
Comput. Methods Appl. Mech. Engrg. 266 (2013) 205–218
Contents lists available at SciVerse ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma
Design of functionally graded piezocomposites using topology
optimization and homogenization – Toward effective energy harvesting
materials
0045-7825/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cma.2013.07.003

⇑ Corresponding author.
E-mail address: ecnsilva@usp.br (E.C.N. Silva).
S.L. Vatanabe a, G.H. Paulino b, E.C.N. Silva a,⇑
a Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School of University of São Paulo, SP, Brazil
b Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, IL, USA
a r t i c l e i n f o

Article history:
Received 13 March 2012
Received in revised form 19 June 2013
Accepted 8 July 2013
Available online 18 July 2013

Keywords:
Piezoelectric materials
Topology optimization
Functionally graded materials
Homogenization method
Material design
Polygonal finite elements
a b s t r a c t

In the optimization of a piezocomposite, the objective is to obtain an improvement in its performance
characteristics, usually by changing the volume fractions of constituent materials, its properties, shape
of inclusions, and mechanical properties of the polymer matrix (in the composite unit cell). Thus, this
work proposes a methodology, based on topology optimization and homogenization, to design function-
ally graded piezocomposite materials that considers important aspects in the design process aiming at
energy harvesting applications, such as the influence of piezoelectric polarization directions and the
influence of material gradation. The influence of the piezoelectric polarization direction is quantitatively
verified using the Discrete Material Optimization (DMO) method, which combines gradients with
mathematical programming to solve a discrete optimization problem. The homogenization method is
implemented using the graded finite element concept, which takes into account the continuous gradation
inside the finite elements. One of the main questions answered in this work is, quantitatively, how the
microscopic stresses can be reduced by combining the functionally graded material (FGM) concept with
optimization. In addition, the influence of polygonal elements is investigated, quantitatively, when
compared to quadrilateral 4-node finite element meshes, which are usually adopted in material design.
However, quads exhibit one-node connections and are susceptible to checkerboard patterns in topology
optimization applications. To circumvent these problems, Voronoi diagrams are used as an effective
means of generating irregular polygonal meshes for piezocomposite design. The present results consist
of bi-dimensional unit cells that illustrate the methodology proposed in this work.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

This work proposes a methodology, based on topology optimi-
zation and homogenization, to design functionally graded piezo-
composite materials that considers important aspects in the
material design process aiming at energy harvesting applications,
such as the influence of piezoelectric polarization directions and
the influence of material gradation between the constituent mate-
rials in the unit cell. Usually some gradient is obtained in the man-
ufacturing process of piezocomposites – the proposed
methodology can take this feature into account in the design.
The homogenization method is implemented using the graded fi-
nite element concept, which takes into account the continuous gra-
dation inside the finite elements. Macroscopic and microscopic
stress values are compared using the homogenization method
when the optimized piezocomposites are subjected to an external
load. The variation in polarization direction is implemented by
means of a discrete material optimization approach. Quadrilateral
4 node finite element meshes are usually adopted in material de-
sign; however, they exhibit one-node connections and are suscep-
tible to checkerboard patterns in topology optimization
applications and polygonal elements can be very useful in this as-
pect. Thus, in this work, Voronoi diagrams are also used as a natu-
ral and effective means for generating irregular polygonal meshes.
We also compare the influence of quadrilateral and polygonal fi-
nite element mesh in the performance of piezocomposites. The re-
sults obtained consist of bi-dimensional unit cells that illustrate
the methodology proposed in this work.

1.1. Piezoelectric materials

Piezoelectric materials have a crystalline structure that pro-
vides them with the ability to transform mechanical strain energy
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into electrical charge and, vice versa, by converting an applied elec-
trical potential into mechanical strain. The term piezocomposite
applies to any composite resulting from the combination of any
piezoelectric material (polymer or ceramic) with other non-piezo-
electric materials, including air-filled voids [1]. Piezocomposite
materials provide effective properties (elastic, piezoelectric, and
dielectric) leading, in general, to better performance than pure pie-
zoelectric materials. The performance characteristics depend on
the volume fractions of constituent materials, its properties, shape
of inclusions, and mechanical properties of the polymer matrix in
the composite unit cell. In the piezocomposite applications consid-
ered in this work, we assume that the excitation wavelengths are
so large that the detailed structure of the unit cell is not relevant,
and the material may be considered as a new homogeneous med-
ium with ‘‘effective’’ properties. Then, the excitation (vibrational
forces, for example) will average out over the fine scale variations
of the composite medium, in the same way as averaging occurs in
the micron-sized grain structure in a conventional ceramic.

1.2. Energy harvesting

An interesting application of piezoelectric materials is energy
harvesting devices. Energy harvesting is a process in which energy,
that would otherwise be wasted, is processed and stored for future
use by an application. The use of harvested energy could extend
the operational life of devices traditionally powered by batteries.
This is particularly advantageous in systems with limited accessibility
such as biomedical implants and structures with embedded micro and
wireless sensors. It is feasible that such devices would have the abil-
ity to generate their own power from the environment. With ad-
vances in design and manufacturing as well as reduced power
requirements, the use of energy harvesting methods have become
practical and have gained significant popularity [2,3]. The
piezoelectric property allows the material to capture mechanical
energy from its surroundings, usually ambient vibration, and
transform it into electrical energy that can power other devices.
The use of piezoelectric materials to capitalize on the surrounding
ambient vibrations has seen a dramatic rise due to the direct
conversion of energy between mechanical and electrical domains.
The interest in piezoelectric energy harvesting is reflected in a
number of reviews that have been written in recent years [4,5].
Thus, in this context, designing improved piezocomposites for
energy harvesting applications is always a goal to be achieved.

1.3. Functionally graded materials

Functionally Graded Materials (FGM) are composite materials
whose properties vary gradually and continuously along a specific
direction within the domain of the material. The property variation
is generally achieved through continuous change of the material
microstructure [6]; in other words, FGMs are characterized by spa-
tially-varying microstructures created by non-uniform distribu-
tions of the constituent phases. This variation can be
accomplished by using reinforcements with different properties,
sizes, and shapes, as well as by interchanging the role of reinforce-
ment and matrix (base) material in a continuous manner. Several
authors have highlighted the advantages of the FGM concept ap-
plied to piezoelectric structures [7,8], which involve local reduc-
tion of thermal and mechanical stress concentration [7,9],
improved stress redistribution [7], maximization of output dis-
placement, and increased bonding strength [10]. Among many
available techniques, FGMs can be manufactured by using Spark
Plasma Sintering (SPS), which has certain features such as high
heating efficiency, quick temperature rising, self-cleaning of the
surface of the materials and improvement of sintering activation,
resulting in fast sintering at a lower temperature [11].
1.4. Homogenization

The homogenization method replaces the piezocomposite by an
equivalent homogeneous medium and allows the calculation of its
effective properties by considering the topology of the composite
microstructure and the properties of its constituents [12]. The
homogenization theory for piezoelectricity, considering static case
(where the operational wavelength is much larger than the unit
cell dimensions), was developed by Telega [13] using the varia-
tional method of C-convergence. Silva et al. [14–16] presented a
method for designing piezoelectric microstructures with high per-
formance characteristics using topology optimization techniques
and the homogenization method, including features such as hydro-
static coupling coefficient, figure of merit, and electromechanical
coupling factor. Sigmund et al. [17] used topology optimization
method to design 1–3 piezocomposites with optimal performance
characteristics for hydrophone applications. Buehler et al. [18] ap-
plied the homogenization technique to calculate the effective
properties of an unit cell incorporating piezoelectric and conven-
tional material. This unit cell was used in a topology optimization
problem that maximizes the displacement of an arbitrary point
due to an applied electric field, while specifying the structure stiff-
ness. Jayachandran et al. [19–21] used stochastic global optimiza-
tion combined with homogenization method to obtain the optimal
granular configuration of the ferroelectric ceramic microstructure
for application in piezoelectric actuators.

In the case of energy harvesting applications, where piezocom-
posites are used as high quality structural materials that have to
satisfy strict engineering requirements, it is necessary to evaluate
the stress values in the unit cell when the piezocomposite is sub-
jected to external loads. However, stresses determined by taking
the composite as (macro) homogeneous material, denoted by
effective stresses, can only reflect the response of the composite
to external (macro) environments, ignoring the effects of micro-
heterogeneity. Thus, detailed information of stress distribution is
necessary for structural design and optimization. The information
is particularly useful in determining material strength and micro
cracks/defects in the material. In related work, Guedes and Kikuchi
[12] used homogenization to compute stress and strain distribu-
tions within composite structures. Ni et al. [22] investigated the
microscopic stresses in sphere-reinforced composite and unidirec-
tional fiber-reinforced composites, and calculated the effective
stress level determined based on a macro-dimensional scale. They
concluded that the effective stresses might be much lower than the
actual maximum values occurring in the microstructure. In this
method, specific loads are applied to the unit cell and finite ele-
ment analysis is used to determine the stress distribution and to
give the information of stress concentration at interfaces.

1.5. Topology optimization

Topology optimization provides the layout, or topology, of a
structure or material such that a prescribed objective is maximized
or minimized subjected to design constraints. Topology optimiza-
tion can be combined with homogenization to design unit cells
with complicated shapes. Therefore, a richer class of material prop-
erties can be achieved, and new kinds of composite materials can
be generated rather than the usual fiber-reinforced or laminate
types. Moreover, these new materials may be designed to achieve
unusual properties [23–25].

The polarization direction of piezoelectric materials can be de-
fined as design variable in the topology optimization method
[26]. In a finite element structure, the direction of local polariza-
tion at each element is defined by the angle hi on a fixed reference.
Thus, the design variables can assume continuous values within a
certain pre-defined range. However, a disadvantage of this ap-
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proach is that the global solution space becomes non-convex, and
hence, the problem of multiple local minima needs to be dealt with
[27]. The Discrete Material Optimization (DMO) method combines
gradients with mathematical programming to solve a discrete opti-
mization problem. This approach has been introduced by Steg-
mann and Lund [27], who addressed the orientation problem of
orthotropic materials and the material selection problem, as well
as problems involving both situations, such as in the case of gen-
eral composite laminate shell structures. This method can be ap-
plied to optimize local polarization directions of piezoelectric
materials at each point (an attempt to deal with multiple local
minima problems). In this work, the DMO concept is implemented
with design variables located at nodes.

1.6. Paper organization

This paper is organized as follows: in Section 2, piezoelectric
constitutive equations are presented. In Section 3, the homogeni-
zation method applied to piezoelectric materials considering the
FGM concept, is described. In Section 4, the topology optimization
formulation is presented. In Section 5, the numerical implementa-
tion is described, including the implementation of polygonal finite
element mesh applied to piezocomposite material design, the DMO
concept, and the sensitivity analysis, as well as the discrete prob-
lem formulation. In Section 6, numerical examples demonstrating
the influence of either quadrilateral or polygonal mesh are shown,
as well as the influence of material gradation and piezoelectric
polarization direction in the piezocomposite design for high per-
formance. Finally, in Section 7, some conclusions are inferred.
2. Piezoelectric constitutive equations

The stress-charge form of the constitutive relation for piezo-
electric media are given by:

T ¼ cEe� eE;
D ¼ eteþ �SE;

ð1Þ

where T, e, D, and E are respectively the mechanical stress tensor,
the mechanical strain tensor, the electric charge vector, and the
electric field vector. The term cE represents the elastic stiffness ten-
sor, which is evaluated at constant electric field. Terms e and �S are
respectively the piezoelectric tensor, and the dielectric tensor eval-
uated at constant strain.

In this work, a bi-dimensional model is considered. As a conven-
tion, the polarization axis of the piezoelectric material is consid-
ered in the z (or 3) direction. Besides, a plane-strain assumption
is considered for modeling the two-dimensional microstructures.
Therefore, assuming the model is in the plane 1–3 (x–z) (y is the
normal direction) and that the piezoelectric material employed
to build the piezocomposite belongs to the hexagonal 6 mm class,
the corresponding plane-strain properties can be obtained by con-
sidering �y ¼ 0 and Ey ¼ 0 in Eq. (1), and rewriting them using only
the terms �i, Ti, Di and Ei for i ¼ 1 or 3. A plane-stress model could
also be considered; however, it is less realistic than the plane-
strain model for representing the composite behavior which is
assumed to have an infinite length in the y-direction for the
two-dimensional case.

These constitutive equations can also be represented by an
alternative form [28]:

e ¼ sET� dE;
D ¼ dtTþ �T E;

ð2Þ

where sE is the compliance tensor under short-circuit conditions, �T

is the clamped body dielectric tensor, and d is the piezoelectric
stress tensor. The relations among the properties in Eqs. (1) and
(2) are [28]:

sE ¼ cE
� ��1

; �T ¼ �S þ dt sE
� ��1

d; d ¼ sE
� �

e: ð3Þ
3. Homogenization method applied to FGM piezoelectric
materials

In this section, the application of homogenization theory to pie-
zoelectricity, considering FGM concept, is briefly discussed. Con-
sidering the standard homogenization procedure, we define the
two-dimensional unit cell as Y ¼ ½0;Y1� � ½0;Y2� and the material
functions cE

ijkl, eijk and �S
ij to be Y-periodic functions:

cE�ðxÞ ¼ cEðx; yÞ; e�ðxÞ ¼ eðx; yÞ; �S�ðxÞ ¼ �Sðx; yÞ;
cE�ðx; yÞ ¼ cEðx; y þ YÞ; e�ðx; yÞ ¼ eðx; y þ YÞ;
�S�ðx; yÞ ¼ �Sðx; y þ YÞ

ð4Þ

with y ¼ x=� where � > 0 is a parameter with small value that rep-
resents the microscale in which the properties are changing (com-
posite microstructure scale), and x and y are coordinates
associated with macro- and micro-dimensions of the composite
material, respectively.

Expanding the piezocomposite displacement u and electric po-
tential / asymptotically [13], one obtains:

u�ðx; yÞ ¼ u0ðxÞ þ �u1ðx; yÞ;
/�ðx; yÞ ¼ /0ðxÞ þ �/1ðx; yÞ;

ð5Þ

where only the first-order variation terms are considered since it is
assumed that the operational wavelength is much larger than the
unit cell dimensions, and u1 and /1 are Y-periodic. The strains
and electrical potential gradients are written as:

e�ðx; yÞ ¼ ›xu�ðx; yÞ ¼ ›xu0ðxÞ þ �›xu1ðx; yÞ þ ›yu1ðx; yÞ;
$x/

�ðx; yÞ ¼ E�ðx; yÞ ¼ $x/0ðxÞ þ �$x/1ðx; yÞ þ $y/1ðx; yÞ;
ð6Þ

where e� is the mechanical strain and:

@xð Þijð�Þ ¼
1
2

@ð�Þi
@xj
þ
@ð�Þj
@xi

� �
; @y
� �

ijð�Þ ¼
1
2

@ð�Þi
@yj
þ
@ð�Þj
@yi

 !
ð7Þ

After some algebraic manipulations (see [15]), it is possible to get
the following equations of the effective (or homogenized)
properties:

cE
Hðx; yÞ ¼

1
Yj j

Z
Y

Iþ @yv x; yð Þ
� �

: cE x; yð Þ : Iþ @yv x; yð Þ
� ���

þ Iþ @yv x; yð Þ
� �

: e x; yð Þryw x; yð Þ
�
dY
	

ð8Þ

eHðx; yÞ ¼
1
Yj j

Z
Y

Iþ @yv x; yð Þ
� �

: e x; yð Þ IþryR x; yð Þ
� ���

� IþryR x; yð Þ
� �

�S x; yð Þryw x; yð Þ
�
dY



ð9Þ

�S
Hðx; yÞ ¼

1
Yj j

Z
Y

IþryR x; yð Þ
� �

�S x; yð Þ IþryR x; yð Þ
� ���

� @yU x; yð Þ : e x; yð Þ IþryR x; yð Þ
� ��

dY



ð10Þ

where vðx; yÞ is the characteristic displacement of the unit cell,
Rðx; yÞ is the characteristic electrical potential of the unit cell, and
wðx; yÞ and Uðx; yÞ are the characteristic ‘‘coupled’’ functions of
the unit cell. All these functions are Y-periodic. The relationships
between u1 and /1, and the characteristic functions are given by

u1 ¼ vðx; yÞeðu0ðxÞÞ þUðx; yÞ$x/0ðxÞ;
/1 ¼ wðx; yÞeðu0ðxÞÞ þ Rðx; yÞ$x/0ðxÞ;

ð11Þ
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›yu1ðx; yÞ ¼ ›yvðx; yÞ›xu0ðxÞ þ ›yUðx; yÞ$x/0ðxÞ;
$y/1ðx; yÞ ¼ $ywðx; yÞ›xu0ðxÞ þ $yRðx; yÞ$x/0ðxÞ:

ð12Þ

The stress relation of Eq. (1) can be rewritten in terms of the
homogenized properties as:

Tðx; yÞ ¼ cE
Hðx; yÞS� eHðx; yÞE: ð13Þ

The strain S and the electric field E are expanded asymptotically
as shown in Eq. (6). From Eq. (8)–(10) it can be noticed that the
effective elastic property cE

H and the effective piezoelectric prop-
erty eH are defined by homogenizing the microscopic properties
cE x; yð Þ and e x; yð Þ, respectively, in the unit cell Y. Thus, it is possi-
ble to evaluate the stress distributed in the unit cell by using Eq.
(14) [12,22].

r x; yð Þ ¼ cEðx; yÞ : Iþ ›yvðx; yÞ
� �

þ eðx; yÞ$ywðx; yÞ
� �

@xu0 xð Þ
� cEðx; yÞ : ›yUðx; yÞ þ eðx; yÞ Iþ $yRðx; yÞ

� �� �
$x/0ðxÞ:

ð14Þ

The formulation of the homogenization method is the same for the
case with or without material gradation. However, in the FGM case,
the properties vary at each position in the unit cell, according to the
material gradation (further described in Section 5.3).

4. Topology optimization method

A major concept in topology optimization is the extended de-
sign domain, which is a large fixed domain that must contain the
whole structure to be determined by the optimization procedure.
The objective is to determine the holes and connectivities of the
structure by adding and removing material in this domain. Because
the extended domain is fixed, the finite element model is not chan-
ged during the optimization process, which simplifies the calcula-
tion of derivatives of functions defined over the extended domain
[29,30]. In the case of material design, the extended design domain
is the unit cell domain.

In Fig. 1, the scheme of a topology optimization procedure for
piezocomposite material design is presented. Within the initial
domain the mesh is generated and the optimization procedure is
performed, providing a topology that can be post-processed,
verified, and manufactured.

The discrete problem, where the amount of material at each ele-
ment can assume only values equal to either zero or one (i.e. void
or solid material, respectively), is an ill-posed problem. A typical
way to seek a solution for topology optimization problems is to re-
lax the problem by allowing the material to assume intermediate
property values during the optimization procedure, which can be
Fig. 1. Steps in the piezocomposite material design using the Topology Optimiza-
tion Method.
achieved by defining a special material model [30,31]. Essentially,
the material model approximates the material distribution by
defining a function of a continuous parameter (design variable)
that determines the mixture of basic materials throughout the do-
main. In this sense, the relaxation yields a continuous material de-
sign problem that no longer involves a discernible connectivity. A
topology solution can be obtained by applying penalization coeffi-
cients to the material model to recover the 0�1 design (and thus, a
discernible connectivity), and some gradient control on material
distribution, such as a filter or projection [32]. It turns out that this
relaxed problem is strongly related to the FGM design problem,
which essentially seeks a continuous transition of material proper-
ties [33]. Therefore, while the 0�1 design problem (needs com-
plexity control, such as filter) does not admit intermediate values
of design variables, the FGM design problem admit solutions with
intermediate values of the material field.

Thus, the objective of the present work is to design FGM piezo-
composites using the concept of the relaxed problem in continuum
topology optimization. The problem consists of maximizing the
electromechanical coupling coefficient defined in Section 4.2.

4.1. Material model

In this work, the topology optimization formulation employs a
material model based on the SIMP (Solid Isotropic Material with
Penalization) model [32], which states that at each point of the do-
main, the local effective property of the mixture is

ch ¼ qpc cmat1 þ 1� qpcð Þcmat2 ;

eh ¼ qpe emat1 þ 1� qpeð Þemat2 ;

�h ¼ qp��mat1 þ 1� qp�ð Þ�mat2 ;

ð15Þ

where cmati
, emati

and �mati
correspond to the elastic, piezoelectric,

and dielectric tensors of Eq. (1), respectively, for materials 1 and
2. The variable q is a pseudo-density describing the amount of
material at each point of the domain, which can assume values be-
tween 0 and 1. A topology solution can be obtained by applying
penalization coefficients pc , pe and p� to the material model to re-
cover the 0–1 design, and some gradient control on material distri-
bution, such as a filter or projection [32]. These penalization
coefficients are chosen according to two conditions that the three
penalty exponents must satisfy for stable convergence developed
by Kim et al. [34]. The first condition is an intrinsic condition ensur-
ing better energy conversion efficiency between mechanical and
electric energy for more piezoelectric material usage and the second
one is an objective-dependent condition favoring a distinct material
distribution over an intermediate material distribution for the same
amount of piezoelectric material used.

In order to vary the polarization directions in the unit cell, it is
necessary to add more design variables at each point of the design
domain, called orientation variable ci, which are continuum vari-
ables, ranging from 0 to 1, representing each candidate angle of
polarization for the piezoelectric material. These variables are fur-
ther described in Section 5.4.

4.2. Design problem formulation

The optimization problem aiming at energy harvesting applica-
tions consists of finding a distribution of material that maximizes
the electromechanical coupling coefficient k, which represents
the coupling between the directions of stress and electrical fields.
It is related to energy in the sense that it is the ratio of the peak
energy stored in the ‘‘capacitor’’ of the piezoelectric material to
the peak strain energy with electrodes open, and its square is equal
to the ratio of the converted electrical energy and the input
mechanical energy. Therefore, the electromechanical coupling
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coefficient is an important parameter for describing the energy
conversion capability of the piezoelectric material, and the
optimization problem aiming at energy harvesting applications in
quasi-static operation must find the material distribution that
maximizes the electromechanical coupling coefficient k, which is
given by ([15]):

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
dHð Þ2

sE
H�

T
33

s
: ð16Þ

Thus, the optimization problem can be stated as:

Maximize :
qðxÞ;hðxÞ

F qðxÞ; hðxÞð Þ ¼ k

0 6 qðxÞ 6 1
�90� 6 hðxÞ 6 90�

symmetry conditions
gradation control

where F is the function to be maximized, and qðxÞ and hðxÞ are the
design variables at each position x of the design domain. The values
of q vary from 0 to 1, representing the presence of material 1 or 2,
and the values of h vary from �90� to 90�, representing the polari-
zation direction of the piezoelectric material at each point.
Fig. 2. Schematic drawing showing how to calculate the geometric quantities si and
hi used to define the Laplace shape functions.
5. Numerical implementation

A continuum distribution of the design variable inside the fi-
nite element domain is considered allowing representation of a
continuous material variation during the design process. As the
interest here is to obtain solutions with a continuous distribu-
tion of material, intermediate materials (no penalization) are al-
lowed. A material model based on the SIMP model together with
the DMO concept [27] is applied to verify the influence of the
piezoelectric polarization direction in the objective function. A
gradient control constraint in the unit cell domain is imple-
mented based on projection techniques [35,36]. This gradient
control capability addresses the influence of FGM gradation in
the design of graded materials. It also avoids the problem of
mesh dependency in the topology optimization implementation
[32]. The actual optimization problem is solved by the MMA
(‘‘Method of Moving Asymptotes’’ ) [37].

In this section, the finite element scheme for convex n-gons out-
lined in [38] is reviewed and extended to piezoelectric materials.
Then, the homogenization method is applied to piezoelectric mate-
rials using polygonal elements and material gradation control.
After that, the implementation of the DMO concept applied to pie-
zoelectric polarization direction is explained. The sensitivity anal-
ysis is presented and, finally, the discrete problem formulation is
defined.

5.1. Piezoelectric polygonal element

Most published articles that work with topology optimization
method uses the quadrilateral 4 node finite element, also known
as Q4. However, the associated meshes exhibit one-node connec-
tions and are susceptible to checkerboard patterns in topology
optimization applications, which have been the subject of exten-
sive research [39]. Polygonal elements can be very useful in this re-
spect since they can naturally exclude checkerboard layouts [40].
In this work, Voronoi diagrams are used as a natural and effective
means for generating irregular polygonal meshes. An attractive
feature of the method is that randomness and subsequently higher
levels of geometric isotropy are obtained as a byproduct of arbi-
trary seed placement. Furthermore, the use of Lloyd’s algorithm
[41] can remove excessive element distortion, and allows construc-
tion of meshes that are relatively uniform in size. In this work, the
formulation described by Talischi et al. [42–44] is extended to pie-
zoelectric materials. Eqs. (8)–(10) are solved by using the Finite
Element Method (FEM). It is assumed that the unit cell is discret-
ized by N finite elements, that is:

Y ¼
[N
n¼1

Xe; ð17Þ

where N is the number of finite elements and Xe is the domain of
each element.

The approach presented by Sukumar and Tabarraei [38] con-
structs a conforming approximation space on polygonal meshes
using natural neighbor bilinear interpolation functions and iso-
parametric transformations. For n ¼ 3 and n ¼ 4, the resulting fi-
nite element is identical to the constant strain triangle and
bilinear quadrilateral, respectively.

Now, consider a set of nodes qif g and point p located where no-
dal data should be interpolated. Points p and qif g are ‘‘natural
neighbors’’ if their Voronoi cells have a common edge [38]. The
set of natural neighbors of p are defined as follows:

I pð Þ ¼ ijVi \ Vp – ;
� 


; ð18Þ

where Vi and Vp denote the Voronoi cells of qi and p, respectively.
The Laplace interpolant corresponding to qi is given by:

Ni xð Þ ¼ wi xð ÞP
j2Iwj xð Þ where wi xð Þ ¼ si xð Þ

hi xð Þ : ð19Þ

Here x is the location of p; si is the length of the Voronoi edge com-
mon to Vi and Vp, and hi denotes the distance between p and qi, as
illustrated in Fig. 2. By construction, the Laplace functions are non-
negative, bounded and satisfy partition of unity:

0 6 Ni xð Þ 6 1;
X
i2I

Ni xð Þ ¼ 1: ð20Þ

Furthermore, it can be shown that these functions are linearly
precise:X
i2I

xiNi xð Þ ¼ x: ð21Þ

where xi represents the location of node qi. This property along
with constant precision (partition of unity) ensures the convergence
of the Galerkin method for second-order partial differential equa-
tions. Moreover, Laplace functions are linear on the boundary of
the convex hull of qiji 2 If g [45], and satisfy the Kronecker-delta
property, meaning that the interpolated value at a node is equal
to the nodal value. If the nodes are located at the vertices of a
convex polygon, any interior point of this polygon has qi as its



210 S.L. Vatanabe et al. / Comput. Methods Appl. Mech. Engrg. 266 (2013) 205–218
natural neighbors. Therefore, Laplace shape functions correspond-
ing to qi lead to a finite element for that polygon. Furthermore, an
isoparametric mapping from regular n-gons to any convex polygon
can be constructed using these shape functions. Since the interpo-
lated field varies linearly on the boundary, the resulting approxima-
tion is conforming. Following the usual approach in the finite
element community, the shape functions are defined on the parent
domain, where the weak form integrals are evaluated numerically.
The reference n-gon is divided into n triangles (by connecting the
centroid to the vertices) and well-known quadrature rules are used
on each triangle.

Considering that the topology optimization results in a
smoothly graded material, a more natural way of representing
the material distribution emerges by considering a continuous
representation of material properties [46,47], which is achieved
by interpolating the properties inside the finite element using
shape functions [35,46,48]. Thus, nodal design variables are
defined, rather than the usual element based design variables.
Accordingly, the design variable inside each finite element is
given by

q xð Þ ¼
Xnn

i¼1

qiNi xð Þ; ð22Þ

where qi is the nodal design variable, Ni is the Laplace shape func-
tion described above, and nn is the number of nodes at each ele-
ment. This formulation allows a continuous distribution of
material along the design domain instead of the traditional piece-
wise constant material distribution used by previous formulations
of topology optimization [32].
Fig. 3. Projection technique.
5.2. Homogenization method using polygonal elements applied to
piezoelectric materials

Bilinear interpolation functions are considered for displace-
ments and electrical potentials. Therefore, the characteristic func-
tions previously defined are expressed in each element as a
function of the shape functions (NI):

vðmnÞ
i ffi NIvðmnÞ

iI ; wðmnÞ ffi NIw
ðmnÞ
I ;

UðmÞi ffi NIU
ðmÞ
iI ; RðmÞ ffi NIR

ðmÞ
I ; I ¼ 1;NN;

ð23Þ

where NN is the number of nodes per finite element (in the case of
polygonal elements, it usually varies from 3 to 7). Assembling the
individual matrices for each element, we obtain the following global
matrix system for each load case mn or m ([15,49,50]):

Kuu Kuu

Kt
uu �Kuu

" #
vðmnÞ U mð Þ

WðmnÞ R mð Þ

" #
¼ FðmnÞ F mð Þ

Q ðmnÞ Q mð Þ

" #
() KX ¼ Y:

ð24Þ

The stiffness, piezoelectric, and dielectric global matrices (Kuu,
Ku/, and K//, respectively) are obtained by assembling each ele-
ment’s individual matrix, and the global force and electrical
charge vectors (F and Q ) are the assembly of the element force
and electrical charge vectors (Fe and Q e, respectively) for all finite
elements:

Kuu ¼
XN

e¼1

Ke
uu; Ku/ ¼

XN

e¼1

Ke
u/; K// ¼

XN

e¼1

Ke
//; F ¼

XN

e¼1

Fe;

Q ¼
XN

e¼1

Q e:

ð25Þ

The element matrices and vectors Ke
uu;K

e
u/;K

e
//;F

e, and Q e are calcu-
lated by the following equations [15]:
Ke
uuðiIjJÞ ¼

Z
Xe

cE
ipjq

@NI

@yp

@NJ

@yq
dXe; Ke

u/ðiIJÞ ¼
Z

Xe
ekij

@NI

@yj

@NJ

@yk
dXe;

Ke
//ðIJÞ ¼

Z
Xe
�S

ij
@NI

@yi

@NJ

@yj
dXe

FeðmnÞ
iI ¼ �

Z
Xe

cE
ijmn

@NI

@yj
dXe; QeðmnÞ

I ¼ �
Z

Xe
ekmn

@NI

@yk
dXe

FeðmÞ
iI ¼ �

Z
Xe

emij
@NI

@yj
dXe; Q eðmÞ

I ¼
Z

Xe
�S

mj
@NI

@yj
dXe:

ð26Þ

The displacements and electrical potential at some point of the cell
must be prescribed to overcome the non-unique solution of the
problem; otherwise the problem will be ill posed. The choice of
the point of the prescribed values does not affect the homogenized
coefficients because only derivatives of the characteristic functions
are used in their computation [15,16].

5.3. Material gradation control

In this work, a gradient control constraint in the unit cell do-
main is implemented based on the same approach developed by
Carbonari et al. [36], which used nodal design variables and projec-
tion functions [51]. This gradient control capability addresses the
influence of FGM gradation in the design of extreme materials. It
also avoids the problem of mesh dependency in the topology opti-
mization implementation when aiming at a discrete solution [32].
This technique adds a new layer of pseudo-nodal material densities
(dn) superimposed on the current layer of nodal design variables
(qn). For each design variable qi, a circular area X of radius rgrad

is defined, whose center is located in the same coordinates of the
node i, as shown in Fig. 3. The values of qi become a function of
the n pseudo-densities values belonging to the circular area X,
and the distances between each pseudo-density and the center of
the area. Thus:

qn ¼ f dnð Þ; ð27Þ

where

qi ¼
P

j2Si
dja rij
� �

P
j2Si

a rij
� � ð28Þ

in which rij is the distance between nodes i and j

rij ¼ xj � xi

  ð29Þ

and Si is the subset of the interior nodes in the circular area. The
weight factor a is defined by:

a rij
� �

¼
rgrad�rij

rgrad
; if xj 2 Si;

0; otherwise:

(
ð30Þ
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5.4. Discrete material optimization (DMO)

The formulation presented by Stegmann and Lund [27], called
Discrete Material Optimization (DMO), uses the mixed material
strategy suggested by Sigmund et al. [25,52] for multi-phase topol-
ogy optimization, where the total material stiffness is computed as
a weighted sum of candidate materials. In this present work, this
method has been applied to optimize polarization direction of pie-
zoelectric materials. For every element in the design domain, this
methodology consists of finding a distinct material from a set of
candidate materials, such that the objective function is maximized.
In the case of polarization direction of piezoelectric materials, each
candidate has the piezoelectric properties calculated at a specific
polarization angle. Thus, a predetermined number of polarization
angles are chosen and the optimization process indicates which
one is the best candidate material (see Fig. 4).

The parametrization of the DMO is performed at the finite ele-
ment level. The piezoelectric tensor of the element, ee, is expressed
as a weighted sum of the piezoelectric tensors of the candidate
materials, ei, as shown in Eq. (31):

ee
matj
¼
Xne

i¼1

wiei ¼ w1e1 þw2e2 þ � � � þwne ene ; 0 6 wi 6 1; ð31Þ

where wi are weighting factors, ne is the number of finite elements
in the design domain, ee

matj
is the resultant piezoelectric tensor of

the element e for material j, and ei is the piezoelectric tensor of
the candidate material i. Each constitutive matrix ei can be calcu-
lated by the following expression:

ei ¼ Rhi
1

� �t
e0

matj
Rhi

2 ð32Þ

and

Rhi
1 ¼

c2 s2 sc

s2 c2 �sc

�2sc 2sc c2 � s2

2
64

3
75 and Rhi

2 ¼
c s
�s c

� �
; ð33Þ

where e0
matj

is the original piezoelectric matrix of material j without
rotation, s ¼ sin hið Þ, c ¼ cos hið Þ, and hi is the discrete angle adopted
for each material phase. Index i represents the number of candidate
angles and index j represents the number of materials that is dis-
tributed in the topology, according to the material model presented
in Eq. (15). In the examples adopted in this work, only two types of
materials are considered (PZT-5A and epoxy); thus j ¼ 1;2.

The weighting factors wi in Eq. (31) must have values between 0
and 1 as no piezoelectric tensor can contribute more than the pie-
zoelectric material property, and a negative contribution is physi-
cally meaningless. In this way, as in classical topology
optimization, the weights on the constitutive matrices become
‘‘switches’’ that turn on and off stiffness contributions such that
the objective is minimized and a distinct choice of candidate mate-
rial is made. At the beginning of the optimization, ee consists of
contributions from several candidate materials, however, at the
end of the design optimization, the parameterization for the
weighting functions has to fulfill the demand that one distinct can-
didate angle is chosen [27]. This underlines the fact that the DMO
Fig. 4. Example of NN candidate materials to be chosen by the optimization
process.
method relies heavily on the ability of the optimizer to push all
weights to the limit values. Any element having intermediate val-
ues of the weights must be regarded as undefined because the con-
stitutive properties are non-physical. To achieve this objective, one
more design variable need to be adopted, called orientation vari-
able ce

i , which is a continuum variable (from 0 to 1) representing
each candidate angle. This formulation leads to a high number of
variables.

With respect to local optimized solutions, Stegmann and Lund
[27] investigated this phenomena when the fiber direction in com-
posites are directly handled as design variables. They illustrated
this issue by solving a simple problem using a continuous formula-
tion and the method of moving asymptotes (MMA) [37]. The re-
sults have shown that the global optimum solution is very
dependent on the initial guess. This is not a new realization, of
course, and several methods have already been proposed to cir-
cumvent the problem of local optimum solutions, such as analyti-
cal methods, improved mathematical programming techniques, or
parametrization methods. The DMO parametrization is an alterna-
tive method that aims to circumvent the local minima problem
[27]. Thus, the weighting functions can be calculated by

wi ¼
ŵiPne

k¼1ŵk

; where ŵi ¼ ce
i

� �pc
Yne

j¼1;j–i

1� ce
j

� �pc
� �

: ð34Þ

To push the orientation variables ce
i towards 0 or 1, a penaliza-

tion technique has been adopted by introducing the power, pc, to
penalize intermediate values of ce

i . A low value of pc does not guar-
antee the prevalence of only one polarization direction, what does
not make sense from a physical point of view. In addition to that, a
high value of pc affects the choice of the polarization direction,
similarly to what happens in the SIMP model, i.e., the relaxation
of the problem is practically removed and the problem may be-
come close to a discrete problem, which is ill-posed. However,
there is an heuristic in the choice of this value. In this work, differ-
ent values of pc are previously tested and the best results are ob-

tained for pc ¼ 6. Moreover, the term 1� ce
j

� �pc
� �

j–i
is

introduced such that an increase in ce
i results in a decrease of all

other weighting functions. Finally, the weights have been normal-
ized to satisfy the constraint that the sum of the weighting func-
tions is equal to 1. Note that the expression in Eq. (34) means
that complicated additional constraints on the design variables ce

i

are avoided and only simple box constraints have to be dealt with.
5.5. Sensitivity analysis

In this section, the expressions for the sensitivities with respect
to the design variables qi (which can be substituted by the design
variables di) and ce

i are presented. The sensitivity analysis provides
the gradients of homogenized properties, allowing the optimiza-
tion solver to set the directions to be taken for each design variable.

The sensitivity with respect to the design variables di are ob-
tained using the chain rule:

@ �ð Þ
@di
¼
X
j2X

@ �ð Þ
@qj

@qj

@di
; ð35Þ

where X is the design domain and @qj=@di is not zero only at nodes j
belonging to Si with respect to node i. Furthermore,

@qj

@di
¼

a rij
� �

P
k2Sj

a rkj
� � ; ð36Þ

@ �ð Þ=@qj is calculated using traditional methods, such as adjoint
method, as described ahead.
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Fig. 5. Flowchart of the optimization procedure.
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The differentiation of the objective function described in Eq.
(16) is obtained by using the chain rule. However, the partial deriv-
atives depend on the differentiation of the terms written in Eq. (3),
which depend on the differentiation of the homogenized proper-
ties of Eqs. (8)–(10). Therefore, the following steps describe how
to calculate the sensitivity of the homogenized properties cE

H , eH ,
and �S

H as function of the design variables.
By differentiating Eq. (24), one obtains:

@K
@qi

Xþ K
@X
@qi
¼ @Y
@qi
() @X

@qi
¼ K�1M; where

M ¼ @Y
@qi
� @K
@qi

X:

For each finite element, we have that:

@vðmnÞ

@qi

� 	
e

¼ Ht
emK�1MðmnÞ ) @vðmnÞ

@qi

� 	t

e

¼ MðmnÞ
� �t

K�1Hem; ð38Þ

@wðmnÞ

@qi

( )
e

¼ Ht
elK
�1MðmnÞ ) @wðmnÞ

@qi

( )t

e

¼ MðmnÞ
� �t

K�1Hel; ð39Þ

where Hem is a matrix of NM � 5 filled by 1 at each mechanical de-
gree of freedom and 0 at all others, and Hel is a matrix NE� 5 filled
by 1 at each electrical degree of freedom and 0 at all others.
Moreover, NM and NE are, respectively, the number of mechanical
and electrical degrees of freedom in the entire domain.

By differentiating Eq. (8) with respect to the design variable qi,
one obtains [15]:

@cH

@qi
¼
XN

e

Iþ vð Þte
@Kuu

@qi

� �
e

Iþ vð Þe þ Iþ vð Þte
@Ku/

@qi

� �
e

wðmnÞ
� �

e

�

þf @vðmnÞ

@qi

� 	t

e

Kuuð Þe Iþ vð Þe þ Iþ vð Þte Ku/

� �
e

@wðmnÞ

@qi

 !
e

)
:

ð40Þ

The explicit calculation of @vðmnÞ=@qi and @wðmnÞ=@qi presents a high
computational cost, due to the dependency of all design variables.
Thus, the adjoint method is applied to avoid this problem. The third
component of Eq. (40) can be rewritten by:

@vðmnÞ

@qi

� 	t

e

Kuuð Þe Iþ vð Þe ¼ MðmnÞ
� �t

K�1Hem Kuuð Þe Iþ vð Þe

¼ MðmnÞ
� �t

Le ð41Þ

and
KLe ¼ Je; ð42Þ

where Je ¼ Hem Kuuð Þe Iþ vð Þe. By calculating Le, one can readily com-
pute Eq. (38). Similarly, it is possible to evaluate the fourth compo-
nent of Eq. (40) by:

Iþ vðmnÞ� �t

e Kuu
� �

e

@wðmnÞ

@x

( )
e

¼ Iþ vð Þte Kuu
� �

eHt
elK
�1MðmnÞ ¼ Pt

eMðmnÞ

ð43Þ

and

KPe ¼ Ve; ð44Þ

where Ve ¼ Iþ vð Þte Kuu
� �

eHt
el. Calculating Pe, one promptly computes

Eq. (39). In an analogous way, it is possible to calculate the sensitivity
of the piezoelectric and dielectric properties by using the adjoint
method, reducing the computational cost.

With respect to the DMO formulation, by differentiating Eq.
(31), one obtains:
@ee
matj

@ce
n
¼
Xne

i¼1

@wi

@ce
n

ei and
@wi

@ce
n
¼

@ŵi
@ce

nPnc
k¼1ŵk

; ð45Þ

where

@ŵi

@ce
n
¼

pc ce
n

� �pc�1 Yne

j¼1;j–i

1� ce
j

� �pc
� �

if n ¼ i;

� ce
i

� �pc pc ce
n

� �pc�1 Yne

j¼1;j–i;j–n

1� ce
j

� �pc
� �

if n ¼ j:

8>>>>><
>>>>>:

ð46Þ
5.6. Discrete problem formulation

The final optimization problem studied can be stated in the
discrete form as:

Maximize :
di ;ci

F di; cið Þ ¼ k

0 6 di 6 1; i ¼ 1; . . . ;N

0 6 ci 6 1
symmetry conditions
gradation control

where F is the function to be maximized, N is the number of nodes
in the design domain, di and ci are the design variables at each posi-
tion xi of the design domain. The values of di vary from 0 to 1, rep-
resenting the presence of material 1 or 2, and values of ci vary from
0 to 1, representing the influence of the polarization direction of the
orientation candidate at each node.

A flowchart of the optimization algorithm describing the steps
involved is shown in Fig. 5. The method is implemented in
MATLAB.

6. Numerical results

In this section, numerical examples of optimized microstruc-
tures are provided. First, unit cells are obtained with no material
gradation, in order to verify the influence of the finite element
mesh and the polarization direction. Later, the same verification
is performed again to evaluate the influence of gradation in mate-
rial design.



Fig. 6. Illustration of 1/4 unit cell design domain and the mapped nodal values, for a
design domain meshed with 2 � 2 quadrilateral elements.

Table 1
Material properties.

Property PZT-5A Epoxy

cE
11ð1010 N=m2Þ 12.1 0.53

cE
13ð1010 N=m2Þ 7.52 0.31

cE
33ð1010 N=m2Þ 11.1 0.53

cE
44ð1010 N=m2Þ 2.10 0.11

e13 ðC=m2Þ �5.4 0

e33 ðC=m2Þ 15.8 0

e15 ðC=m2Þ 12.3 0

�S
11=�0 1650 4

�S
33=�0 1700 4
�0ðF=MÞ 8:85� 1012

Fig. 7. (a) Macroscopic model adopted to evaluate the stress in the unit cell, and (b)
Example of unit cell for the 2–2 piezocomposite.

S.L. Vatanabe et al. / Comput. Methods Appl. Mech. Engrg. 266 (2013) 205–218 213
The adopted design domain is a quarter of a square two-dimen-
sional unit cell, in order to reduce the computational cost. There-
fore, before the optimization iterative process starts, it is
necessary to perform a mapping scheme of the nodal values along
the unit cell, with respect to the design variables in the design
domain. For the cases where the polarization direction is fixed in
the vertical direction, the material distribution is symmetric with
Epoxy

PZT-5A

Fig. 8. Optimized microstructure with no material gradation, using quadrilateral mesh an
(b) periodic matrix formed by 3 � 3 unit cells, and (c) microscopic stress distribution in
respect to both axes, x and y. For the cases where the polarization
direction is included in the optimization, the material distribution
is also symmetric in x and y axes; however, the polarization direc-
tion is symmetric only with respect to the y-axis. In relation to the
x-axis, the polarization direction of the nodal values is identical to
the respective design variables. Fig. 6 illustrates this mapping
scheme. The simulation is performed taking into account the entire
unit cell, applying periodic constraints. The design domain is dis-
cretized with 81 elements, so the quadrilateral mesh consists of
9� 9 elements and, in the polygonal mesh, the elements are gen-
erated according to the corresponding Voronoi diagrams and
Lloyd’s algorithm (see Section 5.1). The material properties of
PZT-5A and epoxy polymer are listed in Table 1. The adopted
penalization coefficients of Eq. (15) are pc ¼ 2, pe ¼ 2, and p� ¼ 4,
according to the two conditions that they must satisfy for stable
convergence [34].

In this case, the variation of polarization direction of PZT-5A is
considered, three different angles are adopted, 0�, 45� and 90�,
and therefore, Eq. (31) has three parts, one for each angle. The
adopted value for penalization coefficient p of Eq. (34) is equal to
5, to ensure that only one direction is chosen. Approximately 10
full optimization processes are performed for each case, each of
them considering a random initial material distribution, in order
to alleviate dependency on the initial guess. Then, the best perfor-
mance obtained for each case is illustrated in this section.

After obtaining the optimized microstructures for each case,
homogenized elastic, piezoelectric and dielectric properties are
calculated. These homogenized properties are used in a homoge-
neous macroscopic model to evaluate the macroscopic stress dis-
tribution. A uniform pressure r0 is applied to the macroscopic
model, as shown in Fig. 7a. The adopted two-dimensional macro-
scopic model consists of a rectangular block of 20 � 5 mm, made
of an homogeneous material, whose properties are the effective
properties of each microstructure obtained by the optimization
method. This macroscopic model is analyzed by considering plane
strain.

From the macroscopic model analysis, the macroscopic strain
and the macroscopic electric field are obtained, which are uniform
for the entire model. Then, the microscopic stress is calculated for
the corresponding unit cell using Eq. (14). The stress distributions
inside the optimized unit cells are shown in the following figures.

The electromechanical coupling coefficient of a unit cell made
of pure PZT-5A has a value of 0.145. By varying the volume frac-
tion of the 2–2 piezocomposite (see Fig. 7b) with fixed vertical
polarization direction, a maximum electromechanical coupling
coefficient equal to 0.145 is obtained [15]. The performance of
the optimized results presented in Sections 6.1 and 6.2 are com-
pared with the performance of pure PZT-5A and also with the 2–
2 piezocomposite. These values are considered as references for
the optimized results.
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d fixed polarization in the vertical direction: (a) material distribution in the unit cell,
the unit cell.
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Fig. 9. Optimized microstructure with no material gradation, using polygonal mesh and fixed polarization in the vertical direction: (a) material distribution in the unit cell,
(b) periodic matrix formed by 3 � 3 unit cells, and (c) microscopic stress distribution in the unit cell.
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Fig. 10. Optimized microstructure with no material gradation, using quadrilateral mesh and free polarization direction: (a) material distribution in the unit cell, (b) periodic
matrix formed by 3 � 3 unit cells, and (c) microscopic stress distribution in the unit cell.
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Fig. 11. Optimized microstructure with no material gradation, using polygonal mesh and free polarization direction: (a) material distribution in the unit cell, (b) periodic
matrix formed by 3 � 3 unit cells, and (c) microscopic stress distribution in the unit cell.

Table 2
Homogenized properties of the optimized structures with no material gradation.

Figure Polarization Mesh cE
H (MPa) eH (C/m2) �E

H=�0

8 Fixed Quad. 38:36 16:70 0
16:70 27:11 0

0 0 6:63

2
4

3
5 0 0:95

0 4:70
2:55 0

2
4

3
5 906 0

0 548

� �

9 Fixed Poly. 31:37 15:30 0
15:30 22:96 0

0 0 6:53

2
4

3
5 0 1:49

0 3:77
2:39 0

2
4

3
5 764 0

0 498

� �

10 Free Quad. 49:55 13:05 0
13:05 24:37 0

0 0 4:28

2
4

3
5 0 �0:05

0 3:96
0:45 0

2
4

3
5 1038 0

0 403

� �

11 Free Poly. 59:43 17:08 0
17:08 29:50 0

0 0 5:66

2
4

3
5 0 �0:31

0 4:99
0:66 0

2
4

3
5 1249 0

0 508

� �
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6.1. Optimized non-FGM cell design

Material design examples, using the implemented software, are
presented. The first approach is to verify the influence of the type
of finite element mesh and the polarization direction in the objec-
tive function, considering no gradation in the unit cell. Fig. 8 shows
the optimized unit cell for a quadrilateral mesh keeping the polar-
ization in the vertical direction, the periodic matrix formed by
3 � 3 unit cells, and the microscopic stress distribution in the unit
cell. Fig. 9 shows results for a polygonal mesh keeping the polari-
zation in the vertical direction. Figs. 10 and 11 show the optimized
results for the quadrilateral and polygonal meshes, respectively,



Table 3
Comparison of optimized non-FGM microstructures.

Figure Polarization direction Mesh k Gain (%)a r=r0

8 Fixed Quadrilateral 0.291 100.7 7.8
9 Fixed Polygonal 0.298 105.5 7.6
10 Free Quadrilateral 0.309 113.1 7.9
11 Free Polygonal 0.319 120.0 7.5

a With respect to pure PZT-5A (k ¼ 0:145).
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using the DMO concept, for 0�, 45�, and 90�. The homogenized
properties for each case are listed in Table 2.

Table 3 shows the values of k for the four optimized microstruc-
tures; their relative gains with respect to the pure PZT-5A or 2–2
piezocomposite, whose values of k are equal to 0.145; and the
maximum microscopic relative stress values in the unit cell. The
stress distributions presented in these figures are the maximum
80 100 120
0.29

0.292

0.294

0.296

0.298

0.3

Number of elemen

k

Fig. 12. Mesh conve

Fig. 13. Mesh convergence analysis. Quadrilateral meshes with (a) 81, (b) 144, and (c) 1
PZT-5A; blue: epoxy). (For interpretation of the references to colour in this figure legen
principal stresses divided by the macroscopic stress value r0. Com-
paring the optimized microstructures with fixed polarization
direction, one notices that the polygonal mesh model, with gain
of 105.5%, has a better performance than the quadrilateral mesh
model, with gain of 100.7%. This effect is repeated for the cases
with free polarization direction of Figs. 10 and 11. In this approach,
the quadrilateral mesh model has a gain of 113.1%, and the polyg-
onal mesh 120.0%. Moreover, comparing the influence of the polar-
ization direction, it is noted that the performances of the
microstructures of Figs. 10 and 11 are better than the perfor-
mances obtained with fixed polarization direction, presented in
Figs. 8 and 9. In the case of Fig. 8, note that the maximum micro-
scopic relative stress values can reach 7.8 times higher than the
macroscopic stress r0. For the cases of Figs. 9–11, the maximum
microscopic stress relative values are 7.6, 7.9, and 7.5 times greater
than r0, respectively. From these results, one concludes that, by
using the same number of finite elements, polygonal meshes guide
140 160 180 200

ts in the design domain

quadrilateral mesh
polygonal mesh

rgence analysis.

(

96 elements. Polygonal meshes with (d) 81, (e) 144, and (f) 196 elements (yellow:
d, the reader is referred to the web version of this article.)
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Fig. 14. Optimized microstructure with material gradation, using quadrilateral mesh and fixed polarization direction: (a) material distribution in the unit cell, (b) periodic
matrix formed by 3 � 3 unit cells, and (c) microscopic stress distribution in the unit cell.
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Fig. 15. Optimized microstructure with material gradation, using polygonal mesh and fixed polarization direction: (a) material distribution in the unit cell, (b) periodic
matrix formed by 3 � 3 unit cells, and (c) microscopic stress distribution in the unit cell.
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Fig. 16. Optimized microstructure with material gradation, using quadrilateral mesh and free polarization direction: (a) material distribution in the unit cell, (b) periodic
matrix formed by 3 � 3 unit cells, and (c) microscopic stress distribution in the unit cell.
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the problem toward better local minima. In addition, the variable
polarization direction in the unit cell is an important factor and al-
lows microstructure designs with better performance, however
with higher stresses.

In order to verify mesh convergence, non-FGM cells are opti-
mized using coarse and refined meshes for both types of elements,
quadrilateral and polygonal. The results are shown in Figs. 12 and
13. Fig. 12 presents the convergence of the k value as a function of
the number of elements in the unit cell for both cases. For polygonal
meshes, the value of k increases slightly with mesh refinement,
however, the gain is not significant (less than 0.4%). However, by
refining the quadrilateral mesh, a large variation of the k value is
verified (approximately 2.7%). Thus, the conclusion obtained from
this example is that, by using polygonal meshes, it is possible to
satisfy mesh convergence with less elements than quadrilateral
meshes. This effect can be seen more clearly in Fig. 13, where three
examples for each type of element are shown. By comparing these
meshes with the same number of elements, one notices that the
quadrilateral meshes have bias in the optimized topology, i.e.,
the contours of PZT-5A follow the structural meshes, presenting
linear boundaries. Rounded contours appear only in more discret-
ized quadrilateral meshes. For polygonal meshes, on the contrary,
the contour of PZT-5A is smoothier even with fewer elements.

6.2. Optimized FGM cell design

It is known that materials designed to achieve better perfor-
mances can only be obtained with solid-void (0�1) designs and
steep material variation [53]. However, usually, some gradation
is obtained in the manufacturing processes of such materials. Thus,
this gradation must be taken into account in the design phase. The
same investigation presented previously is performed, considering
a gradation radius of 10% of the unit cell length. Figs. 14–17 show
the optimized FGM microstructures obtained. The homogenized
properties for each case are listed in Table 4.

In Table 5, the values of k for the four optimized microstruc-
tures considering material gradations, their relative gains with
respect to the pure PZT-5A or 2–2 piezocomposite, and the maxi-
mum microscopic stress relative values in the unit cell, are listed.
By comparing the optimized microstructures with fixed or variable
polarization directions, it is possible to notice that the polygonal
mesh models have better performances than the quadrilateral
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Fig. 17. Optimized microstructure with material gradation, using polygonal mesh and free polarization direction: (a) material distribution in the unit cell, (b) periodic matrix
formed by 3 � 3 unit cells, and (c) microscopic stress distribution in the unit cell.

Table 4
Homogenized properties of the optimized structures with material gradation.

Figure Polarization Mesh cE
H (MPa) eH (C/m2) �E

H=�0

14 Fixed Quad. 42:68 13:32 0
13:32 22:92 0

0 0 4:63

2
4

3
5 0 0:04

0 3:60
1:72 0

2
4

3
5 984 0

0 402

� �

15 Fixed Poly. 28:25 13:48 0
13:48 20:93 0

0 0 5:85

2
4

3
5 0 1:24

0 3:05
2:11 0

2
4

3
5 712 0

0 378

� �

16 Free Quad. 57:32 17:55 0
17:55 32:09 0

0 0 5:36

2
4

3
5 0 �0:12

0 5:40
1:32 0

2
4

3
5 1209 0

0 565

� �

17 Free Poly. 57:66 16:52 0
16:52 28:76 0

0 0 5:86

2
4

3
5 0 �0:28

0 4:63
0:86 0

2
4

3
5 1213 0

0 474

� �

Table 5
Comparison of optimized FGM microstructures.

Figure Polarization direction Mesh k Gain (%)a r=r0

14 Fixed Quadrilateral 0.285 96.6 5.7
15 Fixed Polygonal 0.294 102.8 5.1
16 Free Quadrilateral 0.299 106.2 5.9
17 Free Polygonal 0.305 110.3 6.0

a With respect to pure PZT-5A (k ¼ 0:145).
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mesh models, similarly to the cases with no material gradation
presented before. By comparing the maximum relative stress val-
ues listed in Table 5, again, polygonal mesh models present smaller
values in the microstructure than quadrilateral mesh models. By
comparing the influence of material gradation in the maximum rel-
ative stress values, one notices that the gain values of k with re-
spect to the pure PZT-5A are smaller than the values obtained
with non-FGM microstructures. However, the FGM microstructures,
shown in Figs. 14–17, present smaller maximum relative stress
values when compared to the non-FGM microstructures shown
in Figs. 8–11. Thus, although the objective function values decrease
considering material gradation in the unit cell, the maximum
microscopic stress values also decrease, which means that the
piezocomposite can be subjected to higher loads and thus, a higher
amount of energy can be obtained.

7. Conclusions

This work proposes a methodology to design functionally
graded piezocomposite materials that considers important aspects
in the piezocomposite material design process aiming at energy
harvesting applications, such as the influence of piezoelectric
polarization directions, the influence of material gradation
between the constituent materials in the unit cell, and the influ-
ence of either quadrilateral or polygonal finite element mesh in
the obtained designs. The variation of the polarization direction
is implemented using the DMO concept. From the examples of
microstructure designs presented in this work, we conclude that
the variable polarization directions in the unit cell are an impor-
tant factor as it can lead to microstructure designs with better per-
formance. The results presented show that the FGM concept can be
applied to design piezocomposite materials with greater perfor-
mance than pure materials, such as PZT-5A, or 2–2 piezocompos-
ites, for example. As expected, material gradation generates unit
cell designs with electromechanical coupling coefficient k values
smaller than k values obtained with discrete material distribution.
By using the same number of finite elements, polygonal meshes
guide the problem toward better local minima than using tradi-
tional quadrilateral elements. In addition, by using polygonal
meshes, it is possible to satisfy mesh convergence with about
40% less number of elements than quadrilateral meshes. One of
the main questions answered in this work is, quantitatively, how
the microscopic stresses can be reduced by combining the func-
tionally graded material (FGM) concept with optimization (notice
that stress concentration is redistributed due to the material
gradation in the unit cell). The main conclusion is that although
0–1 structures present higher values of k, they also present higher
microscopic stress values; thus sustain lower external loads (to
avoid failure) and, consequently, less electrical energy energy can
be harvested. On the contrary, although FGM structures present
lower values of k, they present lower microscopic stress values;
thus sustain higher external loads and, consequently, more
electrical energy can be harvested.
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