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Abstract The present work investigates the feasibility
of finite element methods and topology optimization for
unstructured meshes in massively parallel computer archi-
tectures, more specifically on Graphics Processing Units or
GPUs. Challenges in the parallel implementation, like the
parallel assembly race condition, are discussed and solved
with simple algorithms, in this case greedy graph color-
ing. The parallel implementation for every step involved
in the topology optimization process is benchmarked and
compared against an equivalent sequential implementation.
The ultimate goal of this work is to speed up the topology
optimization process by means of parallel computing using
off-the-shelf hardware. Examples are compared with both
a standard sequential version of the implementation and a
massively parallel version to better illustrate the advantages
and disadvantages of this approach.

Keywords Topology optimization · Graphics processing
units · Finite element method · FEM · GPU · CUDA

1 Introduction

Nowadays processors achieve continuous improvements by
increasing the level of parallelism, that is, increasing the
number of processing cores while maintaining the clock fre-
quency. Many-core processors are a type of processors that
evolved to a high level of parallelism. A class of many-core
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processors are the Graphics Processing Units, or GPUs for
short. We note that GPUs and Central Processing Units (or
CPUs) have different design approaches (Fig. 1): the CPU
is a general-purpose multi-core processor with many high
level instructions, whereas the GPU is a many-core pro-
cessor with a faster and smaller set of instructions (more
specialized type of hardware) but capable of handling a
large number of concurrent threads.1

In the year 2007, NVIDIA (GPU developer) released
the Compute Unified Device Architecture (or CUDA)
(NVIDIA 2007). Essentially, CUDA allows the program-
mer to use NVIDIA GPUs to develop massively parallel
computing applications. In order to take advantage of the
high level of parallelism in these many-core processors, the
code must be especially crafted so that several tasks can be
concurrently executed without interfering with each other
by making efficient use of the hardware memory and ide-
ally establishing minimal communication between the tasks.
The GPU architecture traditionally operates in single preci-
sion, and double precision can be used with a performance
hit. In addition, the floating point arithmetic has a lower
standard compared to the CPU. All these factors must be
kept in mind when crafting codes for the GPU (NVIDIA
2009).

The present work investigates the feasibility of imple-
menting Topology Optimization (or TOP), a highly demand-
ing computational algorithm based on the Finite Element
Method (or FEM) on the GPU. The purpose of this work is
not to excel in each and every component of the algorithm,
but to implement the complete algorithm with sufficiently
acceptable results by setting a foundation from where the
implementation could be further improved, keeping up with

1A thread is an independent unit of processing that can handle and
process a task.
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Fig. 1 Comparison of the basic diagram of a typical CPU and GPU
[ALU: Arithmetic Logic Unit, DRAM: Dynamic Random-Access
Memory] a Schematic of a CPU. b Schematic of a GPU

current and future trends in microprocessors. For that pur-
pose, an implementation was developed to prove and test
the concepts and ideas, as presented by Zegard and Paulino
(2011).

The use of unstructured meshes allows the user to define
complex domains, loads and restrictions. The practical
advantage is clear over a structured mesh, especially for real
life applications where the domain is rarely orthogonal, cor-
ners do not necessarily follow straight lines, and boundaries
are curved. The characteristics of structured meshes can be
exploited to easily address the parallel stiffness assembly
problem, and the resulting global matrix has a structured
profile that makes the system solution simple and efficient.
Thus, implementations based on structured meshes show
good performance results (Schmidt and Schulz 2011). How-
ever, the topology optimization algorithm loses flexibility
with a structured mesh.

This work is organized as follows: Section 2 outlines the
data flow, and discusses the main problems faced in the
implementation of specific components of the algorithm.
The examples in Section 3 compare the results obtained with
this implementation and also benchmarks and profiles the
different components. Finally, in Section 4 conclusions are
given to condense the findings and describe future desirable
changes and developments that would make the imple-
mentation more suitable for end-user requirements. The
nomenclature, symbols and abbreviations used are listed in
the Appendix A.

2 Computational implementation

The present implementation has two user-selectable com-
pute chains, both with a possibility of an alternative solver,
resulting in a total of 4 possible compute chains as depicted
in Fig. 2. The topology optimization loop can take place
entirely in the GPU, entirely in the CPU, or combining
both. Previous work has been done using GPUs to speed up
FEM routines (Cecka et al. 2011; Dziekonski et al. 2010;
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Fig. 2 Schematic flowchart of the topology optimization implemen-
tation developed for this work

Gödel et al. 2010; Guney 2010; Kakay et al. 2010; Liu
et al. 2008). Concurrently, there have been large efforts
into GPU based linear solvers (Carvalho et al. 2010; EM
Photonics 2004; Tomov et al. 2009, 2010; Volkov and Dem-
mel 2008). Topology optimization, being a computationally
intensive task, has already been parallelized on traditional
architectures (Mahdavi et al. 2006; Vemaganti et al. 2004)
and on GPUs for structured meshes (Schmidt and Schulz
2011). The GPU architecture is better suited for structured
problems or linear system of equations where the matrix fol-
lows some structure (banded, tri-banded, block-banded and
others). This work explores feasibility and addresses topol-
ogy optimization for unstructured two-dimensional meshes
on GPUs. Nevertheless, most concepts can be extended to
three-dimensional problems.

The topology optimization problem, using Solid
Isotropic Material with Penalization (SIMP) (Bendsøe and
Sigmund 1999; Bruns 2005) for minimum compliance, is
as follows (Bendsøe 1989; Bendsøe and Kikuchi 1988;
Bendsøe and Sigmund 2003; Rozvany 1997):

min
ρ

: c(ρ) =
n∑

e=1

(ρe)
p{ue}T [ke0]{ue}

s. t. :
n∑

e=1

(ρeVe) − f V0 = 0

0 < ρmin ≤ ρ ≤ 1

with : [K]{u} − {f} = 0 (1)

where the objective function c is the compliance, [K] is the
global stiffness matrix, {f} is the nodal force vector, ρe is
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the element density (design variable), p is a penalization
factor to prevent gray densities, {ue} are the element dis-
placements, and [ke0] is the local stiffness assuming ρ = 1.
The constraints are the global FEM equilibrium, volume
constraint and density constraint, respectively. The param-
eter Ve is the element volume, f is the specified volume
fraction for the problem, V0 denotes the volume or area of
the entire domain and ρmin is a minimum value of den-
sity that the design variable can attain to prevent system
singularity.

The topology optimization loop was subdivided into six
modules: FEM Assembly, Boundary Conditions, Solver,
Sensitivity, Filter and Density (ρ) Update. For each one
of these components, a CPU and a GPU version was
written, the exception being the CPU Solver, where
LAPACK, a well known Linear Algebra Package (AMD
2009; Anderson et al. 1999) distributed in the AMD Core
Math Library (ACML), was used. Prior to the topology
optimization loop, some calculations must be done. These
calculations are done in the Pre-cruncher module. The
current implementation runs entirely on single precision,
on both the CPU and GPU components of the code. A
file parser for ABAQUS input files (SIMULIA (Dassault
Systèmes) 1978) (or any other commercial FEM software
to that effect) was implemented to ease the data input, but
the implementation is independent of the parser, and data
may be supplied manually, or other parsers can be easily
developed.

2.1 Preliminary computations

Preliminary calculations are performed by the Pre-cruncher
module. The pre-cruncher obtains essential information for
the implementation to run. Whether the CPU or GPU chain
is selected, information from the pre-cruncher is required.
The pre-cruncher runs in the CPU because it is used only
once, and any improvement will have a minimal impact
on the overall runtime. The main tasks done by the pre-
cruncher are:

– Build element communications graph
– Graph coloring
– Calculate the bandwidth of [K]
– Calculate the element’s area or volume
– Build the filter list

The communication graph (Paulino et al. 1994a, b) is
used by both the graph colorer and the filter list construc-
tion. The graph coloring is required to assemble the global
stiffness matrix [K] in a parallel way without falling into
race conditions (further explained in the next section). The
bandwidth of [K] is required by the assembly process and
the solver to make the memory usage of [K] smaller and
to traverse the entire matrix efficiently. The element and

domain areas are required by the filter in the convolution
function and in the material update module to enforce the
volume fraction constraint. The filter list is required by
the filter module to avoid searching through the mesh at
every iteration (details on the filter are explained in a later
section).

2.2 Graph coloring

There is a race condition2 present in the assembly of the
stiffness matrix [K] and the computation of the force vector
{f}, the assembly of the global stiffness matrix being the
most challenging to tackle.

There are different approaches possible for comput-
ing and assembling the local stiffness matrices. These
approaches can be divided into two groups: the nodal
approach and the element approach. The problem with the
nodal approach is that there is a lot of over computation:
each element’s local stiffness matrix is computed as many
times as it has nodes (for Q4 elements, each matrix is com-
puted 4 times). An element-wise approach, on the other
hand, does not discard any computation, but must be care-
ful enough to make sure that no other thread is assembling
to the same nodes at a given time. Thus

(DOF i) ∩ (DOF j) = ∅ ∀ i, j with i �= j (2)

To address this problem, an approach based on graph col-
oring is studied. Graph coloring is an attractive solution to
the problem due to its simplicity and ability to render results
with little overhead (Cecka et al. 2011; Oliker and Biswas
2000). The idea consists of assembling a specific set of ele-
ments that comply with (2) in parallel (each node has two
degrees of freedom, or DOFs, corresponding to displace-
ments in two-dimensional problems), and then move to a
new set of elements (or new color in terms of graph color-
ing). With enough groups, the entire global stiffness matrix
[K] can be assembled with no race condition problems.

When assembling the stiffness matrix of an element, no
neighboring element can be assembled at the same time.
The neighboring elements are stored by the element com-
munication matrix or graph. The element communication
graph L(GC) is bidirectional (symmetric) and has a 1 (or
true) if two elements i and j share one or more nodes
(Li,j = Lj,i = 1) or 0 (or false) if not (Paulino et al.
1994a, b). Depending on the specific algorithm, the diag-
onal may be filled with zeroes or ones, or used to store

2A race condition or race hazard is a flaw where the output and/or
result of a process is wrong because two events that cannot take place
at the same time race against each other to influence the result. In FEM
this typically occurs when two local stiffness matrices [ke] are being
added at the same time to the same positions in the global [K].
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the total number of neighbors of each element. The greedy
coloring algorithm (Gebremedhin et al. 2005), used in the
present work, makes no use of this information, and there-
fore we take it to be 0 (Li,i = 0). For large meshes, L(GC)

is mostly composed of zeroes, and therefore a sparse storage
scheme is used. Since L(GC) is a binary matrix, the value
does not require storage, only the positions where a 1 (or
true) exists.

An example of this scheme can be seen for the mesh in
Fig. 3a, where after numbering the elements in any desired
order, the equivalent communication graph can be gener-
ated as in Fig. 3b. From the communication graph, the
communication matrix can be easily derived:

L(GC) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1
1 0 0 1 1 1 0 1
1 0 0 0 1 0 1 0
1 1 0 0 0 1 0 0
1 1 1 0 0 1 1 1
1 1 0 1 1 0 0 1
1 0 1 0 1 0 0 0
1 1 0 0 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The optimal solution for the graph coloring problem is
the chromatic number, and is denoted by χ(G), for a given
graph G (in our case the element communication graph).
Graph coloring is in fact an NP-Complete problem (Dailey
1980), that is, the complexity scales in a non-polynomial
way, and in most cases, the FEM problem size is such that
the optimal solution cannot be found in reasonable time.
Greedy coloring algorithms are sensitive to the way the
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Fig. 3 Communication graph example (extracted from Paulino et al.
(1994a)). a FEM mesh. b Element-based communication graph
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Fig. 4 Greedy coloring for a 4 × 4 structured mesh. Numbering
schemes result in a 4 colors, b 7 colors and c 5 colors

data is traversed because they work in a first-come first-
served basis (Gebremedhin et al. 2005; Kucěra 1991), with
different outcomes depending on the numbering sequence
(exemplified in Fig. 4). However, the hardware also limits
the maximum number of concurrent threads which, in graph
coloring terms, is the maximum number of elements a color
can have. Numerical experiments indicate that the greedy
algorithm subject to this constraint gives close to optimum
solutions for very large problems, where the coloring is
mainly dominated by the thread constraint.

2.3 Local stiffness matrices

In an element-wise approach, each thread computes a local
stiffness matrix at a specific time step (or more correctly
said, a stride). This requires local (temporal) memory to
store and manipulate the local stiffness matrix [ke], as
well as the strain-displacement relation matrix [B] (spatial
derivatives), the constitutive matrix [D], the Jacobian matrix
[J], the Jacobian matrix inverse [�], the nodal coordinates
[XY] and others. Current GPU architectures do not have a
large local thread memory; thus the implementation must be
efficient in its use to maximize the number of concurrent
threads.

For a Q4 element, the size of [ke] is 8 × 8. Using sym-
metry, only half is stored (lower triangular representation
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Fig. 5 Memory allocation for ke

chosen), reducing the number of registers from 64 to 36. The
local memory requirements per thread are still high. There-
fore, the local stiffness matrices are split and stored half in
shared memory and in registers as in Fig. 5, thus allowing
more threads to be launched.

In addition to the registers used to store the local stiffness
matrix, more registers are required to be used as counters,
intermediate variables, other operations and such. The num-
ber of threads that are launched for the stiffness matrix
assembly is 256, meeting the requirements of hardware and
memory. In a SIMP approach, if the problem is not mem-
ory constrained, the computed local stiffness matrices can
be stored and premultiplied by the penalized density prior
to assembly.

2.4 Sensitivities filtering

To prevent the checkerboard pattern and address mesh
dependence, a sensitivity filter (Bendsøe and Sigmund
2003; Sigmund 2001) is used. The sensitivity filter blurs
the sensitivity distribution throughout the mesh, effectively
eliminating the checkerboard pattern. It does not directly
impose a member size constraint, but its effect is similar. If
the mesh gets modified, but the filter parameters are kept,
then the final topology should remain approximately the
same (or exhibit little change).

The current implementation uses Q4 elements with a
single material density variable per element located at the
centroid (here the design variables are the density variables,
but that is not a requirement). The filter requires the distance
of an element’s variable to that of a different element.

The filter for an element makes use of the sensitivities
of all neighbors that fall within the projection of the con-
volution function. The convolution function typically used
linearly decays to zero, being equivalent to a cone (Fig. 6),
although other types of convolution functions can also be
used. For this case the filter is:

∂̂c

∂ρi

=
(

1

ρiVi

∑n
j=1 Ĥj

)
n∑

j=1

ĤjρjVj
∂c

∂ρj

(3)

Fig. 6 Sensitivity filter with a linear convolution function (cone)

with the convolution operator (weight factor) Ĥj defined as:

Ĥj =
{

R − dist(i, j) if dist(i, j) ≤ R

0 if dist(i, j) > R
(4)

where dist(·) is the distance function (between the center
points of the elements), R is the filter radius, ρ is the ele-
ment’s density, ∂c/∂ρ is the sensitivity, and ∂̂c/∂ρ is the
filtered sensitivity.

It is computationally expensive to find the elements that
fall within an element’s filter for an unstructured mesh. The
communication matrix previously computed is used for an
efficient search recursively through the element’s neighbors.
For a fixed mesh, the search can stored to be used at each
iteration. The filter is applied in parallel on a per-element
basis: a single thread reads the sensitivities of all the ele-
ments falling within a cone, applies the convolution, and
stores the filtered sensitivity in a new vector.

2.5 Sensitivity

The sensitivity kernel shares most of its code with the
assembly kernel, with a couple of exceptions. Since there is
no assembly taking place, the kernel does not suffer from
race condition problems. Also, this kernel computes the
compliance; the kernel has to sum compliances from all ele-
ments and therefore a parallel binary reduction in shared
memory is carried out. The sensitivity and the assembly ker-
nel have similar memory requirements and the number of
threads launched is also 256.

2.6 Optimality criteria

The topology optimization problem in (1) can be solved
using Lagrange multipliers (Peressini et al. 1988). With the
adjoint method (Haftka and Gürdal 1992), the objective
function derivative is:

∂L
∂ρe

= −{ue}T ∂[ke]
∂ρe

{ue} + λVe (5)

where L is the Lagrangian and λ is a Lagrange multiplier.
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Taking into account the box constraints, the condition of
optimality is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂ρe

≥ 0 if ρe = ρmin

∂L
∂ρe

= 0 if ρmin < ρe < 1

∂L
∂ρe

≤ 0 if ρe = 1

(6)

Now the Optimality Criteria (OC) algorithm can be
explained in light of expression (6) since it is essentially a
fixed point iteration based on these results:

ρe =
(

1

λVe

{ue}T ∂[ke]
∂ρe

{ue}
)η

ρold (7)

where η is a numerical damping parameter, and good results
are observed for η = 1/2. In addition, a move limit
is imposed at each iteration to prevent divergence of the
algorithm (Bendsøe and Sigmund 2003; Sigmund 2001):

max(ρold − m, ρmin) ≤ ρe ≤ min(ρold + m, 1) (8)

where m is the move limit (to prevent the variables from
changing too fast). The solution for λ is nonlinear, situation
that gets worsened with the densities update in accordance
with (8). Solving for λ is done by the bisection method
(Sigmund 2001), modified to take advantage of the parallel
architecture using the well known parallel binary reduc-
tion scheme. For each trial λ the total volume is obtained
following a parallel binary reduction scheme, and depend-
ing on the value, a new half-space is selected for the new
value of λ.

2.7 Solver

The global stiffness matrix [K] is symmetric and positive
definite (requires ρmin > 0). The node numbering scheme
will determine the bandwidth bw. High levels of storage
and computational efficiency can be attained if bandwidth
reduction schemes are used (Cuthill and Mckee 1969;
Gibbs et al. 1976a, b; Liu and Sherman 1976; Paulino
et al. 1994a, b). The stiffness matrix is stored using a packed
lower triangular banded scheme, with column-major order-
ing (to seamlessly interface with popular linear algebra
libraries that typically use column-major ordering).

The modular nature of the implementation allowed for
a variety of GPU and CPU solvers to be implemented.
Comparing several commercial and handwritten solvers
(Fig. 7), a Cholesky based solver in the GPU was selected
to complete the topology optimization loop for unstructured
meshes in the GPU (and the spbsv in LAPACK as the

Fig. 7 Solver speedups for three problems of sizes n = 41270, 87362
and 118000 with bw = 350, 486 and 690 respectively, with names
Bike, MBB and MBB hole. Reference solver, 1 BLAS based PCGS.
2 Hand-written PCGS in CUDA. 3 cuBLAS based PCGS. 4 Hand-
written PCGS in C++. 5 First iteration of a GPU Cholesky solver
(Zegard and Paulino 2011), limited to bw ≤ 513. 6 Improved GPU
Cholesky solver. 7 spbsv solver from LAPACK

CPU counterpart). The following simple approach is used to
compute the Cholesky decomposition of matrix A = LLT :

Li,i =
√√√√Ai,i −

i−1∑

k=1

L2
i,k (9)

Li,j = Ai,j −∑j−1
k=1 Li,kLj,k

Lj,j

(10)

If the matrix A is banded, then the lower triangular matrix
L is also banded, and has the same bandwidth bw.

The GPU solver has three components: the Cholesky
decomposition for banded matrices (developed in the
present work), and the solution of two triangular systems.
The triangular system is solved using routines in cuBLAS
(NVIDIA 2012), an implementation of the Basic Linear
Algebra Subprograms (BLAS) in CUDA (Blackford et al.
2002), for maximum efficiency. Error accumulation should
be prevented when possible in the implementation to solve
large or badly conditioned systems (professional libraries
such as BLAS, LAPACK or cuBLAS do this).

The Cholesky decomposition processes the matrix in
parallel one column at a time, with a single thread prop-
agating the computations across the rows as depicted in
Fig. 8.

Exploiting the banded nature of the stiffness matrix is
important in order to save computational cost and storage.
Nonetheless, the use of this scheme has the consequence
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Fig. 8 Thread assignment for the Cholesky decomposition and sub-
stitution process

of hard to implement functions, poor performance and little
attention for improvement in multi-threaded architectures
(Remón et al. 2006, 2007). The nature of the current imple-
mentation is rather naı̈ve, leaving the solver problem open.
The complexity of the solver is O(nb2

w); meaning that
the solver will dominate the computation. In the present
work attention was placed in the other components of the
algorithm.

2.8 Loop stop criteria

In addition to a maximum number of iterations, an addi-
tional stopping criteria based on convergence is used. A
change variable is monitored at each iteration and when it
falls below a specified value, the iterations are stopped. One
of the most typical change variables is the infinity norm of
the change in densities ρe (Sigmund 2001):

change1 = ‖ρnew − ρe‖∞
change1 = max(ρnew

e − ρe) (11)

This change variable is not suitable for unstructured meshes
because it treats elements of different size equally. A prob-
lem occurs when material oscillates between a pair of very
small elements. The GPU is more sensitive to this problem

?
(0,0)

(-40,7.2)

(-15,51)

(40,54)

(42,43.5)

(61,7.2)

(37,37)

R=38.25

F  =-50y

F  =-10x

F  =-10y

F  =-15x

F  =-10y

F  =10x

Fig. 9 Bike domain, loads and boundary conditions

because of the lower floating point precision it operates with
(e.g. no denormalization). Taking into account the element
size, the change variable is improved:

change2 = ‖Ve(ρ
new
e − ρe)‖∞

change2 = max(Ve[ρnew
e − ρe]) (12)

The change variable presented in (12) has a violent drop
whenever the algorithm is converging. In large problems, a

(a)

(b)

(c)

(d)

Fig. 10 Bike frame results after 30 iterations. a CPU b CPU -X c GPU
and d GPU -X
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finer control over the iterations is desirable. To address this,
a different change variable based on the 1-norm (also called
taxicab norm or manhattan norm) can be used, and, to make
the 1-norm mesh-independent, it is divided by the number
of elements n of the mesh:

change3 = ‖ρnew
e − ρe‖1

n

change3 =
∑n

e=1 |ρnew
e − ρe|
n

(13)

The change variable presented in (13) still suffers from
the problem where very small elements can oscillate mate-
rial among them and prevent convergence. Combining the
ideas behind (12) and (13), we arrive at the resistant and
controllable change variable that is used in the present
work:

change =
∑n

e=1 Ve|ρnew
e − ρe|

V0
(14)

where V0 is the domain volume, that is V0 = ∑n
e=1 Ve.

The change variables presented here (except for 12) range
from 0 to the move limit m (0 < change ≤ m). This
makes the stop criteria simple by defining a tolerance and
breaking the loop whenever change ≤ tolerance. The
computation of the change variable is done on a per-element

(a)

(b)

Fig. 11 a Final bike frame design with remaining components traced
b Bike available in the market for comparison (2010 Cannondale Capo
2 urban commuter bike. Extracted from Cannondale (2010))

basis, and then reduced following a parallel binary reduction
scheme.

3 Examples & benchmarks

The performance, particularities and results for all pos-
sible compute chains are compared using 3 emblematic
problems:

1. Bike frame
2. Messerschmitt–Bölkow–Blohm (MBB) beam
3. MBB beam with holes

The bike frame conceptual design is a somewhat applied
problem that calls for an unstructured mesh analysis. The
MBB beam is a typical problem in topology optimization
(Bendsøe and Sigmund 2003), and it is of particular interest
since an undesirable condition gets triggered on the imple-
mentation if certain parameters are used. The MBB beam
with holes is a variation of the typical MBB problem, where
an unstructured mesh is required to properly represent the
domain restrictions.

Fig. 12 Variable evolution for the bike frame problem. a Change
variable and b compliance
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Fig. 13 MBB beam results after 30 iterations. a CPU and b GPU-X

The full implementation is benchmarked against the pure
CPU chain. The compute chains (Fig. 2) available to the user
and their labels are:

– TOP loop is entirely on the CPU: CPU
– TOP loop is entirely on the GPU: GPU
– CPU chain with GPU solver: CPU -X
– GPU chain with CPU solver: GPU -X

The penalization for all problems is p = 3, the minimal
density is ρmin = 0.001, the move limit m = 0.2, and the
maximum number of iterations is 30.3

3.1 Bike frame

Bike frames continuously seek for lighter and stronger
designs. This is a simplified problem based on real bike
frame geometries, and meets several domain restrictions
(front wheel space to turn, location and inclination of the
topmost bar, the total span of the frame and others). Loads
are artificial but are expected to resemble a plausible loading
scenario. The loads and the domain are explained in Fig. 9,
with all units in centimeters and kilograms-force.

The mesh has 20,378 elements, 20,635 nodes and the
resulting stiffness matrix bandwidth is 350. The material is
assumed to be Aluminum with a unit depth, elastic mod-
ulus E = 700,000 kgf/cm2, and ν = 0.3. Topologies for
all compute chains with a volume fraction f = 0.3, fil-
ter radius R = 1.2 and 30 iterations are shown in Fig. 10.
The different machine precision, floating point standards,
and operations order (cancelation effects) make for slight
differences in the final design. Figure 11a shows the result
from the hybrid GPU chain (GPU -X), with the remain-
ing bike components traced in dashed lines. Analysis of

3The hardware used for all benchmarks consists of a dual-socket dual-
core AMD Opteron 2216, 8 GB of RAM and a NVIDIA Tesla T10
GPU with 4 GB of RAM.

Fig. 14 Variable evolution for the MBB beam problem. a Change
variable (14) and b compliance

the change variable and the compliance show a stable and
steady decrease for all cases (Fig. 12).

3.2 Messerschmitt–Bölkow–Blohm (MBB) beam

The mesh for this problem is structured. Nevertheless, the
current implementation makes no difference between struc-
tured or unstructured meshes. The problem parameters are
typical: ν = 0.3, E = 100, f = 0.3 and height :
length = 1 : 6 that on the half-domain due to symme-
try is 1 : 3 (Bendsøe and Sigmund 2003; Sigmund 2001).
The mesh has 43,200 elements, 43,681 nodes and a band-
width of 486. The filter radius is set to R = 0.02, and
interestingly enough, the problem fails to converge with the
default parameters using the GPU solver. The standard GPU
floating point arithmetic (single precision and no denormal-
ization) have enough effect to make the system singular
after a couple iterations. The stability can be regained if ρmin

is increased (note that ρ
p

min = 10−9) or if the filter radius R

is increased. Results for the compute chains that converged
are shown in Fig. 13.
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Fig. 15 MBB beam with holes problem. a Full beam and b half
domain equivalent thanks to symmetry

The compliance and change variable in the CPU and
GPU -X chains decrease monotonically (Fig. 14). The com-
pliance and change variable have a noticeable drop once the
system becomes singular for the compute chains that make
use of the GPU solver.

3.3 MBB beam with holes

The MBB beam with holes problem is a variation of the typ-
ical MBB beam that includes two circular holes as a restric-
tion in the design domain (one hole for the half domain).
The domain, loading and boundary conditions are given in
Fig. 15. The mesh has 55,200 elements, 55,900 nodes and
a bandwidth of 690. The topologies were obtained for a
volume fraction f = 0.3, filter radius R = 0.02 and 30 iter-
ations (same as the MBB beam problem). Final converged
topologies for this problem are given in Fig. 16. The prob-
lem again fails for the specified ρmin and higher values or
double precision are required for the problem to converge.

Fig. 16 Topology optimization results for MBB beam with holes after
30 iterations. a CPU and b GPU-X

Interestingly, the hybrid GPU chain (GPU -X) results in a
design with a larger number of fine topologies, that has a
closer similarity with a Michell-type solution (Hemp 1973;
Michell 1904), despite having the same filter parameters of
the CPU chain. Although this is probably just a coincidence.

3.4 Benchmarks

The speedups of each kernel compared to their CPU coun-
terpart for each one of the three problems is shown in
Fig. 17a. Speedup for the assembly kernel is comparable
to results previously observed in the literature (Cecka et al.

Fig. 17 GPU implementation benchmarks. a Individual kernel
speedup and b filter speedup with filter size
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Fig. 18 GPU implementation speedup

2011), and because this kernel is similar to the sensitiv-
ity kernel, good results are observed there as well. There
is no benchmark for the boundary conditions kernel since
the runtime is often below 1 ms for the GPU. The filter
kernel speedups from Fig. 17a are obtained taking the fil-
ter radius as used previously for each problem (R = 1.2
for the bike problem, and R = 0.02 for the MBB and the
MBB with holes problem), nevertheless, to further analyze
the filter speedup, its scaling with respect to the filter size
is studied. Comparing the filter speedup with the average
filter size of all the elements in the mesh (quasi mesh-
independent parameter) as in Fig. 17b, the filter speedup is
conservatively taken to be close to 1.6.

The total runtime speedups are in Fig. 18. Runtimes in
seconds are available in Table 1. Good results and speedup
were obtained for all modules but the solver. The solver
takes about 90 to 95 % of the total runtime, and dominates
the overall runtime speedup.

The GPU implementation scaling is provided in Fig. 19
for 5 iterations of an increasingly refined MBB problem
(nodes optimized by the Reverse Cuthill McKee algorithm
(Liu and Sherman 1976)). The largest problem has n =
499,970 and bw = 1158. As indicated by the results in

Table 1 Runtime in seconds for all three problems for 30 topology
optimization iterations

Problem CPU CPU -X GPU GPU -X

Bike 62.8 274.9 267.5 56.5

MBB 192.2 809.0 792.5 186.7

MBB hole 729.8 1,926.3 1,897.6 720.8

Fig. 19 GPU implementation scaling

Fig. 19, there is room for improvement in the linear solvers,
however, this area is beyond the scope of this work.

4 Conclusions

Topology optimization in GPUs for unstructured meshes is
indeed plausible. The solver dominates the overall speedup
of the present implementation (it takes up approximately
90 % of the topology optimization runtime). Various solvers
(some of them commercial) were tested and compared. Iter-
ative solvers can be further explored (Remón et al. 2007)
as they have fewer difficulties as the problem becomes ill-
conditioned. The present GPU implementation shows sig-
nificant speedups for the phases of assembly, sensitivities,
filters and design updates.

The GPU operates under single precision and only sup-
ports normalized floating points in earlier NVIDIA archi-
tectures (based on the G80 core). This explains small differ-
ences in the resulting designs and, in some cases, difficulty
to converge. Certain measures can alleviate this problem,
but for an actual topology optimization solution, double
precision has to be used.

Because the mesh is unstructured, some work must
be carried out before the topology optimization loop. To
prevent a possible race condition, a fast greedy coloring
algorithm is used with excellent results due to the maxi-
mum number of threads constraint. In addition, filtering for
unstructured meshes is not trivial because of the unordered
memory access and the mesh search. Although this far-
from-ideal situation for the GPU was encountered, speedup
was obtained in the filter.

Despite the poor overall performance caused by the
solver, the speedup obtained in the other components does
not only concern topology optimization, and can be suc-
cessfully ported to other applications such as traditional
FEM (assembly kernel), or imaging and sampling (filter’s
convolution operation).
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Future improvements in the GPU architectures are likely
to eliminate most of the problems encountered here (mainly
speed and precision) due to the rapid evolution of the GPU
architecture compared to the CPU. Sparse algebra seems
to be a move in the right direction considering the good
performance obtained using numerical solvers in combina-
tion with sparse linear algebra (Schmidt and Schulz 2011),
and it paves the way towards efficient three-dimensional
problems.

The implementation could be further improved in many
aspects. The changes that are most appealing to the authors
include consideration of three-dimensional problems and
support for the CAMD (Continuous Approximation of
Material Distribution) approach (Matsui and Terada 2004).
Further details along this line of reasoning can be found in
Zegard (2010).

Acknowledgments We also thank Dr. Cameron Talischi for his help
in the preparation of this manuscript. We acknowledge support from
the National Science Foundation (NSF) under grant 1321661, and from
the Donald B. and Elizabeth M. Willett endowment at the University
of Illinois at Urbana-Champaign (UIUC).

Appendix A: Nomenclature

A.1 Symbols

[B] Strain-displacement matrix
bw Bandwidth of a matrix
c Compliance
[D] Constitutive matrix
E Young’s modulus
f Volume fraction
{f} Global force vector
Ĥj Convolution function
[J] Transformation Jacobian
[K] Global stiffness matrix
[k] Local stiffness matrix
[L] Lower triangular matrix
L(GC) Communication matrix for graph G
m Density move limit
n Number of elements, matrix size or other depend-

ing on the context
p Penalization factor for SIMP
R Filter radius
u Displacement
V Volume
[XY] Nodal coordinates of an element
[�] Inverse of the transformation Jacobian [J]
η Numerical damping parameter
L Lagrangian function
λ Lagrange multiplier
ν Poisson’s ratio

ρ Density
χ(G) Chromatic number for graph G

A.2 Abbreviations

ALU Arithmetic Logic Unit
CAMD Continuous Approximation of Material Distribu-

tion
CPU Central Processing Unit
CUDA NVIDIA’s Compute Unified Device Architecture
DOF Degree Of Freedom
DRAM Dynamic Random-Access Memory
FEM Finite Element Method
GPU Graphics Processing Unit
MBB Messerschmitt–Bölkow–Blohm
OC Optimality Criteria
PCGS Pre-conditioned Conjugate Gradient Solver
SIMP Solid Isotropic Material with Penalization
TOP Topology Optimization
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