2.6) with

j xð Þ ¼
0:05 �0:03
�0:03 0:05

� �

taken to be constant over the entire domain. The eigenvectors of j,
namely v1 ¼ 1ffiffi

2
p ð1;1ÞT and v2 ¼ 1ffiffi

2
p ð1;�1ÞT , are rotated 45� from the

horizontal axis and the corresponding eigenvalues are b1 ¼ 0:02
and b2 ¼ 0:08, respectively. We can see from the solution in
Fig. 4.4(d) that the introduced anisotropy of the regularization term
breaks the symmetry. The diagonal members on the right half,
which are nearly perpendicular to v2, are penalized more and are
thus collapsed into one member. This example illustrate the poten-
tials of the proposed regularization scheme for control of local
orientation and feature size.

5. Concluding remarks

In this work we proposed a simple but effective algorithm for
solving the compliance minimization problem with Tikhonov-type
regularization. As mentioned before, extensions of the present
framework include more sophisticated choices of algorithmic
parameters such as m and s that can be adaptively changed to
speed up or stabilize convergence as well as continuation on the
6 Note that the smoothness of filter F depends on bs for both density filtering and
the proposed L2-projection scheme. By contrast, the introduced complexity in the
forward–backward algorithm only depends on b as evident from (3.22).
complexity control regularization term (e.g., through the value of
b) to avoid convergence to local minima. Also of interest is an
adaptive finite element scheme based on the accuracy consider-
ations pertaining to the representation of design (density) and re-
sponse (displacement) fields. Additionally, a decoupling of the
spatial discretization of these fields can conceivably lead to more
computational savings provided that the appropriate and efficient
infrastructure (e.g. data structure, transfer operators) is available.

We also find promising the use of operator splitting methods
(such as the forward–backward algorithm) for nonsmooth regular-
ization of the topology optimization. In particular, it would be
interesting to explore such a decoupling approach for the perime-
ter constrained problem where the regularization term R(q) is de-
fined to be the total variation of the density field

R
X jrqjdx. In this

case, the forward–backward splitting leads to simpler subproblems
of the form

min
q2BV X; 0;1½ �ð Þ

jjq� gnjj
2 þ k

Z
X
rqj jdx ð5:1Þ

for which efficient algorithms can be found in the image processing
literature (e.g., [15,12]; also see Fig. 5.1 for an example of an image
denoising problem). Owing to the simple structure of (5.1), there is
no need to approximate total variation by a differentiable functional
and therefore the effects of the regularizer can be captured with a
high degree of fidelity.

We end with a general remark on the justification of restriction
formulations for topology optimization such as the one presented
here. Though they seemingly involve an arbitrary modification of
the original problem (e.g., requiring the density fields to be uni-
formly smooth in the filtering method or belonging to a bounded
subset of H1 in the present work), such restrictions are more than
a theoretical tool since they can be used to enforce manufacturing
constraints on the admissible shapes that can be built for engineer-
ing applications or, in the case of inverse problems (e.g., obstacle
identification), introduce a priori knowledge about the regularity
of the unknown geometry. The ultimate test of the resulting algo-
rithms, aside from usual criteria of robustness, feasibility and ease
of implementation and computational cost, currently rests on
‘‘qualitative’’ inspection of the final topologies.
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