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Abstract The present work extends truss layout optimiza-
tion by considering the case when it is embedded in a
continuum. Structural models often combine discrete and
continuum members and current requirements for efficiency
and extreme structures push research in the field of opti-
mization. Examples of varied complexity and dimensional
space are analyzed and compared, highlighting the advan-
tages of the proposed method. The goal of this work is to
provide a simple formulation for the discrete component of
the structure, more specifically the truss, to be optimized in
presence of a continuum.

Keywords Truss layout optimization · Topology
optimization · Michell truss · Truss geometry
optimization · Discrete-continuum optimization ·
Embedded formulation

1 Introduction

Structural optimization research is rapidly moving forward
with a constant push for more efficient, lighter, cheaper and
extreme structures (Hemp 1973). Structural optimization is
commonly carried out by optimizing the material distribu-
tion (Bendsoe and Sigmund 2003), optimizing a truss (Felix
and Vanderplaats 1987; Hansen and Vanderplaats 1988;
Lipson and Gwin 1977; Ohsaki 2010), and optimizing the
continuum shape (Haslinger and Mäkinen 2003) to name
a few. Optimal truss layout has greatly evolved with the
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ground structure method (Dorn et al. 1964; Sokół 2010) and
proves to be a reliable and stable method for truss struc-
tures. Optimizing material distribution with an overlaying
discrete element structure connected has been previously
studied (Allahdadian et al. 2012; Liang et al. 2000; Liang
2007; Mijar et al. 1998), and recent refinements make it
suitable for real applications (Stromberg et al. 2012). Previ-
ously, a formulation for embedding reinforcement (discrete
elements) in the context of reinforced concrete was devel-
oped (Elwi and Hrudey 1989), and later extended to three-
dimensions (Barzegar and Maddipudi 1994). Optimization
of reinforced concrete using this embedded formulation was
also explored (Kato and Ramm 2010). The ground-structure
method for optimization combined with discrete elements
embedded in a continuum has also proven to be feasi-
ble (Amir and Sigmund 2013). The present work attempts
to solve the problem where discrete structures, linked to
a continuum (or embedded), are optimized with the dis-
crete nodes not directly matching over continuum nodes
using a convolution-based coupling to embed the discrete
onto the continuum. Some examples of structures typically
modeled in a discrete-continuum fashion are: reinforced
concrete, cable supported bridges, column supporting a slab
and beam-wall connections to name a few.

This works aims to develop a simple technique that
allows for truss layout optimization (nodal locations and
cross-sectional area) to be optimized, in presence of a con-
tinuum, with linkage between both. If the continuum is
modeled using traditional C0 elements, the first derivatives
are discontinuous, thus making the embedded formula-
tion difficult to optimize using traditional gradient based
optimizers. The discontinuity problem could potentially be
solved using C1 elements, however, the formulations for
these are complex, especially for higher dimensions. An
alternative procedure is presented here which is easy to
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implement and shows agreement with analytical results or
demonstrates stability of the optimized solution, regardless
of numerical variations in the model.

This formulation is based on small deformation the-
ory, and because nodes are treated as a cloud, any
type or order of finite elements can be used (i.e. the ele-
ment connectivity is not used). The examples in the present
work deal with compliance optimization. Nevertheless, the
technique can be applied to any objective function based
on stiffness for which an expression for the gradient can be
obtained.

The article is organized as follows: The formulation is
derived and described in detail in Section 2. In Section 3,
the method is verified and the stability tested against a prob-
lem for which the solution is known. Several demonstrative
examples are optimized in Section 4. Finally, conclusions
and remarks of the method are discussed in Section 5. The
nomenclature and symbols used are listed in the Appendix.

2 Formulation

Truss layout optimization has been explored previously
with good results (Felix and Vanderplaats 1987; Hansen
and Vanderplaats 1988; Lipson and Gwin 1977; Ohsaki
2010). The formulation for truss layout optimization pres-
ented here is analogous to the one presented in (Hansen and
Vanderplaats 1988), but better suited for any-dimensional
(1D, 2D, 3D) problems and extended by combining it with
a continuum.

The stiffness matrix for a truss element in local
coordinates is

K� = AE

L

[
1 −1

−1 1

]
(1)

with A, E and L being the element’s cross-sectional
area, Young modulus, and length respectively. The stiff-
ness matrix in global coordinates Ke for truss element e is
defined in terms of the stiffness matrix in the element’s local
coordinates K�

e and the transformation matrix Te

Ke = TT
e K�

eTe (2)

The directional cosines vector d is defined as

d = 1

L
[x2 − x1, y2 − y1, z2 − z1] (3)

and thus the transformation matrix is

T =
[

d 0
0 d

]
(4)

The derivative of the global stiffness matrix with respect to
the coordinate n of node j of the truss member is

∂Ke

∂nj

= ∂TT
e

∂nj

K�
eTe + TT

e

∂K�
e

∂L

∂L

∂nj

Te + TT
e K�

e

∂Te

∂nj

(5)

with L representing the truss element’s length, n = {x, y, z}
and j = {1, 2}. The derivatives of the element’s length L,
with respect to the coordinate n, are

∂L

∂n1
= −dn

∂L

∂n2
= dn

(6)

and the derivative of the stiffness matrix with respect to the
element length is

∂K�

∂L
= −AE

L2

[
1 −1

−1 1

]
(7)

The Jacobian matrix of the directional cosine vector with
respect to the coordinates of the first truss element node
(j = 1) is

J(1) (d) = 1

L

(
dT d − I

)
(8)

and J(2) (d) = −J(1) (d). Inspecting a couple of terms, we
obtain, for example:

[
J(1) (d)

]
21 = ∂d2

∂x1
= d1d2

L[
J(2) (d)

]
22 = ∂d2

∂y2
= −d2d2 − 1

L

(9)

and with this the derivatives of the transformation matrix T
are completely defined.

2.1 Mapping discrete to continuum representation

Consider the stiffness matrix of a continuum Kc obtained by
means of a finite element method (FEM), and the stiffness
matrix from a single truss element Ke. The challenge is to
add the contribution of Ke onto Kc in a coherent fashion
(energy conservation), and with a smooth derivative field.
An approach based on energy conservation and FEM shape
functions meets the first requirement, but because the FEM
shape functions are discontinuous across elements, it does
not have a smooth derivative field.

The stiffness matrix of a single truss node Ke will
be mapped to another matrix K+

e in terms of the con-
tinuum nodes, so that its contribution can be added to
Kc. The mapping approach is based on energy conser-
vation, i.e. uT Keu = uT

c K+
e uc, interpolating the degrees of

freedom (DOF) of the truss u in terms of the DOFs in the
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continuum uc using the values of some shape function N. In
other words u = Nuc, and thus we have:

uT Keu = uT
c K+

e uc

(Nuc)
T Ke (Nuc) = uT

c K+
e uc

uT
c

(
NT KeN

)
uc = uT

c K+
e uc

NT KeN = K+
e (10)

The mapping described in (10) is done for every truss
node being mapped to the continuum. If traditional FEM
shape functions are used in N, the derivative of the mapped
stiffness with respect to the truss nodal position becomes
problematic due to discontinuities in the shape function
derivatives across elements. In detail:

∂K+
e

∂nj

= ∂NT

∂nj

KeN + NT ∂Ke

∂nj

N + NT Ke
∂N
∂nj

, (11)

while the second term in (11) is smooth throughout the
whole continuum, the first and third terms are not. In
practical applications, the discontinuities increase with the
number of elements, and close to the optimum there will be
a high number of local minima (proportional to the mesh
detail). These problems are enough to prevent the optimizers
from converging to a good solution.

The choice of the shape functions N used in the map-
ping to K+

e is of critical importance to obtain an embedded
formulation with a smooth gradient field. Besides the inter-
element discontinuity of the derivative field in traditional
FEM shape functions, the truss node position needs to be
mapped into the parent element coordinates if an isopara-
metric formulation is used, as in previous embedded for-
mulations (Elwi and Hrudey 1989; Barzegar and Maddipudi
1994). The alternative proposed in the present work is to
use shape functions based on a convolution operator. These
can be arbitrary smooth up to any derivative depending
on the convolution function (although we are only inter-
ested in the first derivative), and do not need to be mapped
to parent coordinates since they operate in the actual
node coordinates.
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Fig. 1 Plots of the convolution functions presented in (14)
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Fig. 2 Bar with a distributed force and a cable anchor

2.2 Convolution operator

Sacrificing some coherence in the coupling (different shape
functions used to analyze the continuum and for the embed-
ding), an approach based on a convolution operator is
proposed. This approach consists of representing the truss
DOFs as a convolution of the nearby continuum nodes. That
is, we use a shape function Ñ �= N, with Ñ built from a
convolution operator h (·), that ensures smoothness of the
gradient field by complying with

h (0) = 1

h (r ≥ R) = 0

dh

dr

∣∣∣∣
r=R

= 0

(12)

with R defined as the convolution operator radius, and r

the distance between the truss member and continuum node.
In addition, the shape functions Ñ must preserve partition
of unity∑

k

Ñk = 1 (13)

Two possible functions for h (·) are presented in (14), but
any other function that complies with (12) can be used

h1 (r) =
{

1 − sin
(

rπ
2R

)
0

r ≤ R

r > R

h2 (r) =
{ (

r
R

)2 − 2
(

r
R

) + 1

0

r ≤ R

r > R

(14)

The functions presented in (14) are plotted in Fig. 1.
The shape function for a truss node, associated with the
continuum node a is

Ña = h (ra)∑
k h (rk)

(15)

b
P

Fig. 3 Bar with distributed and end force
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The shape function derivative for a specific truss node corre-
sponding to a continuum node a with respect to coordinate
n is

∂Ña

∂n
=

∂h
∂n (ra)

∑
k h (rk) − h (ra)

∑
k

∂h
∂n (rk)[∑

k h (rk)
]2 (16)

with the derivatives of the convolution functions as follows:

∂h1

∂n
(r) =

⎧⎨
⎩

π

2R
cos

( rπ

2R

)
d̃n

0

r ≤ R

r > R

∂h2

∂n
(r) =

⎧⎨
⎩ −2

r − R

R2 d̃n

0

r ≤ R

r > R

(17)

where d̃ in this case is the directional cosine from the
truss node to the continuum node (associated with the
distance r). The sum in the denominator is through all the
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Fig. 4 a Compliance with convolution coupling for different mesh
refinements. b Detail close to the optimum
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Fig. 5 a Gradient with convolution coupling for different mesh
refinements. b Detail close to the optimum

nodes in the continuum, but because the convolution func-
tion is zero for r > R, the sum only encompasses a few
of the total nodes. The continuum nodes that fall within the
convolution operator are found using a tree data structure
(quadtree and octtree in two and three dimensions respec-
tively), making the search for different truss nodes linking
to continuum efficient.

Table 1 Optimal anchor location with varied mesh refinement

βc C (βcL)

Exact 0.7434 1.5252

NE = 10 0.7492 1.5144

NE = 20 0.7346 1.5169

NE = 40 0.7431 1.5203
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Fig. 6 a Compliance with convolution coupling for different convo-
lution radiuses. b Detail close to the optimum

The convolution shape functions lack desirable proper-
ties like the Kronecker delta property (δii = 1 and δij = 0
for nodes i �= j ), because these shape functions are not
associated to a specific node as with FEM shape functions,
but to a cloud of nodes instead. However, it does com-
ply with partition of unity (13) and has no negative values.
These convolution shape functions possess continuous first
derivative field, a desirable property and required for the
present work.

The mapping of Ke onto the continuum follows the
energy conservation mapping described in (10), but using Ñ
instead of the FEM shape functions. This is also analogous
for (11) resulting in the following expressions:

K+
e = ÑT KeÑ (18)

∂K+
e

∂nj

= ∂ÑT

∂nj

KeÑ + ÑT ∂Ke

∂nj

Ñ + ÑT Ke
∂Ñ
∂nj

(19)
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Fig. 7 a Gradient with convolution coupling for different convolution
radius. b Detail close to the optimum

Note that the dimensionality of Ñ is variable and does not
necessarily match with N.

2.3 Optimization issues

This coupling to the continuum works by smearing the dis-
placement field around the truss member node. Provided

Table 2 Optimal anchor location with varied convolution radius

βc C (βcL)

Exact 0.7434 1.5252

R = 0.1L 0.7333 1.5187

R = 0.2L 0.7396 1.5177

R = 0.4L 0.7393 1.5258
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compared. b Detail close to the optimum

that the convolution radius is not too big, the error intro-
duced by this method is controllable and more importantly,
it provides a smooth derivative field throughout the contin-
uum. The smearing error will have a higher impact when
closer to a rapid variation of the field (i.e. sharp edges, single
node loads and boundary conditions).

The algorithm becomes unstable for a large number of
variables if the variables are allowed to freely vary at each
iteration. A move limit m enforces small variations from one
iteration to the next. This results in a more cautious progres-
sion towards the optimum, and with the step size controlled
by the move limit m, as follows:

∣∣∣anew
n − aold

n

∣∣∣ ≤ m ∀ n = x, y, z and a = 1 . . . Nnodes

(20)
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Fig. 9 Optimization evolution for 50 iterations with different convo-
lution radiuses. a Anchor point βL. b Compliance

The move limit or variable bounds are common features in
optimizers, making the implementation of (20) simple.

The optimizer could decide to overlap two nodes
together, typically resulting in a super-member (two mem-
bers overlapping). Nevertheless, this might also result in a
member of length L = 0, causing problems in (1), (3),
(7) and (8). To prevent this situation, a minimum length
constraint Lmin > 0 for every member is included:

Lmin − Le ≤ 0 (21)

Maximum truss volume Vmax can be also specified as

∑
e

LeAe − Vmax ≤ 0 (22)
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with the derivatives for the constraints in (21) and (22)
completely defined using (7) and (6). If the element cross-
sectional areas are also design variables, the derivative is
trivial since

∂K+
e

∂Ae

= 1

Ae

K+
e (23)

provided that Ae > 0. Thus, setting a lower limit on
the cross-sectional area to prevent (23) from becoming
indeterminate is recommended. In addition a move limit on
the cross-sectional areas stabilizes the problem (analogous
to (20)). These requirements translate into the following
equations

Ae > Amin∣∣∣Anew
e − Aold

e

∣∣∣ ≤ ma ∀e = 1 . . . Nelems (24)

3 Verification

This problem seeks to find the optimal anchor position of
a cable within a bar modeled as a continuum subjected to
body force, as exemplified by Figs. 2, 3, 4, 5, 6, 7, 8, and 9.
The objective function for minimization is the compliance
of the total structure (continuum and discrete). In accor-
dance with Fig. 2: αL is defined as the anchor point distance
and βL is the anchor point measured within the continuum
bar. The ratio between the bar (continuum) and cable stiff-
ness is defined as γ = EA/EcAc, where Ec and Ac are the
bar’s Young modulus and cross-sectional area of the contin-
uum, and E and A are the same but for the anchor cable.

x2

x1

Lx

Ly

Ly

2Lx

Ly

Ly

x2

x1

(a)

(b)

Fig. 10 Beam with cable supports subjected to self-weight. a Full
problem. b Half-domain problem using symmetry

The design variable is the anchoring distance βL. This prob-
lem is of particular interest because an analytical solution
can be obtained. The compliance of a single bar problem of
length L, subjected to body force b and an end force P as in
Fig. 3 is:

C = 1

EA

(
b2L3

3
+ PbL2 + P 2L

)
(25)
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Fig. 11 Beam anchor points fields for a 20 × 8 Q4 mesh. a Compli-
ance. b Derivative with respect to x. c Derivative with respect to y.
d Zero-derivative levels
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Table 3 Optimal anchor location and compliance with varied mesh
size

x1 x2 C (x1, x2)

10 × 04 0.9999 0.5100 0.1956

20 × 08 0.8541 0.4016 0.1910

40 × 16 0.8094 0.3712 0.1971

80 × 32 0.8635 0.3711 0.2025

The displacement at the anchor point uanchor can be obtained
by structural analysis

uanchor = bL2

2AE

β (α + β) (2 − β)

α + β + γβ
(26)

The problem can be partitioned at the anchor point, and the
expression in (25) can be used for both segments of the con-
tinuum and the cable. The end force P taken by the bar
segment of length βL is

P = bL

2

2α + 2β − 2αβ − 2β2 − γβ2

α + β + γβ
(27)

Finally, the compliance for the complete problem is

C = b2L3

12EA

4α + 4β + 4γβ − 12γβ2 + 12γβ3 − 3γβ4

α + β + γβ

(28)

The optimal anchor point (minimizes compliance) is
located at βcL, with

βc = 1 + γ − 2α + √
1 + 8α + 2γ + 4α2 + 8αγ + γ 2

3 + 3γ
,

(29)

for βc ≤ 1, and at βc = 1 otherwise.
Given the following problem data: L = 7, α = 2/7,

EcAc = 210, EA = 150, γ = 5/7 and b = 2,
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Fig. 12 Beam compliance evolution for 30 iterations with varied mesh
size

Table 4 Optimal anchor location and compliance for a Q9 mesh with
varied mesh size

x1 x2 C (x1, x2)

10 × 04 0.8497 0.4030 0.1952

20 × 08 0.8688 0.3736 0.2006

40 × 16 0.9004 0.3833 0.2056

80 × 32 0.9272 0.3721 0.2101

the embedding technique is performed for three differ-
ent discretizations keeping the convolution radius fixed at
R = 0.2L, and then compared to the analytical solution in
Fig. 4. The convolution function used is h2 (·) from (14).
The gradient is also compared in Fig. 5. The optimal loca-

tion is at βc =
(

2 + √
22

)
/9 and C (βc) = 1.5252.

To ensure the algorithm is robust, the finite element size
	x is distributed randomly between 0.7L/NE ≤ 	x ≤
1.3L/NE , with NE representing the number of elements
of the partition. The minima for all meshes are presented
in Table 1. The same analysis is repeated keeping the mesh
refinement fixed at NE = 20 and changing the size of the
convolution radius. The results are compared in Fig. 6. The
gradient is also compared in Fig. 7 and the minima for each
case are presented in Table 2. Using a mesh with elements
evenly spaced, the analytical gradient is compared with the
energy compliant coupling using FEM shape functions, and
the convolution coupling from (16) as shown in Fig. 8. The
energy coupling using FEM shape functions suffers discon-
tinuities at the element boundary and ∂C/∂x = 0 at several
points, thus is prone to converge at the many local min-
ima, far from the global optimum. Convolution coupling is
continuous, and inspection of the gradient indicate that it is
likely to converge close to the actual (analytical) optimum.

The optimization problem for 50 iterations, with a
starting point β0 = 0.5 is performed for NE = 20
(element mesh), with randomly spaced elements of size
0.7L/NE ≤ 	x ≤ 1.3L/NE . The only constraint
or technique used is the move limit as detailed in (20)
with m = 0.1. The optimizer is the Method of Moving
Asymptotes (MMA) (Svanberg 1987). The convergence

Table 5 Optimal anchor location and compliance for a Q9 mesh with
varied convolution radius

x1 x2 C (x1, x2)

R = 0.2L 0.8763 0.4025 0.2154

R = 0.3L 0.8688 0.3736 0.2006

R = 0.4L 0.8747 0.3752 0.1900

R = 0.5L 0.8769 0.3748 0.1816
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Fig. 13 Optimization for beam with cable anchor using Q9 elements.
a Compliance with mesh size. b Compliance with convolution radius

towards the optimal point βcL is shown in Fig. 9a and the
compliance plot in Fig. 9b. There is an oscillatory behav-
ior between iterations 17 and 30 due to the adventurous
behavior of the optimizer close to the optimum. The oscil-
lations can be eliminated by taking a smaller move limit, or
decreasing it with each iteration.

4 Examples

The examples explored here aim to verify the method,
and portray some applications that can be tackled with the
method. The optimizer is the Method of Moving Asymp-
totes (MMA) (Svanberg 1987), and the convolution function
used is h2 (·) from (14). Similarly to the previous 1D exam-
ple, 2D and 3D problems are optimized for compliance
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Fig. 14 Cable anchor optimization with beam meshed with 20×8 Q9
elements showing anchor path throughout iterations

(J = uT Keu) of the coupled structure. For the specific
case of two-dimensional problems, unit thickness and plane
stress is assumed.

4.1 Beam with cable supports

This problem looks for the optimal anchor position for two
cable supports within a beam, as exemplified by Figs. 10,
11, 12, 13, and 14. Taking advantage of the symmetry, the
problem in Fig. 10a is reduced to finding the optimal posi-
tion of a single cable (constant area) on a half domain as in
Fig. 10b. The half domain has size Lx ×Ly and is loaded by
self-weight b, the domain is regularly partitioned in Nx×Ny

four node quadrilateral elements (Q4). The design variables
of the problem are the anchor location coordinates x1 and
x2, with the only constraint or technique being the move
limit as in (20) with m = 0.05.

The problem data is Lx = 2 (2Lx = 4), Ly = 0.8,
b = −2, Ec = 100, ν = 0.3, EA = 300 and R = 0.3.
The objective function (compliance) for a Nx = 20 and
Ny = 8 mesh is plotted in Fig. 11a, and the gradient fields
in Fig. 11b and c. The gradient fields are smooth enough
that a gradient-based optimizer should converge to the opti-
mum (it could be a local optimum). Analysis of Fig. 11d for
∇C = 0 gives x1 = 0.8165 and x2 = 0.3699 as the global
optimum, but also hints of a few potholes that could trap
the optimizer. The global optimum location does change
with the mesh refinement, and together with other numerical
optimization artifacts cause the solution to the problem to
experience small changes if the problem parameters change.

The problem is optimized for 30 iterations with a start-
ing point [x1, x2] = [

Lx, Ly/2
]

measured from the bottom
left corner of the half-domain. Mesh convergence results are
available in Table 3 and Fig. 12.

The problem is re-meshed with 9 node quadrilateral ele-
ments (Q9) and the results in Tables 4 and 5 reinforce the
fact that the method is relatively stable: the global optimum
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changes with mesh refinement, and together the tendency
of the optimizer to oscillate near the optimum, can be
accounted for the scattering of the solutions. Figure 13a
and b plot the decrease of compliance with the various cases,
and in all of them a smooth decrease is observed.

The anchor path throughout the iterations for this prob-
lem is shown in Fig. 14. This path exhibits a steady and
consistent approach towards the optimal solution, where the
cable efficiently supports the continuum.
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Fig. 15 Building with truss superstructure. a Domain and truss spec-
ifications. b Starting configuration with node and element numbering
with 4 spans, Lx1 = 1.0, Lx2 = 0.6 and Ly = 2. c Final config-
uration with symmetry along the mid vertical axis imposed. d Final
configuration with symmetry not imposed
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Fig. 16 Optimization for building with truss superstructure (design
variables are nodal coordinates). a Compliance. b Volume

4.2 Tapered building with truss superstructure

This problem explores extending the method to a larger
number of elements (and design variables), all within the
continuum and the use of an unstructured mesh within the
continuum, and relates to Figs. 15 to 16. A sketch of the
continuum domain, with a truss superstructure is shown in
Fig. 15a, where the truss superstructure links to the con-
tinuum at the node locations. The problem is optimized
with 4 spans, and a starting position as shown in Fig. 15b,
considering nodes numbered as in the Figure.

The continuum is meshed with NE = 1520 Q8 ele-
ments, with dimensions and material properties: Lx1 = 1.0,
Lx2 = 0.6, Ly = 2, Ec = 10, ν = 0.3. The truss consists
of 4 spans with equal properties for all bars EA = 300 and
convolution radius R = 0.075. The structure is loaded by
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self-weight of the continuum b = −10. The design variables
are the nodal positions of the truss (cross-sectional areas are
not being optimized). The problem is optimized for 50 iter-
ations with a move limit as in (20) with m = 0.015, and a
truss volume constraint as in (22) with Vmax = 32 (note that
initially the truss has a volume V0 = 34.76).

The optimization is performed for the cases where sym-
metry is and is not imposed. The final configurations for
both cases can be seen in Fig. 15c and d, and the final
nodal locations are in Table 6. The unsymmetrical mesh in
the continuum causes the truss to loose symmetry, and it is
unable to recover.

The compliance plot in Fig. 16a has an initial increase
while the optimizer is fulfilling the truss volume constraint,
as shown in Fig. 16b. Once the constraint is satisfied, the
optimizer is free to search for the optimal truss geometry
(using the node locations only). The final compliance for
the symmetry imposed and free cases are Csymm = 1.1215
and Cfree = 1.1296. The optimized compliance for the
symmetric case is surprisingly lower. However, if itera-
tions continue, the less-constrained unsymmetric case will
have a lower final value. The unsymmetric case has more
than twice the number of design variables compared to
the symmetric case, resulting in a (slightly) lower rate of
convergence.

4.3 Full truss layout optimization for tapered building

This is an extension of the previous problem, adding the
truss member’s cross-sectional areas as design variables
for the optimization of the symmetric case. The simul-
taneous optimization of both sizing and geometry of the

Table 6 Final nodal locations for the symmetry constrained and free
problems with node numbering in accordance with Fig. 15b

Symm Free Symm Free

x1 −0.3958 −0.3959 y1 0.0000 0.0000

x2 −0.3522 −0.3433 y2 0.5376 0.5406

x3 −0.2770 −0.2733 y3 0.9426 0.9546

x4 −0.2379 −0.2491 y4 1.3449 1.4098

x5 −0.2188 −0.2385 y5 1.7725 1.8019

x6 0.3958 0.4167 y6 0.0000 0.0000

x7 0.3522 0.3547 y7 0.5376 0.5027

x8 0.2770 0.3063 y8 0.9426 0.9485

x9 0.2379 0.2275 y9 1.3449 1.3711

x10 0.2188 0.2086 y10 1.7725 1.8003

x11 0.0000 −0.0285 y11 0.5544 0.5494

x12 0.0000 0.0535 y12 0.9420 0.9122

x13 0.0000 −0.0201 y13 1.3124 1.3115

x14 0.0000 −0.0318 y14 1.7901 1.7828

Table 7 Final cross-sectional areas for truss members in accordance
with Fig. 15b

A1 3.6269 A9 3.1658 A17 3.0460

A2 3.6165 A10 3.1296 A18 2.7400

A3 3.5832 A11 3.0016 A19 2.7346

A4 3.3270 A12 2.8983 A20 2.6999

A5 3.6269 A13 3.1658 A21 3.0460

A6 3.6165 A14 3.1296 A22 2.7400

A7 3.5832 A15 3.0016 A23 2.7346

A8 3.3270 A16 2.8983 A24 2.6999

truss translated into a full layout optimization of the build-
ing’s truss superstructure. Previously, the final volume of
the truss does not match Vmax because the design variables
are the node locations only (Fig. 16b). The gradient of the
cross-sectional areas follow (23). The constraints in (24) are
also used with Amin = 0.015 and ma = 0.015.

The optimized element areas following the element num-
bering scheme from Fig. 15b are detailed in Table 7 and
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Fig. 17 Full layout optimization of the building’s truss superstruc-
ture (design variables are nodal coordinates and cross-sectional areas).
a Final geometry. b Volume throughout the iterations
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the node locations exhibit minimal variation with respect to
the previous symmetric case (Fig. 17a). As expected, the
optimizer allocated the unused volume in the truss to fur-
ther improve the solution resulting in the volume constraint
being active (Fig. 17b). The final compliance after 50 iter-
ations is equal to Cfull = 1.0977, that is lower than in the
previous cases.

4.4 Three-dimensional beam with truss reinforcements

This problem explores the optimal position of a reinforcing
truss within a three-dimensional beam and relates to Figs. 18
and 19. Because the truss only links with the continuum at
the nodes, this can be thought as if the bars have no friction
with the continuum along its length, as if they could slide
inside a casing embedded in the continuum. The domain
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Fig. 18 Optimization for a three-dimensional beam with an embedded
truss. a Domain definition and node numbering. b Continuum Tet10
mesh in the final deformed state. c Front, side and top views of the
converged configuration
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Fig. 19 Three-dimensional beam compliance evolution for 30
iterations

definition and initial bar location is given in Fig. 18a. The
only design variables are the node locations that initially are
positioned as specified in Table 8, in accordance with the
node numbering from Fig. 18a. The domain is meshed with
Tet10 elements dividing the domain in Nx × Ny × Nz =
36 × 11 × 8 blocks, with each block consisting of 6 Tet10
elements for a total of NE = 19008 elements (Fig. 18b is a
deformed plot of the mesh). In addition, Lx = 10, Ly = 3,
Lz = 2, Ec = 100, ν = 1/3, the bars all have equal proper-
ties EA = 500. The only constraint or restriction included
is a move limit m = 0.1 in accordance with (20). The beam
is loaded by a distributed load on the top face b = −2 and
the problem is optimized for compliance for 30 iterations
with a convolution radius R = 0.5

The problem does not have symmetry imposed,
and the final nodal coordinates after 30 iterations are in
Table 9. Nevertheless, within some numerical precision
symmetry is preserved. The final compliance for the prob-
lem is C = 79.5418, and the evolution throughout the
iterations is presented in Fig. 19, again with a smooth
decrease towards the optimum.

Table 8 Initial truss nodal locations within the three-dimensional
beam

Node x y z

1 0.5000 1.2000 1.6000

2 3.0000 1.2000 0.4000

3 7.0000 1.2000 0.4000

4 9.5000 1.2000 1.6000

5 0.5000 1.8000 1.6000

6 3.0000 1.8000 0.4000

7 7.0000 1.8000 0.4000

8 9.5000 1.8000 1.6000
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Table 9 Final truss nodal locations within the three-dimensional beam

Node x y z

1 0.4972 0.6366 1.2482

2 2.2785 0.7085 0.0000

3 7.7148 0.7021 0.0000

4 9.5002 0.6281 1.2542

5 0.5005 2.3713 1.2562

6 2.2828 2.2935 0.0000

7 7.7181 2.2898 0.0000

8 9.5012 2.3635 1.2485

4.5 Reinforced double corbel

This example deals with the steel layout of a double
corbel based on Example 3.2 in the ACI SP-208 (ACI
Committee 2002). The corbel transfers beam reaction
forces Vu = 61.8 kips and Nuc = 14.3 kips to a square
14 in column through a 6 in plate as depicted in Fig. 20a.
In addition, the upper column carries a compressive axial
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Fig. 20 Double corbel problem definition. a Problem definition. b
Model domain, loads and boundary conditions

load Pu = 275 kips. The problem deals with the lay-
out of the steel in traction, initially placed 2 in below
the corbel supports.

The loads coming from the upper column and the beam
are distributed over the column cross-sectional area and
plate respectively. Analysis will be carried out on a t = 1 in
thick model, with plane stress. Given the depth dimension
of the corbel, a three-dimensional analysis would be more
appropriate but the simplicity of a plane stress analysis is
more appropriate to showcase the method in an application
setting. The steel in compression has cross-sectional area
Asc = 0.1 in2 (not to be designed), and the steel in traction
has initially Ast = 0.1 in2. The elastic modulus of steel is
Es = 29000 kips, and for the concrete Ec = 3600 kips and
ν = 0.2. The model with the loads, boundary conditions and
initial steel placement (for a 1 in thick model) is presented
in Fig. 20b.
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Fig. 21 Double corbel optimization results after 200 iterations.
a Compliance. b Final steel layout and concrete Drucker–Praguer
stress



14 G.H. Paulino, T. Zegard

−20 −10 0 10 20
0

0.1

0.2
B

ar
 A

re
a 

[in
2 ]

 

 

Optimized
Original

−20 −10 0 10 20

0

20

40

60

B
ar

 S
tr

es
s 

[k
si

]

 

Optimized
Original

(a)

(b)

Fig. 22 Details for the corbel’s steel in traction. a Cross-sectional
area. b Axial stress

The concrete is modeled using 23312 T 6 elements,
and 47065 nodes. The steel rebars are modeled as several
pin-jointed bars 1 in apart to allow for linkage with the con-
tinuum throughout the length of the bar. The convolution
radius is R = 0.25 in. The optimization is done for com-
pliance subject to constant volume, and the design variables
are steel cross-sectional areas of the bars and the vertical
(y direction) node positions of the bar in traction (layout
optimization). The node movement is limited to 1 in away
from the concrete edges to allow for steel cover. The con-
straints or restrictions included are a move limit m = 0.1
as in (20) for the node locations, and in the cross-sectional
areas ma = 0.005 in2 and Amin = 0.001 in2 as in (24). The
optimization is run for 200 iterations for a symmetric mesh,
with symmetry not enforced.

Experimental results (Imran and Pantazopoulou 1996)
suggest the following Drucker-Prager model for concrete

0.3

(
I1

f ′
c

+ 1

)
=

√
1

3
−

√
J2

f ′
c

(30)

Table 10 Final node locations for steel in traction (in)

Node x y Node x y

1 0 16.2521 11 10 16.9086

2 1 16.2555 12 11 16.7158

3 2 16.2695 13 12 16.5538

4 3 16.2921 14 13 16.4070

5 4 16.3344 15 14 16.2939

6 5 16.3995 16 15 16.2710

7 6 16.5203 17 16 16.3699

8 7 16.7265 18 17 16.4352

9 8 16.9813 19 18 16.4119

10 9 17.0000

Table 11 Final cross-sectional areas for steel in traction for bars
between nodes i and j (in2)

nodei nodej As nodei nodej As

1 2 2.5389 10 11 1.3553

2 3 2.5596 11 12 1.0042

3 4 2.5937 12 13 0.3947

4 5 2.6694 13 14 0.0148

5 6 2.6540 14 15 0.0144

6 7 2.7265 15 16 0.0143

7 8 2.6469 16 17 0.0143

8 9 2.1364 17 18 0.0142

9 10 1.6514 18 19 0.0142

where I1 and J2 are the first and second principal stress
invariant. Reorganizing the terms

0.27 + 0.3
√

3

0.73
I1 + 1 + 0.3

√
3

0.73

√
3J2 = f ′

c (31)

we can define the Drucker-Prager stress as

σdp = 1.0817I1 + 2.0817
√

3J2 (32)

and failure occurs when σdp = f ′
c , analogous to Von Mises

stress. The concrete used in the example in ACI Committee
(2002) is assumed to have f ′

c = 4 ksi.
The compliance plot (Fig. 21a) exhibits a smooth

decrease throughout the iterations, but with little improve-
ment after the optimization. Despite not being enforced,
symmetry was indeed preserved as expected. The final posi-
tion of the steel and the cross-sectional areas are in Fig. 21b
(blue and red color indicate steel in compression and tension
respectively), as well as a Drucker-Prager stress.

The gain is clear if the steel is looked in detail: the bar
orients itself towards the principal directions taking a mous-
tache shape. The optimized cross-sectional areas vary as
in Fig. 22a, but most importantly the bar assumes a con-
stant stress behavior as in Fig. 22b in accordance with
Michell’s fully stressed requirements (Hemp 1973; Michell
1904; Rozvany 1996, 1997). In the final configuration there
is no shear in the bar, that along with the constant stress
(smaller than the previous maximum stress), makes a more
efficient use of the steel available and thus a better design.

Table 12 Corbel reinforcement steel in traction

Rebar Horizontal positiona

3#5 −12.5 to 12.5 in

2#5 −9.0 to 9.0 in

2#5 −7.5 to 7.5 in

aLengths measured horizontally
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Fig. 23 Final layout of the optimized steel in traction within the
double corbel

The final position and cross-sectional areas for the (half) bar
are in Tables 10 and 11 respectively.

The steel for the whole 14 in thick corbel is laid in one
layer and 3 different lengths following the results from the
optimization as in Table 12. The corbel with the design
obtained for the steel in traction is presented in Fig. 23.
The problem only considers and designs the primary rein-
forcement. Additional shear reinforcement and hooks will
be required for the design to be treated seriously.

5 Conclusions

The method presented here extends truss layout optimiza-
tion to combine a continuum with the discrete elements,
allowing for mixed-element type optimization problems to
be solved. This is possible because the derivative field
remains continuous and sufficiently smooth even if the
convolution radius is small.

Convolution coupling to the continuum does violate the
energy principle of the problem, but when used with a rea-
sonable sized convolution radius, the results are shown to
agree up to some level with an exact solution when avail-
able. In cases where an analytical solution cannot be easily
found, the method exhibits stable results (i.e. converging
to an almost equivalent state regardless of changing some
parameters). The optimum location has a small variation
that can be attributed to the difference in the FEM solutions
with refinement, and numerical inaccuracies.

There is no restriction over the objective function pro-
vided that the derivation procedure for the stiffness follows
(18). Restrictions to the optimization are easily imple-
mented and examples with volume constraint, minimum
cross-sectional areas and member lengths are given. The

method requires however a small step size (move limit)
between iterations due to the highly nonlinear behavior
of the problem. The situation worsens with an increasing
number of truss nodes or the inclusion of member sizing,
and thus the optimization can easily diverge.

The method is shown to effectively reach optimal config-
urations, however, an acceptable initial guess must be given
because of the large number of local minima in these prob-
lems. Note that a truss can have an infinite number of spa-
tial configurations, thus relying on the engineer’s common
sense to provide a starting point for the optimization.
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Appendix

Nomenclature

A Cross-sectional area of truss member
b Body force or distributed load
C Compliance uT Ku
d Directional cosines vector
E Elastic modulus
h (·) Convolution kernel function
J Objective function
J Jacobian matrix
K Stiffness matrix
L Length
m Iteration move limit
n Coordinates x, y or z

N Number of elements or nodes
N Shape function matrix
r Node distance
R Convolution kernel radius
T Transformation matrix
t Thickness
u Displacements
V Volume
α Adimensional parameter
β Adimensional parameter
γ Adimensional parameter
ν Poisson’s ratio
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