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Abstract In recent years, differential equation-driven
methods have emerged as an alternate approach for struc-
tural topology optimization. In such methods, the design is
evolved using special differential equations. Implicit level-
set methods are one such set of approaches in which the
design domain is represented in terms of implicit func-
tions and generally (but not necessarily) use the Hamilton-
Jacobi equation as the evolution equation. Another set of
approaches are referred to as phase-field methods; which
generally use a reaction-diffusion equation, such as the
Allen-Cahn equation, for topology evolution. In this work,
we exhaustively analyze four level-set methods and one
phase-field method, which are representative of the liter-
ature. In order to evaluate performance, all the methods
are implemented in MATLAB and studied using two-
dimensional compliance minimization problems.

Keywords Differential equation-driven methods ·
Level-set method · Hamilton-Jacobi equation · Phase-field
method · Allen-Cahn equation · Compliance minimization

1 Introduction

Topology optimization refers to the optimum distribution of
a material in a given design space, under certain specified
boundary conditions, so as to optimize prescribed perfor-
mance objectives. Some of the early topology optimization
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approaches include homogenization methods (Bendsøe and
Kikuchi 1988; Suzuki and Kikuchi 1991; Allaire and Kohn
1993), and its variants, such as the Solid Isotropic Material
with Penalization (SIMP) method (Bendsøe 1989; Rozvany
et al. 1992; Bendsøe and Sigmund 1999). Recently, some
new approaches for topology optimization have come forth
in which the design is driven by differential equations.
One such approach uses the level-set method (Osher and
Sethian 1988; Sethian 1999b; Osher and Fedkiw 2003), c.f.
Fig. 1, in which the fronts and free boundaries evolve using
the Hamilton-Jacobi equation. The level-set methods utilize
the implicit level-set functions to represent the geometry;
which allows for determination of structural boundaries.
The level-set method is a computationally tractable and ver-
satile method, which has been adapted in a variety of fields
such as fluid mechanics (Sussman et al. 1994; Chang et al.
1996; Zhou and Li 2008; Duan et al. 2008; Challis and
Guest 2009), optics (Kao et al. 2005; He et al. 2007), image
processing, solids modeling, and computer animation (Ye
et al. 2002; Tsai and Osher 2003; Osher and Fedkiw 2003).
In addition, the level-set method has also been used to solve
thermal problems (Ha and Cho 2005; Zhuang et al. 2007;
Xia and Wang 2008; Kim et al. 2009; Iga et al. 2009; Maute
et al. 2011; Yamada et al. 2011).

Shape and topology optimization using level-sets have
been explored by many researchers (Sethian and Wiegmann
2000; Osher and Santosa 2001; Allaire et al. 2002; Wang
et al. 2003; Allaire et al. 2004). Wang et al. (2003) presented
a structural topology optimization method for bi-material
systems and studied the compliance minimization problem
for linear elastic materials. Wang and Wang (2004) extended
Wang et al. (2003) method to multi-material systems. Dur-
ing the same time, Allaire et al. (2002, 2004) proposed
a structural optimization technique combining the classi-
cal shape derivative and the level-set method. They solved
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Fig. 1 Representation of design
domain D using implicit
function (level-sets). This is an
alternative approach to explicit
parameterization of the
geometry

the compliance minimization, compliant mechanism design,
and design dependent load problems for linear elastic sys-
tems and also investigated nonlinear elasticity problems.
Both Wang et al. (2003) and Allaire et al. (2004) used an
upwind scheme (Sethian 1999b) for the discrete solution
of the Hamilton-Jacobi equation. Later, Allaire and Jouve
extended their level-set method for eigenvalue, multiple
load (Allaire and Jouve 2005) and minimum stress design
problems (Allaire and Jouve 2008). Also, Yamada et al.
(2010) and Yamasaki et al. (2010) solved the free vibration
eigenvalue topology problem using the level-set method.
Other researchers (Wei and Wang 2006; Luo et al. 2008a, b;
Challis and Guest 2009) have also used shape sensitivities
for the evolution of design using the level-set methods.

There have been some attempts to develop level-set
methods which do not involve solving the Hamilton-
Jacobi equation for the evolution of shapes. For example,
Belytschko et al. (2003) proposed a topology optimization
method where the weak form of the equilibrium equation
is expressed as a Heaviside step function of the level-set
function. The Heaviside function is subsequently regular-
ized to enable evaluation of sensitivities of the objective
functions and constraints. Van Dijk (Van Dijk et al. 2009;
Van Dijk 2012) developed a method where the design
domain is implicitly represented by a level-set function and
the design is evolved using a steepest-descent type update
scheme which utilizes the discrete sensitivities of the
objective function. Non-Hamilton-Jacobi based level-set
methods can also be seen in the fluid topology optimization
literature. Cunha (2004) presented an Eulerian-type para-
metric level-set based shape optimization method where the
design domain is expressed in terms of level-sets and the
design variables are defined at the mesh vertices. They used
it to obtain shapes which reproduce a particular velocity
field for incompressible, viscous fluid using Navier-Stokes
and Stokes flow models. Pingen et al. (2010) examined a
parametric level-set method for fluid topology optimization
using a hydrodynamic Lattice Boltzmann method. Kreissl
et al. (2011) find the optimal layout of fluidic devices

employing an explicit level-set method along with a Lat-
tice Boltzmann solver. No-slip boundary conditions are
enforced along the solid-fluid interface using second-order
accurate interpolation schemes. Kreissl and Maute (2012)
use an approach similar to Kreissl et al. (2011) and model
the flow field by the incompressible Navier-Stokes equa-
tions discretized by the extended finite element method
(XFEM). Also, they enforce a no-slip condition along the
solid-fluid interface by applying the stabilized Lagrange
multiplier method.

Hamilton-Jacobi based level-set methods generally have
a tendency to become too steep near the boundaries
(hence have high spatial gradients) or too flat during the
course of evolution, thus affecting the accuracy and rate of
convergence of the level-set method, see Fig. 2. Without any
control over the gradients near the boundaries, the evolution
algorithm tends to become unstable (indicated by sharp rise
in the level-set values), leading to an inaccurate estimation
of the boundary normal.

One option to control the gradients is to periodically
reinitialize the level-set function; for example, to a signed-
distance function, to maintain the numerical accuracy. In
one reinitialization approach, the zero level-set function
isocontour; which represents the shape boundary, is approx-
imated using the same shape functions as in FEM and
then the distances from the discretized isocontour are com-
puted (Chopp 1993; Yamasaki et al. 2010). Another popular
approach is to solve a specifically tailored partial differ-
ential equation (Sussman et al. 1994; Allaire et al. 2004).
Alternatively, Sethian (1999a, b) proposed a reinitialization
scheme, known as Fast Marching Method (FMM), which
allows one to solve the boundary value problem, without
any iteration, using an optimal ordering of the grid points.

The works of Sethian and Wiegmann (2000), Wang
et al. (2003) and Allaire et al. (2004) illustrate that level-set
methods allow for drastic change in topology during evo-
lution, but can have final configurations that are very
sensitive to the chosen initial configuration. This problem
can be attributed to the fact that there are no inherent hole
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Fig. 2 Level-set function without any slope control near the design
boundaries

nucleation mechanisms in the level-set based topology
optimization methods for two-dimensional problems. Pre-
existing holes can only merge or cancel. Several attempts
have been made to alleviate this issue. One set of popular
approaches is the use of topological derivatives. Topological
derivative approaches can be further sub-categorized into
two strategies. In the first strategy, holes are nucleated by
removing material from the locations where the topological
derivative takes the least value (Allaire et al. 2005; Wang
2005). A second strategy modifies the Hamilton-Jacobi
equation to include topological sensitivity information
(Burger et al. 2004; Amstutz and Andrä 2006; He et al.
2007; Challis 2010). Amstutz and Andrä (2006) only use
topological derivatives and no shape derivatives in their evo-
lution equation. Another hole nucleation approach is based
on radial basis functions (Wang and Wang 2006; Wang et al.
2007a, b; Ho et al. 2013). This approach does not make use
of topological derivative information; instead the Hamilton-
Jacobi equation is reduced to a set of ordinary differential
equations using multi-quadratic splines and solved using
Euler’s method. The elimination of reinitialization and
adoption of smoothed naturally extended velocities aids
the creation of new holes. Use of radial basis functions
helps maintain the smoothness of the level-set function.
Other researchers have also used radial basis functions
to parameterize the level-set function (De Ruiter and Van
Keulen 2004; Wei and Wang 2006; Luo et al. 2007; Kreissl
et al. 2011). In case of three-dimensional optimization,
Allaire et al. (2004) have shown that the traditional level-set
approach using the Hamilton-Jacobi equation with shape
derivatives is able to nucleate new holes in the domain
due to the pinching of thin walls. Others researchers (e.g.

Challis et al. 2008, 2012) have arrived at similar conclu-
sions for three-dimensional optimization with the level-set
method. Recently, Van Dijk et al. (2013) published a review
article which provides a detailed overview of the different
level-set methods for structural topology optimization.

Phase-field based methods are another category of
approaches rapidly gaining popularity. Essentially, the
phase-field method is a diffuse interface model where
boundaries between phases are not sharp, but considered
to have a finite thickness, hence providing a smooth tran-
sition for the physical quantities between the phases. It
has been used in materials science to study the phase tran-
sition phenomenon. Cahn and Hillard (1958), and Allen
and Cahn (1979) used the theory of phase transition to
study the liquid phases with variable densities. Phase-field
methods have been applied in a wide variety of fields such
as fracture mechanics (Aranson et al. 2000), visual recon-
struction (March 1992), and crystal growth simulations
(Kobayashi 1993). Bourdin and Chambolle (2003) used
the phase-field method to study compliance minimization
problems subjected to design dependent loads such as pres-
sure and gravity. Wang and Zhou (2004a) used the van der
Waals-Cahn-Hillard phase transition theory to propose a
phase-field method for topology optimization of a design
domain consisting bi-phase systems. Later, Wang and Zhou
(2004b) extended the method to tri-phase systems. In addi-
tion, Burger and Stainko (2006) proposed a phase-field
method based relaxation scheme for structural topol-
ogy optimization problems with local stress constraints.
Takezawa et al. (2010) utilized the Allen-Cahn equation
(Allen and Cahn 1979), a time dependent reaction-diffusion
equation, for the evolution of topologies in structural
optimization problems. The uniqueness of their approach
was the utilization of the objective function sensitivity to
construct the double well potential function.

The goal of the current work is to study some of the
prominent, and characteristically different, level-set and
phase-field methods which are representative of the lit-
erature. Our efforts focus on critically understanding the
following five methods: the AJT level-set method (Allaire
et al. 2004), the DLK level-set method (Van Dijk et al.
2009), the WW level-set method (Wang and Wang 2006),
Challis’ level-set method (Challis 2010) and the TNK
phase-field method (Takezawa et al. 2010).1 We acknowl-
edge that the cited authors may have substantially improved
their methods after the aforementioned papers were pub-
lished. We would like to clarify that our goal is not to
address the latest contributions of each author, but to inves-
tigate what has been reported in the five specific papers
cited above, namely Allaire et al. (2004), Van Dijk (2009),

1The acronyms, AJT, DLK, WW and TNK are used to abbreviate the
last name of the authors in each corresponding paper.
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Wang and Wang (2006), Challis (2010), and Takezawa
et al. (2010). Although, the level-set and phase-field meth-
ods have been used to study a wide variety of problems
subjected to different constraints, we will focus on two-
dimensional compliance minimization problems only. It
should be noted that the methods covered in this work are
representative and not exhaustive of the differential equa-
tion driven methods for topology optimization. We hope this
work will be a guide for future additional developments in
the field of topology optimization.

We would like to remark that the literature tends to focus
on solving topology optimization problems on Cartesian
meshes. In this work, we also use uniform grids to discretize
rectangular design domains. When dealing with compli-
cated domains, accurate representation of design domains
and boundary conditions requires additional effort. An effi-
cient way to deal with complicated domains is to use polyg-
onal elements (c.f. Gain and Paulino 2012; Talischi et al.
2010).

The remainder of the paper is organized as follows.
Section 2 discusses the formulation of the topology opti-
mization problem. Section 3 briefly reviews the differential
equation-driven methods analyzed in this work. Section 4
discusses the results of our analysis of these methods, using
several numerical examples. Finally, Section 5 provides
some concluding remarks.

2 Topology optimization framework

In the current work, we focus on compliance minimization
problems for linearized elastic systems. Compliance, which
is the work done by applied loads, is given by:

J(φ)=
∫

D

fff · uuudxxx+
∫

∂DN

ggg · uuuds=
∫

D

CCC∗(φ)εεε(uuu) · εεε(uuu) dxxx

(1)

where fff is the body force, ggg represents the surface loads
and CCC∗ is the effective elasticity tensor which depends on
the design function φ (discussed in detail in the subsequent
section), and the dot denotes the inner product. Also, uuu rep-
resents the displacement field, which is obtained by solving
the state equations below:

−∇∇∇ · (
CCC∗(φ)εεε(uuu)

) = fff in D,

uuu = 000 on ∂DD, (2)(
CCC∗(φ)εεε(uuu)

) · nnn = ggg on ∂DN,(
CCC∗(φ)εεε(uuu)

) · nnn = 000 on ∂D0.

where εεε is the linearized strain, εεε(uuu) = 1/2(∇∇∇uuu+∇∇∇uuuT ), and
D represents the working domain; which contains all the
admissible shapes �, i.e., � ⊂ D and its boundary ∂D con-
sists of three disjoint components, ∂D = ∂DD∪∂D0∪∂DN.

Here ∂DD, ∂D0, and ∂DN correspond to Dirichlet boundary
conditions, homogeneous Neumann boundary conditions,
and non-homogeneous Neumann boundary conditions with
ggg �= 000, respectively. The body force is assumed to be zero,
fff = 000, for all the examples in the current study. Also, the
design �, with boundary ∂� = �N ∪ �D , is constrained to
satisfy �N = ∂DN ∪�0 and �D ⊂ ∂DD. Here, �D , �N , and
�0 correspond to the boundary of � with Dirichlet, Neu-
mann, and homogeneous Neumann boundary conditions,
respectively (c.f. Fig. 3).

The compliance minimization problem entails finding
the stiffest configuration under the applied loads and bound-
ary conditions. For nontrivial solutions, we impose a volume
constraint P(φ) = (∫

D ρ(φ) dxxx − Vmax

)
on the problem

(1) using the Lagrange multiplier method to obtain the
following unconstrained optimization problem:

inf
φ

J̄ (φ) = J (φ) + λP (φ) (3)

where λ, ρ(φ) and Vmax are the positive Lagrange mul-
tiplier, density function and prescribed volume fraction,
respectively. In discrete form (3) can be rewritten as:

inf
φ

J̄ (φ) = FFF TUUU + λ
(
VVV T ρρρ(φ) − Vmax

)
(4)

where FFF is the discretized global force vector, UUU is the
global nodal displacement vector, VVV is an array of the frac-
tional areas of elements, VVV = [A1, A2, ..., An]T /

∑
i Ai ,

the Ai ’s are element areas and ρρρ(φ) is the element density
array. In the case of level-set methods, the design function,
φ, is defined as:⎧⎨
⎩

φ = 0 xxx ∈ ∂� ∩ D,

φ < 0 xxx ∈ �,

φ > 0 xxx ∈ (D\ (� ∪ ∂�)) .

(5)

Fig. 3 Illustration of the working domain. The working domain D

consists of all admissible designs, �. Its boundary ∂D consists of
∂DD (Dirichlet boundary), ∂DN (non-homogeneous Neumann bound-
ary) and ∂D0 (homogeneous Neumann boundary). The design �, with
boundary ∂� = �N ∪ �D , is constrained to satisfy �N = ∂DN ∪ �0
and �D ⊂ ∂DD. Boundaries �D , �N , and �0 correspond to Dirichlet,
Neumann, and homogeneous Neumann boundary conditions on ∂�,
respectively
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The phase-field method starts with the boundary conditions
specified in Fig. 3. At any time during the optimization pro-
cess, the phase-field domain can be illustrated by Fig. 4.
The working domain, D, is considered to be composed of
two phases (�0, �1) and the interfacial boundary between
the phases, ξ , which is called the diffuse interface (Fig. 4).
The diffuse interface acts as the transition zone between the
two phases. The working domain D contains all admissible
shapes �, i.e., � ⊂ D. Here � ⊂ (�1 ∪ ξ). Accord-
ingly, the design function, φ, for the phase-field method is
defined as:
⎧⎨
⎩

φ = 1 xxx ∈ �1,

0 < φ < 1 xxx ∈ ξ, Diffuse interface
φ = 0 xxx ∈ �0.

(6)

For uniformity of notation, we represent the design variable
as φ for both the level-set and phase-field methods. How-
ever, for the phase-field method, the design function, φ, is
the same as the density function, ρ.

3 A brief review of differential equation-based methods

Two general categories of differential equation-driven
approaches for topology optimization can be found in
the literature - level-set methods and phase-field meth-
ods. We specifically selected four representative level-set
approaches and one representative phase-field approach to
review in this work. We first present a brief summary of the
five methods.

3.1 AJT level-set method (Allaire et al. 2004)2

In the level-set method proposed by Allaire et al. (2004),
the design front propagation is governed by the Hamilton-
Jacobi equation and the advection velocity is derived from
a shape sensitivity analysis. The solid phase, φ < 0, is
assumed to be filled with material of elasticity tensor CCC. In
order to avoid singularities in the global stiffness matrix, the
void region, φ > 0, is filled with a weak phase with elastic-
ity tensor kminCCC. Here, kmin is chosen as 10−3. This is called
the Ersatz material approach. Thus, the effective elasticity
tensor CCC∗ for the entire design domain D is defined as:

CCC∗(φ) = ρe(φ)CCC with ρe(φ) =
{

1 φ < 0,

kmin φ > 0.
(7)

Here, density ρe is taken as piecewise constant for each
element. The procedure to calculate element densities for

2All the discussions about the AJT method (Allaire et al. 2004) in
Sections 4 and 5 are based on our own implementation.

Fig. 4 Phase-field working domain D. Domains �1, �0 and ξ repre-
sent solid phase, void phase and diffuse interface, respectively. Here,
φ represents the design function

the elements which are cut by the zero level-set function
is not clearly described in Allaire et al. (2004). One pos-
sible approach is provided by Allaire et al. (2012). In this
approach, first the rectangular element is split into four tri-
angles and the central node is assigned the average of the
level-set function values at the rectangular vertices. Then,
linear interpolation is used to obtain densities correspond-
ing to each triangle. The element density is the average of
the densities of the constituent triangles.

The topology is evolved over fictitious time using the
Hamilton-Jacobi equation:

∂φ

∂t
+ v |∇∇∇φ| = 0,

∂φ

∂nnn
= 0 on ∂D (8)

where nnn is the normal vector and the advection velocity, v,
is obtained from the shape sensitivity analysis. For objective
(3), v is given as:

v = εεε(uuu)TCCC∗εεε(uuu) − λ (9)

In our implementation, design function, φ, is nodal based.
Hence, the velocities need to be calculated at the nodes
as well. First, (9) is integrated over each finite element
to obtain elemental velocities. Velocities at the nodes are
obtained by taking the average of the elemental veloci-
ties surrounding each node. We use a second order upwind
scheme (Sethian 1999b) to solve (8).

φn+1
i,j = φn

i,j − 
t
(
max

(
vi,j , 0

)∇∇∇+ + min(vi,j , 0)∇∇∇−)
(10)
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Here, φn
i,j , vi,j are values of φ, v for the nth iteration at

the node located at xxxi,j . The parameters ∇∇∇+ and ∇∇∇− in (10)
are given by:

∇∇∇+ =
[
max(A1, 0)2 + min(A2, 0)2

+ max(A3, 0)2 + min(A4, 0)2
]1/2

∇∇∇− =
[
max(A2, 0)2 + min(A1, 0)2

+ max(A4, 0)2 + min(A3, 0)2
]1/2

(11)

where the terms A1, A2, A3, A4 are:

A1 = D−x
i,j + 
x

2
m

(
D−x−x

i,j , D+x−x
i,j

)
,

A2 = D+x
i,j − 
x

2
m

(
D+x+x

i,j , D+x−x
i,j

)
,

A3 = D
−y
i,j + 
y

2
m

(
D

−y−y
i,j , D

+y−y
i,j

)
,

A4 = D
+y
i,j − 
y

2
m

(
D

+y+y
i,j , D

+y−y
i,j

)
. (12)

The function m and derivatives D+x+x
i,j , D+x−x

i,j , D+x and
D−x are defined as:

m(x, y) =
⎧⎨
⎩

{
x if |x| ≤ |y|
y if |x| > |y| for xy ≥ 0,

0 for xy < 0.

(13)

D+x+x = φn
i+2,j − 2φn

i+1,j + φn
i,j

(
x)2
,

D+x−x = φn
i+1,j − 2φn

i,j + φn
i−1,j

(
x)2 , (14)

D+x = φn
i+1,j − φn

i,j


x
, D−x = φn

i,j − φn
i−1,j


x
.

(15)

Other derivatives, D−x−x
i,j , D

+y+y

i,j , D
+y−y

i,j , D
−y−y

i,j , D+y

and D−y , can be calculated in a similar way. Also, 
x and

y are the distances between the nodes in the x and y direc-
tion, respectively. Over the course of evolution, the level-set
function may become too steep or too flat which may
result in an inaccurate approximation of the normal, nnn. For
numerical accuracy, the level-set function needs to be reini-
tialized/smoothed periodically. Reinitialization to a signed
distance function is one option; which can be achieved by
solving the equation:

∂φ

∂t
+ sign(φ0) (|∇∇∇φ| − 1) = 0,

∂φ

∂nnn
= 0 on ∂D (16)

with φ(x, t = 0) = φ0(x).

At steady state, the above equation reduces to |∇∇∇φ| = 1, the
solution of which is a signed distance function. A second

order upwind scheme, discussed previously, is used to solve
the reinitialization (16).

3.2 DLK level-set method (Van Dijk et al. 2009)3

Traditionally, level-set methods use shape derivatives to
estimate the advection velocity for the Hamilton-Jacobi
equation. Van Dijk et al. (2009) proposed a modified ver-
sion of level-set method, which uses discrete sensitivity of
the objective function in a steepest-descent type evolution
scheme. Their work was motivated by the argument that the
use of shape sensitivities to derive the velocity field may
cause inconsistencies in the discretization of the velocity
field and governing equations, which may lead to poor per-
formance. They also dealt with multiple constraints, which
is not very common in the literature of differential equation-
driven methods for topology optimization. The authors use
an adjoint approach to calculate the discrete sensitivities,
modifying the objective function (4) by adding the zero
function QQQT RRR (ρρρ(φ),UUU) as follows:

inf
φ

J̄ (φ) = FFF TUUU +λ
(
VVV T ρρρ(φ) − Vmax

)
+QQQTRRR (ρρρ(φ),UUU)

(17)

where QQQ is a Lagrange multiplier vector and RRR (ρρρ(φ),UUU)

is the residual obtained from the finite element discretiza-
tion of the equilibrium equation. Apart from the volume
constraint, the authors also impose displacement constraint
on the optimization problem. As mentioned earlier, for
simplicity, we will only investigate the compliance mini-
mization problem with volume constraint. The sensitivity
of the objective function (4) is calculated by differentiating
(17) as follows:

∂J̄

∂φφφ
= ∂J̄

∂ρρρ

∂ρρρ

∂φφφ
=

(
QQQT ∂RRR

∂ρρρ
+ λVVV T

)
∂ρρρ

∂φφφ
(18)

where QQQ is computed by solving the adjoint system:

∂J̄

∂UUU
= FFFT + QQQT ∂RRR

∂UUU
= 000 (19)

In the level-set literature, it is often not clear how the level-
set function is mapped to the density domain in the design
interface region. The authors (Van Dijk et al. 2009), how-
ever, present a clear mapping scheme using an approximate
Heaviside function as shown below:

ρe(φ) =
∫
�e

H(φ)d�∫
�e

d�
(20)

3The discussions on the DLK method (Van Dijk et al. 2009) in
Sections 4 and 5 are based on our implementation.
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where �e represents the element domain and H(φ) is an
approximate Heaviside function given by (c.f. Fig. 5):

H(φ) =

⎧⎪⎨
⎪⎩

1 φ < −h,

1
4 (1 − ε)

((
φ
h

)3 − 3
(

φ
h

)
− 2

)
+ 1 −h ≤ φ ≤ h,

ε φ > h.

(21)

Here, h = d/10, where d is the length of the diagonal
of the finite element. Thus, ∂ρρρ/∂φφφ, needed to evaluate the
objective function sensitivity, can be calculated as:

∂ρe

∂φi

=
∫
�e

δ(φ)Nid�∫
�e

d�
(22)

where δ(φ) is the derivative (Dirac delta function) of the
approximate Heaviside function (21):

δ(φ) =

⎧⎪⎨
⎪⎩

0 φ < −h,
1
4 (1 − ε)

(
3φ2

h3 − 3
h

)
−h ≤ φ ≤ h,

0 φ > h.

(23)

The integral in the numerator of (20) and (22) is approxi-
mated by sampling φ at 10 × 10 points over each finite ele-
ment. In the literature, other approximate Heaviside based
mapping schemes can be found which utilize polynomial
functions (Wang et al. 2003; Lui et al. 2005; Kawamoto
et al. 2011; Van Dijk 2012) and trigonometric functions
(Belytschko et al. 2003; Haber 2004; Luo et al. 2008a;
Pingen et al. 2010). Finally, the level-set is evolved accord-
ing to the following direct update scheme:

φφφn+1 = φφφn − t
∂J̄ /∂φφφ∥∥∂J̄ /∂φφφ

∥∥ (24)

where φφφn and t represent the design function array at the
nth iteration and scaling constant, respectively. As men-
tioned before, the authors’ update scheme (24) is different
from the typical advection equation updates (8) used for
the level-set methods. The DLK approach requires very
frequent reinitialization to achieve convergence and this
is because the direct update (24) does not preserve the

d

h = d /10

1

h-h

H (  )

Fig. 5 Approximate Heaviside function to evaluate element densities
in the elements cut by the zero level-set, φ = 0

magnitude of the gradient of the level-set function. Reini-
tialization is performed using (16).

3.3 WW level-set method (Wang and Wang 2006)4

We next look at the radial basis function based level-
set method proposed by Wang and Wang (2006). Similar
approaches can be seen in Wang et al. (2007a, b). Radial
basis functions are radially symmetric functions centered
at a specific point. Wang and Wang (2006) used a particu-
lar form of radial basis functions, known as multi-quadric
splines, and method of lines to transform the Hamilton-
Jacobi partial differential equation into a system of ordinary
differential equations. The authors claim that their method
does not require reinitialization (which is expensive) and
is insensitive to initial designs. The general form of a
radial basis function, centered around xxxi , can be written as
Ni(xxx) = N(‖xxx − xxxi‖). The multi-quadratic splines used in
their work can be expressed as:

Ni(xxx) =
√

(xxx − xxxi)
2 + c2

i (25)

where ci is assumed to be a constant shape parameter which
affects the flatness of the splines. The design function, φ(xxx),
can be written in terms of multi-quadratic splines with m

nodes or knots as:

φ(xxx) =
m∑

i=1

αiNi(xxx) + p(xxx) (26)

where αi is the weight of the radial basis function at the
ith knot and p(xxx) = p0 + p1x + p2y is a first degree
polynomial to account for the linear and constant por-
tions of the function. Using the orthogonality conditions(∑m

i αi = 0,
∑m

i αixi = 0,
∑m

i αiyi = 0
)

and the given
function values at m knots (φ(xxxi) = fi, i = 1, 2, ..., m),
we get a system of m + 3 linear equations to solve for
m + 3 unknown coefficients. In matrix notation, the above
equations can be written as:

Hα = fHα = fHα = f (27)

where

HHH =
[
PPP N PPP X

PPP T
X 000

]
, PPP N =

⎡
⎢⎣

N1(xxx1) · · · Nm(xxx1)
...

. . .
...

N1(xxxm) · · · Nm(xxxm)

⎤
⎥⎦ ,

PPP X =
⎡
⎢⎣

1 x1 y1
...

...
...

1 xm ym

⎤
⎥⎦

(28)

4The discussions pertaining to the WW method (Wang and Wang
2006) in Sections 4 and 5 are based on our implementation.
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ααα = [α1 · · · αm p0 p1 p2]T , fff = [f1 · · · fm 0 0 0]T
(29)

Thus, (26) can be written as, φ(xxx) = NNNT (xxx)ααα, where
NNNT (xxx) = [

N1(xxx) · · · Nm(xxx) 1 x y
]T . The Hamilton-Jacobi

equation, used to update the level-set function, is both space
and pseudo-time dependent. In the WW approach (Wang
and Wang 2006), space and time are assumed to be separa-
ble and the time dependency is lumped into the coefficients
ααα. So we have

φ(xxx, t) = NNNT (xxx)ααα(t) (30)

Using (30), the Hamilton-Jacobi equation (c.f. (8)) can be
simplified into following ODE:

HHH
dααα

dt
+ B(α)B(α)B(α) = 0 (31)

where

B(α)B(α)B(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v(xxx1)|∇∇∇NNNT (xxx1)ααα|
...

v(xxxm)|∇∇∇NNNT (xxxm)ααα|
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(32)

The authors chose Euler’s method to solve the ODE (31).
So, coefficients ααα are updated as:

ααα
(
tn+1) = ααα(tn) − 
tHHH −1BBB

(
ααα

(
tn

) )
(33)

Over the course of the evolution, the level-set function may
become either too steep at the design interface or too flat.
Typically, in the level-set method literature, in order to
maintain its regularity, the level-set function is reinitialized
periodically to a signed distance function. Wang and Wang
(2006) argued that due to infinite smoothness of the radial
basis functions, accuracy of the normal vector can be main-
tained and thus operations such as reinitialization are not
required. In our implementation of the WW method, we
too have not used any reinitialization. We will discuss this
issue in detail in Section 4. They use the shape derivatives
to define the advection velocity at the design front; which is
extended to the entire domain using the assumption that the
strain is zero in the void region, ε = 0. To aid in the smooth
progress of the front, they introduce the following scheme
for the advection velocity:

v(xxx) =
⎧⎨
⎩

εεε(uuu)T CCC∗εεε(uuu) − λ φ(xxx) < −h,

v̂(xxx) −h ≤ φ(xxx) ≤ h,

−λ φ(xxx) > h.

(34)

Here, v̂(xxx) is smoothed advection velocity around the zero
level-set (design boundary) which can be written as:

v̂(xxx) =
∑

ppp∈ZZZ W(‖ppp − xxx‖) v(xxx)∑
ppp∈ZZZ W(‖ppp − xxx‖) (35)

where

W(‖ppp − xxx‖) = rmin − ‖ppp − xxx‖ (36)

Also, the parameter h = 1, and ZZZ is the neighborhood of xxx,
such that −h ≤ φ(xxx) ≤ h, inside the filter window of radius
rmin. The effect of the smoothed velocity field is discussed
in Section 4.6. We use (20) to map the level-set function to
the density domain. Note that, in the WW approach (Wang
and Wang 2006), no mapping scheme is specified.

3.4 Challis’ level-set method (Challis 2010)5

Recently, Challis (2010) published an educational arti-
cle on the level-set method. In her work, Challis utilized
Burger et al. (2004) approach of modifying the traditional
Hamilton-Jacobi (c.f. (8)) to include topological derivatives
to generate holes and applied it to topology optimization
problems. The modified Hamilton-Jacobi equation is given
as:

∂φ

∂t
+ v |∇∇∇φ| = −ωg (37)

where g(xxx) is a scalar field that is based on the topological
sensitivities of the objective function. And ω is a posi-
tive parameter which determines the influence of g(xxx). The
level-set function value is evaluated at the center of each
element and is considered constant within each element. In
Challis’ approach, the design does not have any intermedi-
ate densities. The level-set is mapped to the density field as
follows:

ρe =
{

1 if φe < 0,

0 if φe ≥ 0.
(38)

Here, ρe and φe represent the element density and the level-
set function value at the center of the element, respectively.
We would like to point out that in Challis’ approach (c.f.
Challis 2010) the objective function (39) is used, which
we have modified to (4) to maintain uniformity amongst
the methods investigated in this work. The corresponding
normal velocity, v, which is calculated using the shape
sensitivities, is also updated to (9).

inf
φ

J̄ (φ) = FFFT UUU + λ
(
VVV T ρρρ(φ) − Vmax

)

+ 1
2�

(
VVV T ρρρ(φ) − Vmax

)2
(39)

5The discussions in Sections 4 and 5 on Challis’ method are based on
the code provided in Challis (2010) with few modifications, to main-
tain uniformity amongst methods investigated here, which are pointed
out in this section.
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Subsequently, the forcing term, g, evaluated using topo-
logical derivatives of the objective function (4), follows as:

g =
⎧⎨
⎩

π(λ+2μ)
2μ(λ+μ)

(
4μεεε(uuu)TCCC∗εεε(uuu)

+(λ − μ)uuuT (kkkTr)uuu
) − πλn if φ < 0,

0 if φ ≥ 0.

(40)

The term uuuT (kkkTr)uuu is the finite element approximation
of tr(CCC∗εεε(uuu))tr(εεε(uuu)) (Challis 2010). After substituting v

and g back into the modified Hamilton-Jacobi equation
(c.f. (37)), it is solved using the upwind finite difference
scheme. Frequent reinitialization of the level-set function to
a signed distance function is performed using MATLAB’s
bwdist function. For further details, readers are referred
to Challis’ paper (2010). We also modified the global
stiffness matrix assembly in Challis’ code to make it more
efficient by using the sparse matrix assembly function
available in MATLAB.

3.5 TNK phase-field method (Takezawa et al. 2010)6

In the current work, apart from the level-set methods dis-
cussed earlier, we also look at the recently proposed phase-
field method for structural topology optimization (Takezawa
et al. 2010). In the phase-field method, the solid phase,
�1, is filled with material having elasticity tensor CCC and
the region, �0, mimics a void with elasticity tensor kminCCC.
Here, kmin is chosen to be 10−3. The effective elasticity ten-
sor CCC∗ for the entire design domains (c.f. Fig. 4) can be
written as:

CCC∗(φ) =
⎧⎨
⎩

CCC xxx ∈ �1,

k(φ)CCC xxx ∈ ξ,

kminCCC xxx ∈ �0.

(41)

where kmin ≤ k(φ) ≤ 1, k(φ) = φp , p = 3. The scheme is
similar to the SIMP method. The evolution of the phases is
governed by the Allen-Cahn equation (a reaction-diffusion
equation):

∂φ

∂t
= κ∇∇∇2φ − f ′(φ),

∂φ

∂nnn
= 0 on ∂D (42)

where κ is the diffusion coefficient and f (φ) is a dou-
ble well potential function. If f (φ) is chosen to satisfy the

conditions f (0) = 0, f (1) = η
J̄ ′(φt )∥∥J̄ ′(φt )

∥∥ , and f ′(0) =
f ′(1) = 0, then the optimization proceeds in the direction
which minimizes the design objective. Here, η is a scaling
constant, chosen as 10. One such f (φ) is given by:

f (φ) = 1

4
φ2(1 − φ)2 + η

J̄ ′(φt )∥∥J̄ ′(φt )
∥∥

(
6φ5 − 15φ4 + 10φ3

)

(43)

6All the discussions related to the TNK method (Takezawa et al. 2010)
are based on our implementation.

where J̄ ′(φt ) represents the sensitivity of objective function
J̄ with respect to φ at time t . One way to solve the Allen-
Cahn equation is by using the finite difference scheme.
Since an explicit finite difference scheme forces the func-
tion φ to diverge when φ /∈ [0, 1], a semi-implicit scheme
is used to discretize the reaction term. Thus, the scheme to
update φ can be written as:

φn+1
i,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φn
i,j +
t(P1+P2)κ

1−
(

1−φn
i,j

)
r
(
φn

i,j

)

t

for r
(
φn

i,j

)
≤ 0,

φn
i,j

(
1+r

(
φn

i,j

)

t

)
+
t(P1+P2)κ

1+φn
i,j r

(
φn

i,j

)

t

for r
(
φn

i,j

)
> 0.

(44)

where

r
(
φn

i,j

)
= φn

i,j − 1

2
− 30η

J̄ ′(φt1)∥∥J̄ ′(φt1)
∥∥φn

i,j

(
1 − φn

i,j

)

P1 = φn
i−1,j − 2φn

i,j + φn
i+1,j

(
x)2 , P2 = φn
i,j−1 − 2φn

i,j + φn
i,j+1

(
y)2

(45)

The time step 
t satisfies Courant-Friedrichs-Lewy (CFL)
condition.

4 Comparison among methods

Now, we discuss the results of our implementation of all
the above mentioned methods. First the performance of the
methods is evaluated for the two-dimensional compliance
minimization test problems, followed by detailed discus-
sions on the merits and limitations of each method. We start
by looking at the implementation details of our computer
codes below. It should be noted that for Challis’ approach
we used the code provided in her paper with a slight mod-
ification in her global stiffness matrix assembly, objective
function, shape sensitivities and topological sensitivities
evaluation (details are provided in Section 3.4).

4.1 Implementation details

All the methods have been implemented in MATLAB and
have a similar structure. The optimization algorithm con-
sists of the following steps (c.f Fig. 6):

1. Initialize the design function based on the initial guess
and set the value of various algorithm parameters.

2. Perform the following steps until convergence:

(a) Compute the state variable uuu by solving the state
equation (c.f. (2)).
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(b) Calculate sensitivity of the objective function for
the DLK level-set method and the TNK phase-
field method. In the case of the AJT, WW and
Challis’ level-set methods, calculate the shape
derivatives.

(c) Update the topology using the respective evolution
equations.

3. The level-set function needs to be reinitialized from
time to time to maintain the signed distance charac-
teristic. For this purpose, (16) is made use of for the
AJT and DLK methods. For Challis’ method, MAT-
LAB’s bwdist function is used. No reinitialization is
performed for the WW level-set method and the TNK
phase-field method.

4. Map the current level-set function into the density
domain. Phase-field function, φ, is taken to be the same
as the density function, ρ.

4.2 Test problem - cantilever beam

We compare the performance of the methods first using
the cantilever beam compliance minimization problem;
which is a common benchmark problem in the literature. A
Young’s modulus of E = 1, and Poisson’s ratio of ν = 0.3,

Start

N  > N ?max 

Finite Element analysis to
solve elasticity equations  

Sensitivity / Shape sensitivity analysis,
N = 0  

Design function & variables initialization  

Use differential equation to update the design,
N = N + 1  

Reinitialize design function, if needed  

Yes

No

Stop

Converged ?

Yes

No

Fig. 6 Flow chart for the differential equation-driven topology opti-
mization. Here, Nmax represents user defined maximum number of
design updates for each finite element analysis

are used for all of the examples in this work and consistent
units are employed. The design domain is rectangular with
dimensions 2 × 1 and discretized using 120 × 60 Q4 ele-
ments. The cantilever beam is fixed on the left side and a
unit vertical load is applied at the midpoint of the right side,
as shown in Fig. 7. The volume fraction, Vmax , is fixed at
0.45 by updating the Lagrange multiplier, λ, using a scheme
similar to Allaire and Pantz (2006) and Takezawa et al.
(2010). Optimization terminates when either the change in
element densities is less than 0.1 % or the change in the
objective function is less than 0.01 %. The densities are uni-
form inside each element. The time step, 
t , satisfies the
CFL condition for the AJT, WW, Challis’ level-set methods
and the TNK phase-field method.

4.2.1 Model parameters

For the AJT method, the level-set function is updated
20 times, using a second order upwind scheme for the
Hamilton-Jacobi equation (c.f. (10)), for each elasticity
analysis (2). The level-set function is reinitialized after
every 5 update steps of the Hamilton-Jacobi equation, by
conducting five explicit time steps of the second order
upwind scheme of (16). In our DLK level-set method imple-
mentation, the scaling parameter is chosen as t = hx ,
where hx is the length of one side of the finite element.
Parameter t is divided into small update steps of ti =
hx/4. After every update step of ti , using (24), the level-
set is reinitialized by conducting five explicit time steps
of the second order upwind scheme of (16). For the WW
method implementation, the shape parameter, c, is cho-
sen as 10−4, rmin = 1.2 and δ = 1. We take 2 explicit
time steps of the set of ODEs obtained from the Hamilton-
Jacobi equation using Euler’s method (33) for each elastic
finite element analysis (2). In Challis’ code, the parame-
ters stepLength, numReinit and topWeight (c.f.
Challis 2010) are chosen as 2, 4, and 2, respectively, and
the design is updated using (37). The phase-field diffusion
coefficient, κ , is taken as 2 × 10−5. We perform 20 update
step evolution equation for the phase-field function, by
utilizing its semi-implicit finite difference approximate
(44), for every solution of state equation (c.f. (2)).

F

2

1

Fig. 7 Problem description of cantilever beam
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4.2.2 Results

The converged topologies for the cantilever beam problem,
with starting topology Fig. 8a, are shown in Fig. 8 and the
summary of the results is given in Table 1. Converged con-
figurations from the AJT level-set method (Fig. 8b), the
DLK level-set method (Fig. 8c) and the TNK phase-field
method (Fig. 8f) are almost identical. The DLK method
produces the lowest compliance of 65.2, and all other
compliances are in the range 65 to 74.

One of the drawbacks of the standard differential
equation-driven methods is that new holes cannot nucleate
within a structure because there is no built-in hole nucle-
ation mechanism. However, the WW approach (Wang and
Wang 2006) and Challis’ approach (Challis 2010) do claim
to generate holes. Hole nucleation capability may alleviate
the dependence on the initial guess which we shall examine
next.

4.2.3 Influence of initial guess

Typically, in differential equation driven methods, the opti-
mal design is mesh dependent, i.e. it depends on the
resolution of the design parameterization. If the design
parameterization allows smaller details, the optimal design
will be topologically more complex and finer members
will be formed. To obtain mesh independent results, some
type of length scale needs to be enforced (similar to
density-based topology optimization methods; Bendsøe and
Sigmund 2003). None of the five methods studied in this

work enforce any length scale control. Thus, the optimal
designs will have topological complexity dependent on the
initial guess, unless some form of hole nucleation mecha-
nism is introduced. This can be easily tested by evaluating
the performance of the five methods for a different initial
configuration. For all the methods, the design parameters
are kept the same as before. The results are shown in Fig. 9.

In spite of the inclusion of hole nucleation capabilities,
we observe that the WW and Challis’ methods do not alle-
viate the dependence on the initial guess. The converged
topology from Challis’ approach (Fig. 9e) is still similar
to other methods which can not generate holes. Although
the final configuration obtained from the WW approach
(Fig. 9d) is topologically more complex than the others
(has more holes than the initial starting configuration), it is
still not the same as the result obtained in the last problem
(Fig. 8d). Further discussion on hole nucleation capabilities
and other features of the WW and Challis’ methods will
follow in subsequent sections.

4.3 Test problem - bridge with holes

Next, we explore the problem of a bridge with holes. The
design domain is rectangular in shape, discretized using
120 × 60 Q4 elements and is simply supported, as shown
in Fig. 10. Two fixed holes are introduced into the design
domain and taken care of during optimization using passive
elements (Bendsøe and Sigmund 2003). All other parame-
ters are kept the same as in the previous cantilever beam
problem.

Fig. 8 Converged topologies
for cantilever beam problem on
a domain discretized using
120 × 60 mesh. a Initial
configuration. b AJT level-set
method. c DLK level-set
method. d WW level-set
method. e Challis’ level-set
code. f TNK phase-field method a b

c d

e f
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Table 1 Summary of results shown in Fig. 8 for the cantilever beam problem. Volume fraction, Vmax = 0.45, is imposed on the optimization
problem

Method Acronym Update Figure Compliance (J ) Converged volume

equation fraction

Allaire et al. (2004) AJT (10) 8b 65.9 0.45

Van Dijk et al. (2009) DLK (24) 8c 65.2 0.45

Wang and Wang (2006) WW (33) 8d 66.8 0.45

Challis (2010) – (37) 8e 73.8 0.45

Takezawa et al. (2010) TNK (44) 8f 71.6 0.45

Figure 11a is chosen as the starting topology. The con-
verged topologies are shown in Fig. 11. Converged config-
urations from Challis’ level-set method (Fig. 11e) and the
TNK phase-field method (Fig. 11f) are visually similar, with
the same number of members and similar member orienta-
tions. The AJT level-set method topology (Fig. 11b) also has
the same number of members as the TNK method but with a
different orientation of the middle two members. The results
of the DLK method (Fig. 11c) and the WW level-set method
(Fig. 11d) are clearly different from the others. In the DLK
method, there are traces of intermediate densities right next
to the fixed circular holes which is undesirable. The DLK
method produces the least compliance of 18.5, and compli-
ances for the other methods are fairly close to each other (in
the range 18 to 22).

In the following sections, we examine each method
individually.

4.4 Further discussion on the AJT level-set method

The ability to handle the merging/cancellation of holes
makes the AJT level-set method suitable for topology
optimization problems. As mentioned before, in the AJT
method, the lack of length scale control, and an inherent
hole nucleation mechanism, results in designs with topo-
logical complexity dependent on the initial guess. For such
a method, it is important that the results should at least be
invariant to mesh refinement when the optimization starts
from a similar topology i.e. starting from a similar initial
topology, the method should produce designs of similar
topological complexity for different mesh discretizations.
We test the invariance of the AJT method with respect to
mesh refinement using the cantilever beam problem (Fig. 7)
for the initialization shown in Fig. 8. The Lagrangian
multiplier is kept constant at 25. The resulting converged

Fig. 9 Another initial
configuration mesh for
cantilever beam problem.
a Initial topology. b AJT
(J = 76.2). c DLK (J = 75.6).
d WW (J = 72.3). e Challis’
(J = 80.7). f TNK (J = 80.4)

a b

c d

e f
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F

2

1

Fig. 10 Problem description of bridge with holes

designs, shown in Fig. 12, confirm that the current method
is invariant to mesh refinement for similar starting topology.
The compliance for the different mesh discretizations are
also similar (65.8, 65.9, 66.0 and 66.2 for 80×40, 100×50,
160 × 80 and 200 × 100 mesh discretizations, respectively).

In their approach, Allaire et al. update the level-set 20
times using the Hamilton-Jacobi equation (c.f. (8)) for every
solution of the state equation. Although the scheme is justi-
fied, since one explicit update step (8) is much cheaper than
the solution of state (2), estimating the appropriate number
of update steps per state equation solution is a vital and dif-
ficult task. A high number of steps results in an inaccurate
design and a small number of steps results in a slow rate
of convergence. A physically meaningful, perhaps adaptive,
scheme needs to be devised to estimate the optimum num-
ber of update steps of the Hamilton-Jacobi equation (c.f. (8))
to achieve a balance between faster convergence and accu-
rate results. It should be noted that Allaire et al. reduce the

number of update steps during the course of optimization
if the objective function J̄ is not decreasing, but the exact
implementation details are not provided. Similar arguments
can be made for the appropriate frequency of reinitialization
and the number of explicit time steps of (16) that need to
be performed to maintain the signed distance nature of the
level-set function. If the reinitialization (16) is solved fully
until the level-set function does not change anymore, or if
the reinitialization is performed very frequently, then the
algorithm converges slowly. On the contrary, if insufficient
reinitialization is performed, then the algorithm tends to
become unstable, leading to an inaccurate estimation of the
boundary normal, and ultimately converging to suboptimal
topologies.

Since there are no inherent hole nucleation mecha-
nisms in this method, the converged topology is depen-
dent on the initial chosen topology. Allaire et al. (2005)
proposed a remedy to this problem using the topologi-
cal gradient method or bubble method (Eschenauer and
Schumacher 1994; Sokolowski and Zochowski 1999; Céa
et al. 2000; Garreau et al. 2001). In their method, the
authors (Allaire et al. 2005) use the topological gradient, at a
predefined frequency, to nucleate holes in the domain.
For hole nucleation, the sign of the level-set function is
changed from negative to positive in the regions where
the topological derivative attains minimum negative values.
As is evident from the work of Allaire et al. (2005), their
topological derivative approach is effective in nucleating
holes, but it still does not fully alleviate the dependence on
the initial guess. Again, the frequency at which one uses

Fig. 11 Converged topologies
for bridge with holes problem
on a domain discretized using
120 × 60 mesh. a Initial
configuration. b AJT
(J = 18.6). c DLK (J = 18.5).
d WW (J = 20.1). e Challis’
(J = 20.5). f TNK (J = 21.4)

a b

c d

e f
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Fig. 12 Study of invariance of
the AJT level-set approach to
mesh refinement when
optimization starts from similar
topology of Fig. 8a. Converged
configurations for mesh
discretizations of a 80 × 40
(J = 65.8), b 100 × 50
(J = 65.9), c 160 × 80
(J = 66.0), and d 200 × 100
(J = 66.2)

a b

c d

topological derivatives to nucleate holes is chosen heuristi-
cally. If they are employed too often, the domain becomes
highly irregular, and if employed sparingly, the algorithm
may have already converged to a local minimum which
might not be desirable. Some guidelines on choosing the
parameters, discussed above, are provided by Allaire et al.
(2012).

4.5 Further discussion on the DLK level-set method

In the test problem, we have seen that the DLK approach;
which uses sensitivities of the objective function, instead of
shape sensitivities, to update the level-set, produces simi-
lar configurations when compared to other level-set meth-
ods. This method is incapable of generating new holes as
other level-set methods, so the converged topology heav-
ily depends on the initial starting configuration. Topological
derivatives can be used (discussed before for the AJT level-
set approach), to nucleate holes in the design domain and
alleviate the dependence on the initial guess to a cer-
tain extent. We do not study hole nucleation for the DLK
approach in the current work. Here, we first investigate
if the DLK level-set approach is invariant to mesh refine-
ment for a similar starting topology. We solve the cantilever
beam problem starting with the initial topology, seen in
Fig. 8a, for mesh discretizations of 80 × 40, 100 × 50,
160 × 80 and 200 × 100. Figures 13a–d indicate that the
DLK approach produces consistent results for various mesh
discretizations and thus it is invariant to mesh refinement
when optimization starts from a similar topology.

In the DLK level-set approach, the scaling parameter t

is chosen as hx/2 (constrained problem) and the subdivided
time step is taken as ti = hx/20, where hx is the length
of the side of the finite element. In this work, as men-
tioned before, we chose a slightly larger scaling parameter
t = hx and subdivided time step ti = hx/4 to speed up the

convergence. The convergence is affected if a bigger scal-
ing parameter is chosen. Limits on the scaling parameter t

should be provided, similar to the CFL condition, but are
not shown in their work.

In this work, the level-set function needs to be reini-
tialized after each update step; the reason being, that the
steepest-descent type updates (24) do not preserve the gra-
dient of the level-set function. The level-set function slope,
near the design boundaries, deviates faster from unity in the
DLK method than in the AJT method, which necessitates
more periodic reinitialization to achieve numerical conver-
gence. Now, consider (18) and (19). By some algebraic
manipulations, we can see that:

∂J̄

∂φi

= −
(
εεε(uuu)T CCCεεε(uuu) − λ

) ∂ρe

∂φi

(46)

Also, from (22) and (23), it is clear that ∂ρe

∂φi
≤ 0. Let, ζ =

− ∂ρe

∂φi
≥ 0; thus, (24) can be simplified as:

φn+1
i − φn

i

t
≈ −ζ̄ v1 (47)

where v1 = (
εεε(uuu)TCCCεεε(uuu) − λ

)
and ζ̄ = ζ/

∥∥∥ ∂J̄
∂φi

∥∥∥ ≥
0, ζ̄ ∈ [0, 1]. When compared with the discrete form of the
Hamilton-Jacobi equation used in the AJT method (8), i.e.,

φn+1
i − φn

i

t
≈ −v|∇φn| (48)

we see that (47) and (48) are similar in nature. For both
methods, the level-set function propagates in the direction
in which the strain energy is minimized.

In this method, the bandwidth of the approximate Heav-
iside function h is chosen as d/10, where d is the length of
the diagonal of the finite element. No justification is pro-
vided for this choice. Ideally h should be as close to zero
as possible (to accurately map the level-set function to the
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Fig. 13 Study of invariance of
the DLK level-set approach to
mesh refinement when
optimization starts from similar
topology. Initial topology is
chosen same as Fig. 8a.
Converged configurations for
mesh discretizations of
a 80 × 40 (J = 64.6),
b 100 × 50 (J = 65.0),
c 160 × 80 (J = 65.5), and
d 200 × 100 (J = 65.9)

a b

c d

density domain), but h cannot be exactly zero because it will
result in infinite gradients (c.f. (22) and (23)). So a scheme
needs to be devised to obtain the optimal value of h. Finally,
we would like to mention that; since, in this work, we have
limited ourselves to compliance minimization problems,
we did not investigate the compliant mechanism problem,
treated as a multiple constraint optimization problem by
applying displacement constraints, in Van Dijk et al.’s work.
Effective treatment of multiple constraints is one of the
motivations behind Van Dijk et al.’s work. To demonstrate
that, Van Dijk et al. (2009) solved the force inverter prob-
lem as a multiple constraint problem. Their result for the
constrained optimization problem indicates the presence of
single node connection and their results for both constrained
and unconstrained problems contain tiny voids inside the
solid region. This shows that the optimization converges to
local minimums, which can be avoided by using regulariza-
tion algorithms such as filtering. So far Van Dijk et al. have
studied the compliance minimization problem and the com-
pliant mechanism problem as a multiple constraint problem.
Their method needs to be investigated for other optimization
problems such as non-linear elasticity and design dependent
load problems, to assess its robustness.

Recently, Van Dijk et al. (2012) published an updated
version of their previous method (studied in this work). In
their current research, the authors persist with a steepest-
descent type updating scheme for the level-set function and
look at multiple constraint problems. There are two con-
trasting differences between the two approaches. First, in
the updated version, no reinitialization is used. Second, an
exact Heaviside function is used to relate the level-set func-
tion and the element densities. It is known that, without
some kind of reinitialization or regularization, the level-
set function values drift to large absolute values. In order
to obtain accurate predicted responses, the authors impose
an upper bound on the steepest descent update step for

the level-sets and also impose a limit on the size of den-
sity change for each level-set update step, both of which
are heuristic in nature. Additionally, they utilize heuristic
diagonal preconditioner to obtain uniform level-set incre-
ments. To deal with the integration of the Heaviside function
and its derivatives, in order to obtain the element densi-
ties and their sensitivities, the authors define a piecewise
linear shape function for Q4 finite elements. Their results
show non-physical gray region (compliance minimization
results in Van Dijk et al. 2012) and single node connec-
tions (compliant mechanism results in Van Dijk et al. 2012),
even though good convergence is obtained for the imposed
multiple constraints. There are also undesirable oscillations
in the convergence history. The authors argue that consis-
tent sensitivity analysis and update scheme lead to good
convergence of multi-constrained optimization problem but
may also result in numerical artifacts such as excessive gray
region and point hinges (similar to density-based topology
optimization methods; Bendsøe and Sigmund 2003). The
authors tried administering perimeter constraint and density
filters to avoid the aforementioned numerical anomalies.
Effective treatment of multiple constraints is an impor-
tant issue which needs to be addressed by the level-set
community in the future.

4.6 Further discussion on the WW level-set method

Following the same trend as the previous methods, we first
check if the WW method is invariant to mesh refinement for
a similar starting topology. We solved the cantilever beam
problem, using the initial guess in Fig. 8a, for mesh dis-
cretizations of 80×40 and 100×50. The result for the 120×
60 mesh is already shown in Fig. 8d. We could not run the
problem for meshes larger than 120 × 60, for reasons which
will be discussed later in this section. Results (Figs. 14a–
b and Fig. 8d) suggest that the WW level-set method is
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Fig. 14 Study of invariance of
the WW level-set approach to
mesh refinement for similar
starting topology. Figure 8a is
the chosen starting topology.
Converged configurations for
mesh discretizations of
a 80 × 40 (J = 65.8) and
b 100 × 50 (J = 66.3) a b

also invariant to mesh refinement when the optimization
algorithm starts from a similar topology.

To investigate the issue of sensitivity of the final topol-
ogy to the initial chosen configuration, we ran the cantilever
beam problem with two different initial configurations
(Figs. 15a and 16a). The corresponding converged topolo-
gies (Figs. 15f and 16b) support the author’s claim of hole
nucleation; however, lack of a unique converged topol-
ogy (c.f. Figs. 8d, 9d, 15f and 16b) for various initial
guesses confirms that dependence on the initial guess has
not been fully resolved. The method still converges to local
minimums, dictated by the starting topology.

In the present approach, Wang and Wang (2006) used
radial basis functions to parameterize the level-set func-
tion. Our implementation of the WW approach suggests that
although the infinite smoothness of MQ splines helps main-
tain smoothness of NNNT (xxx) (c.f. (30)), the level-set function
grows to very high absolute values because of the rapid
growth in ααα(t). To observe this, consider Fig. 17; which
shows the level-set function for the converged configura-
tion in Fig. 8d. Towards the end of optimization, at some
locations across the design boundaries, the level-set func-
tion (Fig. 17b) varies in the order of +1024 to −1024

(much higher at some other locations). Such unbounded
growth and high variation implies that the boundary is too
steep (hence high gradients) and, thus, obtaining an accurate
approximation of the normal at the design interface is diffi-
cult. This might cause the algorithm to converge to incorrect
results. Smooth radial basis functions do alleviate the prob-
lem of high gradients to a certain extent, by providing some
sort of smoothness to the level-set function, without which,
the algorithm does not converge.

In the WW approach, a new scheme is introduced to
extend the advection velocity field, defined on the front
using shape derivatives, to the entire design domain. In
order to provide a physically meaningful extension veloc-
ity, they assumed a strain field εεε(uuu) = 0, resulting in
a strain energy of εεεT CCC∗εεε = 0, for φ(xxx) > δ. This
assumption adds little value when we are using an Ersatz
material approach, since in the region φ > 0 (void region)
we assume CCC∗ ≈ 0 which results in a strain energy of
εεεT CCC∗εεε ≈ 0. The authors also smooth the advection veloc-
ity near the design interface, citing the reason that the

advection velocity is discontinuous at the boundaries. It
should be noted that the advection velocity is C0 contin-
uous (c.f. (34)). The smoothing of the advection velocity
helps bring down the gradients to a certain extent, but, high
inaccurate gradients persist in some regions, especially the
region around the point of application of the load. Such
high values of level-set function can be attributed to the
fact that the WW method does not utilize any regularization
schemes (for example, reinitialization), other than velocity
smoothing, to control the gradients of the level-set function
near the design boundaries. When we tried to periodically
reinitialize the level-set function in the WW scheme, we
were able to control the magnitude of the gradients (as
expected) but it resulted in the loss of hole nucleation
capability.

Wang and Wang (2006) argued that reinitialization is
computationally expensive and time consuming, which is
true to a certain extent, but this cost is minimal compared
to the solution of the Hamilton-Jacobi equation using multi-
quadratic radial basis functions. Multi-quadratic splines
produce a dense interpolation matrix HHH which is known to
be ill-conditioned. So, the design update (33) is very expen-
sive since it requires inversion of a dense matrix. We could
run examples only up to a mesh discretization of 120 × 60;
which converged within a reasonable time frame. Finer
meshes either take too long to converge (more than a few
hours) or the system runs out of memory.7 Many techniques
are available to efficiently handle dense, ill-conditioned
matrices such as the domain decomposition method, fast
multi-pole method and pre-conditioning (Buhmann 2004).
In their work, in order to speed up the convergence Wang et
al. chose time steps of 10−3 or 10−4 which is much larger
than the CFL time steps (the CFL time step is of the order
of 10−5, 10−6 for 40 × 20, 120 × 60 meshes, respectively).
Although rapid convergence can be achieved by using big-
ger time steps, it creates instability in the system due to large
accumulated errors.

Finally, we also investigated the influence of shape
parameter c, which controls the flatness of the radial basis

7All the numerical problems were performed on Intel(R) Core 2 Quad,
2.49 GHz processor and 8 GB RAM running MATLAB R2009a.
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Fig. 15 Evolution of topology
for curved cantilever beam
problem starting with initial
topology a for the WW
approach on a 120 × 60 mesh.
b Iteration 56. c Iteration 80. d
Iteration 85. e Iteration 92.
f Converged topology

a b

c d

e f

function, on the optimization algorithm. We varied c in the
range 10−5 − 10−1 for mesh discretization of 80 × 40 and
the initial guess shown in Fig. 8a. Our study (Table 2) shows
that the condition number of HHH increases with c, indicating
an increase in instability in the system. The compliances are
approximately the same with no discernible trend. Visually,
the converged topologies are all similar to the test problem
solution for the WW method (Fig. 8d). We did observe that
for c = 10−1, the condition number of HHH becomes too high
and thus the algorithm fails to convergence. This sets an
upper limit on the choice of c. Similar results were observed
for other mesh discretizations.

4.7 Further discussion on Challis’ level-set method

In its current form, Challis’ algorithm possesses some lim-
itations. Her implementation takes a long time to converge
if the mesh discretization is greater than 5000 elements.
Because her original code was developed for educational
purpose, justifiably little effort was made on the part of
the author to make it more efficient. We have alleviated

this problem by using sparse matrix assembly as mentioned
before. Similar to the AJT method, in Challis’ implemen-
tation, it is difficult to estimate the optimum number of
Hamilton-Jacobi equation update steps that need to be per-
formed for every finite element update. There is a trade
off between accuracy and computational time. Challis uses
the MATLAB function bwdist for reinitialization which
excessively smooths the level-set function. It is also not pos-
sible to control the degree of smoothness with bwdist.
Other approaches, such as the one used in the AJT method,
where (16) is used for reinitialization, although computa-
tionally more expensive, can provide the desired control
over smoothness. As indicated earlier, in Challis’ approach
the traditional Hamilton-Jacobi equation (c.f. (8)) is mod-
ified to include topological derivatives which aid in the
generation of holes. Frequency of reinitialization is a sig-
nificant issue with regards to hole nucleation. In Challis’
method, reinitializing the level-set function too often neu-
tralizes the effect of topological derivatives and thus, the
hole generation capability is lost. Therefore, it is vital that a
suitable reinitialization frequency is established, which not

Fig. 16 Different initial
topology for the WW approach
on a 120 × 60 mesh. a Initial
guess. b Converged
configuration

a b
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Fig. 17 Level-set function
corresponding to the converged
topology in Fig. 8d. a Level-set
function. b Zoomed in section

a
−8 −6 −4 −2 0 2 4

x 1024b

only keeps the level-set function gradients near the design
boundaries under control, but also does not hamper hole
nucleation.

In Challis’ approach, positive constant w controls the
influence of topological derivatives. We next examine the
influence of w on the optimization using the cantilever
beam problem Fig. 7. Parameter w is varied in the set
{2, 3, 4, 6, 8, 10}. The domain discretization is fixed to 80×
40 and the other parameters are kept constant (Vmax =
volRec = 0.45,stepLength = 2,numReinit = 4).
It can be seen from Fig. 18 that parameter w signifi-
cantly influences the final topology. For w = {2, 3, 4}, the
topologies are visually similar.

The parameter w is also mesh dependent and the next
study confirms this statement. We keep w constant at 3,
all other parameters are kept the same as they were in the
last study, and we vary the mesh discretization. We observe
that the final configurations are different for different mesh
discretizations (Fig. 19). These two studies indicate that
w significantly influences the optimization algorithm. A
smaller value prevents new holes from nucleating and a
larger value causes the topological derivatives to dominate,
producing too many holes. More work needs to be carried
out to arrive at an optimal value for w.

In this approach, shape and topological sensitivities
are smoothed after each state equation solution over the
entire domain. Explicit sensitivity smoothing is typically
employed to reduce the probability of convergence to a local
minimum. But, care must be taken when applying such
smoothing techniques, because it affects the hole nucleation
process and also the rate of convergence of the algorithm.

In Challis’ approach, a border of void elements around the
design domain is included. The author claimed that they
are necessary to represent the boundary of the structure
accurately; which actually aids the algorithm to converge.
This approach has been applied to compliance minimiza-
tion problems and needs to be tested for other problems
such as compliant mechanisms, design dependent loads and
non-linear elasticity problems, for robustness.

4.8 Further discussion on the TNK phase-field method

The phase-field method by Takezawa et al. (2010) utilizes
a time dependent reaction-diffusion equation, known as the
Allen-Cahn equation, for the evolution of topologies. The
sensitivity of the objective function, employed extensively
in density methods, is used to define a double well poten-
tial function which is a part of the evolution equation.
Unlike level-set methods, the phase-field method elimi-
nates the need for reinitialization, which can be costly. This
method has been verified for minimum compliance, compli-
ant mechanism and eigenfrequency maximization problems.
Problems such as nonlinear elasticity, design dependent
loads and minimum stress are yet to be explored.

The phase-field method performed well for the test prob-
lem shown earlier and produced expected topologies. As
shown in the cantilever beam problem, like level-set meth-
ods, the phase-field method does not have an embedded
hole generation mechanism and thus the final topologies are
influenced by the initial topology. Takezawa et al. suggest
the use of topological derivatives to alleviate this prob-
lem which is similar to the approach in level-set methods

Table 2 Influence of shape
parameter, c, on the WW
level-set method for 80 × 40
mesh

c Compliance (J ) Converged volume Condition number of Iterations

fraction HHH (c.f. (27), (28))

10−5 66.4 0.45 2.67 × 105 93

10−4 65.8 0.45 2.70 × 105 147

10−3 65.8 0.45 2.94 × 105 212

10−2 65.7 0.45 7.97 × 105 298

10−1 – – 1.06 × 1012 No convergence
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Fig. 18 Study of the influence
of parameter w on Challis’
approach using cantilever beam
problem on a 80 × 40 mesh.
Initial configuration is a fully
solid domain. Converged
configurations for
a w = 2 (J = 72.1),
b w = 3 (J = 68.6),
c w = 4 (J = 70.0),
d w = 6 (J = 68.4),
e w = 8 (J = 71.2), and
f w = 10 (J = 70.6)

a b

c d

e f

(Allaire et al. 2005). We did not investigate the use of topo-
logical derivatives in the phase-field method to generate
holes. From Takezawa et al.’s work (Takezawa et al. 2010),
it is evident that the use of topological derivatives is a
feasible option to nucleate holes. However, further work
is required to verify the accuracy of this approach and
more test problems need to be investigated to establish its
robustness.

The diffusion coefficient, κ , plays a critical role in the
phase-field method. We investigate the effects of κ on the
optimization process using the cantilever beam problem. For
the first study, the domain discretization is fixed at 160×80
elements; a volume fraction of 0.45 is prescribed and κ

is varied. Figure 20a is chosen as the initial configuration.
Optimization is performed for κ = 0.5×10−5, 2×10−5 and
5 × 10−5. From Fig. 20b–d, it is evident that as κ increases,
the thickness of the diffuse interface increases. The percent-
age of total elements in the diffuse interface (Fourth column
in Table 3), gives a general idea about the diffuse interface
thickness. Design boundary becomes increasingly fuzzy.
Also, the number of holes decreases with increasing κ .
Thus, κ also affects the perimeter of the final configuration.

For the next study, we fix κ to 1 × 10−5 and vary the
mesh discretizations. The initial guess is kept the same as in
the previous study. We see that for a particular κ (1 × 10−5

in this case), too coarse of a mesh discretization (Figs. 21a

Fig. 19 Mesh refinement study
with w = 3 for Challis’
approach. Initial configuration is
a fully solid domain. Converged
configurations on mesh
discretization of
a 80 × 40 (J = 68.6),
b 120 × 60 (J = 72.7),
c 160 × 80 (J = 73.0),
d 200 × 100 (J = 73.2)

a b

c d
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Fig. 20 Study of the influence
of diffusion coefficients κ on the
TNK phase-field approach.
Mesh discretization is 160 × 80
and a is the starting
configuration. Converged
configurations for
b κ = 0.5 × 10−5,
c κ = 2 × 10−5, and
d κ = 5 × 10−5

a b

c d

and b) hinders the optimization and the algorithm stops
prematurely, which is evident from the final volume frac-
tions in Table 4. Finer discretizations in the range 160 × 80
and 200 × 100 (Fig. 21c, d) seem to be more ideal for
κ = 1 × 10−5 (least compliance).

From these two studies it is clear that the choice of κ is
mesh dependent. It not only controls the thickness of the
diffuse interface but also the number of holes, thus perime-
ter, of the final configuration. If κ is too small the resulting
thickness of the diffuse interface is too small and thus the
evolution of the topology is hindered. On the other hand, if κ

is too big, then there is excess gray region and fewer holes in
the converged topology (Fig. 22). Our numerical experimen-
tation shows that the ideal choice of κ is one which produces
topologies with approximately three-to-four elements in the
diffuse interface.

To conclude, the diffusion coefficient, κ , needs to be
scaled appropriately, when the mesh discretization is var-
ied, to get consistent designs. It should also be noted that, in
the interpolation function (41) (same as SIMP model), the
power p also affects the gray region. A penalty, p, greater
than or equal to 3 is recommended in the SIMP model.

The phase-field method discussed here (TNK method)
is similar to density-based methods in many aspects.
Both methods have the same domain representation and
their optimization algorithms are primarily driven by sen-
sitivity information. Material interpolation schemes such
as SIMP, RAMP (Stolpe and Svanberg 2001; Bendsøe

and Sigmund 2003) and ECP (Yoon and Kim 2005; Yoon
et al. 2007, 2008), are equally applicable to both. The
main difference between the two methods is in the updating
algorithms they employ. Mathematical programming algo-
rithms; such as, Method of Moving Asymptotes (MMA,
Svanberg 1987), Optimality Criteria (OC, Bendsøe and
Sigmund 2003), Sequential Linear Programming (SLP),
Sequential Quadratic Programming (SQP), CONvex LIN-
earization approximations (CONLIN, Fleury and Braibant
1986) have been applied to density-based methods. Addi-
tional techniques such as filtering, perimeter constraint
(Bendsøe and Sigmund 2003) and manufacturing con-
straints (Kosaka and Swan 1999; Almeida et al. 2010) are
used to regularize the design. In the TNK method, the design
is updated using the Allen-Cahn equation (c.f. (42, 43)).
Perimeter constraint is built-in to the updating scheme and
can be controlled via the diffusion coefficient, κ . More-
over, the double well potential function (43) has a regulating
effect as it drives the design towards a 0-1 solution.

Finally, Table 5 summarizes the key features of the
differential equation-driven methods discussed in this study.

5 Conclusions

In this work, we study four level-set methods and one
phase-field method. The AJT level-set method (Allaire et al.
2004) is the first method we analyze. In this method, shape

Table 3 Influence of diffusion
coefficient, κ , on the TNK
phase-field method for a fixed
160 × 80 mesh and
Vmax = 0.45 (c.f. Fig. 20)

κ Compliance (J ) Converged volume Elements in the

fraction diffuse interface

(0.01 < φ < 0.99)

0.5 × 10−5 87.6 0.45 13.8 %

2.0 × 10−5 71.9 0.45 27.6 %

5.0 × 10−5 74.7 0.45 33.0 %
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Fig. 21 Cantilever beam
problem solved on different
mesh discretizations with
diffusion coefficient
κ = 1 × 10−5. Figure 20a is
choosen as the initial guess.
Converged topologies for mesh
discretizations of a 80 × 40, b
120 × 60, c 160 × 80, and d
200 × 100

a b

c d

derivatives are combined with the Hamilton-Jacobi equa-
tion for the design front propagation. The second method
we look at is the DLK level-set method (Van Dijk et al.
2009) in which the objective function sensitivity is used in
a steepest-descent type update scheme. The WW level-set
method (Wang and Wang 2006) transforms the Hamilton-
Jacobi equation into a set of ordinary differential equations
(ODEs) using multi-quadratic radial basis functions. The
ODEs are solved using Euler’s method. Challis’ level-set
method (Challis 2010) utilizes Burger et al. (Burger et al.
2004) approach of modifying the Hamilton-Jacobi equa-
tion to include topological sensitivity to nucleate holes in
the design domain. Finally, we also study the TNK phase-
field method (Takezawa et al. 2010) for structural topology
optimization. The design domain is represented in terms of
a phase-field function and evolved using the Allen-Cahn
equation; which utilizes objective function sensitivity.

Our study shows that, in all five methods, the final
topologies are dependent on the starting initial configu-
rations. Although, the WW method and Challis’ method
nucleate holes in the design domain, these methods still pos-
sess the initial configuration dependency. The AJT method
produces designs which are invariant to mesh refinement
when optimization starts from a similar topology i.e. starting

Table 4 Study of affect of diffusion coefficient (κ = 1 × 10−5 with
variations in mesh discretization on the TNK phase-field method (c.f.
Fig. 21). Volume fraction, Vmax = 0.45, is imposed on the system

Mesh discretization Compliance (J ) Converged

volume fraction

80 × 40 123.9 0.66

120 × 60 78.5 0.46

160 × 80 70.7 0.45

200 × 100 70.6 0.45

from a similar initial topology, the method should pro-
duce designs of similar topological complexity for different
mesh discretizations. In the AJT method, certain parameters
such as the number of Hamilton-Jacobi updates per state
equation solution, frequency of reinitialization and number
of times the reinitialization equation is solved, are cho-
sen heuristically. A physically meaningful scheme needs
to be devised which can estimate the optimum parameter
values. The DLK method also produces designs which are
mesh invariant for similar starting topology but requires
very frequent reinitialization for the algorithm to converge,
making it computationally expensive and resulting in a
slow rate of convergence. Reinitialization is required fre-
quently, because the steepest-descent type update (24) used
in the DLK method does not preserve the magnitude of
the gradient of the level-set function. The slope of the
level-set function needs to be controlled near the design
interface for convergence. Unlike other level-set methods,

Diffusion 
coefficient, 

Number of elements

o

no

Premature 
termination

Excess
gray

Fig. 22 Qualitative illustration of the variation of the choice of diffu-
sion coefficient κ versus the mesh refinement. For a particular choice
of mesh refinement no, if κo represents the ideal choice of κ then any
κ > κo will result in lesser holes and excess gray region in the con-
verged configuration. On the other hand if κ < κo then the algorithm
stops prematurely. Here, the ideal choice of κ is defined as the value
which produces topologies with approximately three-to-four elements
in the diffuse interface
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the WW method does not periodically reinitialize the level-
set function, to save computational cost, and it also aids
in the hole nucleation process. But, this also causes the
level-set function and its gradients to grow to large val-
ues, making accurate approximation of the normal at design
boundaries difficult. The WW method also produces dense
matrices which need to be inverted frequently, rendering
them computationally very expensive. Challis’ method pos-
sesses a built-in hole nucleation mechanism, because of
the modified Hamilton-Jacobi equation which incorporates
topological derivatives. But, the final topologies depend on
the choice of mesh-dependent parameter w; which deter-
mines the influence of topological derivatives. The TNK
phase-field method does not require the phase-field func-
tion to be a signed distance function, so no reinitialization is
needed. In this method, the diffusion coefficient, κ ; which
controls the thickness of diffuse interface and the perimeter
of the final configuration, is mesh dependent and needs to
be scaled appropriately for meshes of different discretiza-
tion. It should be noted that, of all the five methods we
studied, only Challis’ method enforces black and white
solutions.

In this work, we focused on two-dimensional optimiza-
tion problems for which hole nucleation is a challenge. For
the three-dimensional case, Allaire et al. (2004) have shown
that the traditional level-set approach of using an advection
equation with shape derivatives is able to nucleate new holes
in the domain due to the pinching of thin walls. Also, we
limited ourselves to compliance minimization problems for
simplicity. Most methods in the literature tend to perform
relatively well in the case of compliance minimization and
thus may appear to be similarly effective. Methods which
produce similar results for compliance minimization might
exhibit drastically different behavior for other objectives,
such as compliant mechanism, stress criterion and nonlinear
elasticity. Only when these methods are tested against objec-
tives other than compliance can one ascertain the actual
robustness of the method.

We would like to point out that the evolution equations
for the level-set methods and phase-field method that we
have examined in this work can be regarded as some sort
of steepest decent method. In the case of compliance, the
algorithms strive to minimize the strain energy in the sys-
tem by placing more material at high strain energy locations.
Thus, the differential equation-driven methods follow the
same design philosophy as the density based methods for
topology optimization.

Nomenclature

uuu admissible displacement field satisfying equilib-
rium

εεε linearized strain field
fff applied body force
ggg surface loads
J objective function
J̄ effective objective function
λ Lagrangian multiplier used to reformulate the objec-

tive function
CCC elasticity tensor for solid phase
CCC∗ effective elasticity tensor for the entire design

domain
φ design function, level-set or phase-field
� admissible design for the optimization problem
D working domain consisting of all admissible shapes

�

FFF discretized global force vector
UUU discretized global displacement vector
ρρρ density array
VVV array of the fractional areas of elements
Vmax prescribed volume fraction
�1 solid phase domain in the TNK phase-field method
�0 void phase domain in the TNK phase-field method
ξ diffuse interface
ρe element densit
kmin scaling factor to determine lowest limit of CCC∗
v advection velocity for Hamilton-Jacobi equation

obtained through sensitivity analysis
vi,j v for the nth iteration at node located at xxxi,j

φn
i,j φ for the nth iteration at node located at xxxi,j


t time step
QQQ Lagrangian multiplier vector for the equilibrium

constraint
RRR residual vector
Ni radial basis function
ci constant shape parameter for multi-quadratic

splines
αi weights for the radial basis functions
rmin filter radius to smooth advection velocity in the WW

level-set scheme
g(xxx) topological sensitivity
w positive weight for g(xxx)

f (φ) double well potential function
J̄ ′ sensitivity of the effective objective function
η scaling constant in the TNK phase-field method
κ diffusion coefficient

x nodal distance in x direction

y nodal distance in y direction
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