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This paper describes an ongoing work in the development of a finite element analysis system, called
TopFEM, based on the compact topological data structure, TopS [1,2]. This new framework was written
to take advantage of the topological data structure together with object-oriented programming concepts
to handle a variety of finite element problems, spanning from fracture mechanics to topology optimiza-
tion, in an efficient, but generic fashion. The class organization of the TopFEM system is described and
discussed within the context of other frameworks in the literature that share similar ideas, such as Get-
FEM++, deal.II, FEMOOP and OpenSees. Numerical examples are given to illustrate the capabilities of TopS
attached to a finite element framework in the context of fracture mechanics and to establish a benchmark
with other implementations that do not make use of a topological data structure.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In the past few decades, the presence of the finite element
method has become more important in both research and industry,
due to its ability to analyze and study detailed information that
other tools cannot provide [3,4]. This growth has left practicing
engineers with a steadily increasing need for more computational
power. With today’s technology, designs continue to grow larger
and faster, resulting in finite element models containing millions
of elements that must be handled in an efficient and timely fash-
ion. Furthermore, as computer hardware continues to advance,
there is a necessity for software to grow accordingly to make the
process capable of handling such large problems in the fields of so-
lid, structural and fluid mechanics.

Object-oriented programming has become more common for
computationally intensive finite element applications spanning
the field of continuum mechanics (e.g. aeronautical, automotive,
biomechanical industries) due to its flexibility from the concepts
of inheritance, polymorphism and encapsulation; however, the
efficiency of these programs can be impacted significantly by the
underlying data structures. In this paper, we introduce a new finite
element analysis program (TopFEM) based on the concepts of
object-oriented programming in conjunction with the topological
data structure to create a robust framework for adaptive finite ele-
ment problems. TopFEM was implemented in a way such that (i)
the data structure (TopS) stores only node and element data explic-
itly, with other topological entries implicitly represented (i.e. they
are only retrieved when needed) and (ii) expansion of the program
is straightforward, as in other frameworks.

1.1. The topological data structure (TopS)

Typical data structures consist of element-node mesh represen-
tations with tables to store the node and element information
using the node connectivity information. While this data structure
is seemingly simple and easy to implement, often it suffers in
terms of efficiently providing the necessary adjacency information
required to solve several problems (e.g. fragmentation simulation,
visualization techniques) [5–9]. The topological data structure
(TopS) [1,2] instead contains a complete and compact data struc-
ture which utilizes a relatively small amount of memory, while still
providing the user with access to all topological entities. Further-
more, TopS is naturally applicable to adaptive meshes.

TopS uses abstract topological entities (facet, edge, vertex) to
represent a finite element mesh. With large models, the amount
of data can require extensive storage space if not carefully consid-
ered, often rendering the cost of large models prohibitive.
Moreover, the access to each topological entity can be computa-
tionally intensive, and relatively complex, making it difficult for
the user to edit or query the data efficiently. Thus, the topological
data structure selected here is well suited for the problems we aim
to solve due to its (i) compactness, (ii) completeness and (iii)
adaptivity.
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The data structure used in this work is compact in comparison
with other data structures in the sense that the storage space
requirement is reduced, but topological information can be re-
trieved in constant time, or time proportional to the output size
[1,2]. The rationale behind the reduced storage space can be ex-
plained by the fact that only nodes and elements are explicitly
stored in internal arrays, using a relatively small amount of mem-
ory. In finite element meshes, the node and element arrays are the
most important entities in the respect that they can be used alone
to construct a finite element model; therefore, the node and ele-
ment entities are selected to be stored explicitly. In many finite
element representations, the nodal array typically stores the
{x,y,z} position in space for each node, and the element array holds
connectivity information. Conversely, in the topological data struc-
ture, TopS, the nodal array is modified to store both position and a
reference to one adjacent element, E. Each element is identified by
its hIDi. The element array stores the incidence (Inc []) and refer-
ences to the adjacent elements (adj []). There is an array for each
type of element and, therefore, each element is identified by the
tuple htype, IDi. Furthermore, the topological entities (facet, edge,
vertex) are all implicitly represented, that is, conceptually they ex-
ist, but they are not directly stored in the memory – their represen-
tations are retrieved ‘‘on-the-fly’’. All the entities, both explicit and
implicit, are represented by 4-byte word values with one class for
each type. From the client (analysis code) point of view, however,
there is no difference between the explicit and implicit entities;
the client has access to all types in a uniform, transparent way.

A complete data structure is one in which all the adjacency rela-
tionships can be derived from the stored data [10]. Thus, TopS is
complete due to its ability for the client to access all topological
adjacency relationships between any pair of defined entities in
the finite element mesh by using the fixed topology of the ele-
ments. Inspired by references [10,11], this data structure uses ori-
ented (implicit) and non-oriented topological entities to access all
adjacency information. The oriented entities represent the specific
use of a topological entity by an element. These oriented entities
consist of the use of each edge, facet, and vertex entity. Because
the oriented entities are implicitly represented, they do not require
any additional storage. These entities are represented by the ele-
ment and the associated local id, hE, idi. The non-oriented topo-
logical entities refer to the edges, facets, and vertices, which are
anchored to an element (i.e. elements have a bit-field indicating
its use as an anchor) and represented by its use associated to the
anchoring element.

The adaptivity of the topological data structure refers to its
capabilities to easily modify the mesh, as is necessary in the case
of fragmentation simulations [12,13]. In adaptive fragmentation
simulations, cohesive elements are inserted along element inter-
faces, where edges, nodes or vertices may need to be duplicated.
With the topological data structure, TopS, topological adjacency
information required to make such modifications in the finite
element mesh can be easily retrieved, and the elements can be
inserted in time scaling linearly with the number of elements.
Moreover, with the non-oriented entities defined as described pre-
viously, the management of the implicit entities is simplified be-
cause there is no need to keep track of orientation changes when
the mesh is modified.

1.2. Parallel/distributed computing

Over the last few years, computer processors have grown faster
by increasing parallelism to efficiently solve large-scale engineer-
ing problems, in place of the single processor machines predomi-
nately used before for such computationally heavy tasks. Thus,
recent attention has been given to the parallel and distributed
computing environments, where each computer has its own local
private memory with access to the memory of other machines to
exchange information when numerical simulations are prohibi-
tively expensive for a single processor.

The use of object-oriented programming is especially suited for
parallel and distributed computing applications due to its ability to
easily incorporate modifications in data structures for parallel/dis-
tributed computing, such as abstractions for data mapping,
communication and message passing [3]. Thus, the TopFEM frame-
work is flexible enough to be used across many different computer
platforms.

To incorporate such object-oriented programs into parallel
computing environments, many modern libraries have been devel-
oped, such as ParTopS [14] for dealing with the data structure, and
PetSC [15–17], PARDISO [18,19], and AMD Core Math Library
(ACML) [20] for parallel linear algebra (linear solvers), among
others. Such libraries can be easily implemented as extensions of
the current object-oriented framework, however, some challenges
result, including decomposing computations between processors,
dynamic mesh partitioning (load balancing among processors),
efficient communication between partitions, and adaption of
current serial algorithms for parallel execution. For a discussion
on these issues, the interested reader can refer to references [21–
23]. For linear systems of equations, TopFEM uses a base class/de-
rived class interface with these libraries to extend them to parallel/
distributed computing in a manner similar to the Actor Model of
OpenSees, in which the Actor abstract base class provides meth-
ods for descendent classes to communicate with their Shadow

objects [24].

1.3. Paper organization

The remainder of this paper is organized as follows: Section 2
reviews the state-of-the-art in object-oriented programming and
discusses these concepts in the context of finite element program-
ming. Next, in Section 3, the TopFEM class organization and frame-
work are presented. Numerical examples are given to illustrate the
effectiveness of the new framework using the topological data
structure (compared to previous implementations for fracture
mechanics) in Section 4. Finally, we conclude with some remarks
in Section 5.
2. Object-oriented finite element concepts

Significant research has been conducted to demonstrate the
effectiveness of finite element applications based on object-ori-
ented programming. A detailed discussion on incorporating finite
element concepts in an object-oriented framework is included in
the series of papers by Zimmermann et al. [25–31], where they
show that object-oriented programming can be used to achieve
appropriate levels in development speed, ease of maintenance,
software reliability and reusability. We discuss the main contribu-
tions of an object-oriented framework for finite element program-
ming next.

2.1. Related work

Object-oriented programming has been incorporated into finite
element applications for efficiency, organization and reusability in
previous work. Here, we give a brief review of the existent work
that has been presented on object-oriented finite element
programming.

One of the first implementations of finite element programs
using object-oriented concepts was presented in a series of papers
by Zimmermann and Dubois-Pèlerin [25–27]. In this early work,
they demonstrate the numerical efficiency of using the C++
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programming language (in comparison to Fortran), and its flexibil-
ity and capabilities to interface with the heavily used C-language.

The finite element framework using object-oriented program-
ming developed by Rucki and Miller [32] provided ‘‘new levels of
computational flexibility for general finite element-based struc-
tural modeling’’ to use classes to define the finite element model-
ing abstractions. This framework was developed to support a wide
range of algorithmic methods and techniques which included de-
grees of freedom and element-based, iterative and direct algo-
rithms for nonlinear problems in static and dynamic contexts.

These concepts were explored further in the work of McKenna
[24], known commonly nowadays in the engineering community
as OpenSees (Open System for Earthquake Engineering Simulation),
or previously as G3 [33]. This work emphasized the concept of
breaking computations down into tasks, that are then assigned to
processes. These tasks were especially suited for object-oriented
programming due to the intrinsic nature of tasks as the invocation
of object methods, where the tasks share common data that could
be easily managed in this framework.

Another piece of work initiated in the early 1990s was FEMOOP
[34], which provided an object-oriented framework for finite ele-
ment problems. Using two OOP classes, Analysis Model and
Shape, FEMOOP was developed to handle multidimensional mod-
els and associated natural boundary conditions in a generic fash-
ion. Similar to TopFEM, for example, the Element class has
references to the Shape, Analysis Model, and Integration

Point classes, which define generic behaviors. For instance, the
Shape class contains geometric and field interpolation informa-
tion, such as the dimension, shape, and number of nodes. The
Analysis Model defines the behavior for the type of analysis to
be performed (e.g. plane stress, plane strain, solid, 3D beam/truss,
etc.). The Integration Point class, or FemIntegration class in
TopFEM, holds information about the integration order, number of
points, coordinates, weights, etc. Thus, for each element, a method
to compute the stiffness matrix is independent of the specific
shape (quadrilateral, hexahedral, etc.), dimension (1D, 2D and
3D), and interpolation order (linear, quadratic, and so on).

Similarly, the GetFEM++ (Generic Toolbox for Finite Element
Methods in C++) library [35] also features generic management
of meshes (i.e. arbitrary geometry, arbitrary dimensions), some
generic assembling methods, and interpolation methods. Instead
of using the topology to describe a finite element model as TopFEM
does, the GetFEM++ framework describes models in the form of
bricks, with the objective of high reusability of the code. The sys-
tem of bricks is used to assemble components for a variety of mod-
el types (small/large deformations, Helmholtz, elliptic, etc.),
components representing boundary conditions and components
representing constraints [36].

Another finite element program library, known as deal.II (A
Finite Element Differential Equations Analysis Library) [37], is
based on the data structure, p4est [38]. The p4est data structure,
like TopS/ParTopS [14], is implemented to adaptively refine and
coarsen meshes for parallel computing, as in the case of fracture
simulations. However, while TopS/ParTopS uses the connectivity
and topological information for adaptivity and coarsening, p4est
uses a forest of two-dimensional quadtrees or three-dimensional
octrees.

A related framework, referred to as NLS++, was presented in
[39]. In this work, the use of object-oriented programming is dem-
onstrated for implementation of a unified library of several nonlin-
ear solution schemes in finite element programming. Because the
solvers share a common interface, object-oriented programming
was crucial to establish the class structure within this framework
(consisting of Model, Control and Linear Solver classes).

In the TopFEM framework presented here, we propose a new
object-oriented program using the concepts of the topological data
structure and object-oriented finite element programming. The
topological data structure was selected to efficiently represent fi-
nite elements of any type, while utilizing the concept of oriented
entities to significantly reduce the storage space requirements.
The object-oriented finite element programming portion was in-
spired by FEMOOP [34] and OpenSees [24] as described above,
due to their clear organization and flexibility.
2.2. Object-oriented programming for finite element applications

In finite element applications based on object-oriented pro-
gramming, the objects are broken down in order to provide flexi-
bility in the creation of different analysis [24,27,34]. This process
is performed by identifying the main tasks to be completed in an
analysis, abstracting them into separate classes, and specifying
an interface to facilitate the interaction between classes and allow
for straight-forward introduction of new classes [33]. For example,
in the class organization implemented in OpenSees, the creation of
the Analysis class as an aggregation can only be performed after
the Integrator, SolnAlgorithm, Constraint Handler, and
so on classes are created. This concept is important in that small
objects can be used in aggregation to compose larger objects for
performing a task.

Another essential concept involved in object-oriented finite ele-
ment applications is the use of different levels. For example, the
analysis and the element levels are independent so that they are
easily extendable, but can communicate with each other. The com-
munication of these two levels is made in two directions, for exam-
ple, the Analysis class will need to update the Domain class at
some point, and vice versa. This communication is important for
future developments in the parallel/distributed field, for example.

In the next section, we will discuss the significance and applica-
tion of these two main ideas within the TopFEM framework,
including a detailed description of the interaction between classes
and the hierarchical structure of the program.
3. The TopFEM system

The TopFEM system is a finite element analysis framework
based on the TopS [1,2,14] topological data structure. By using a
complete and compact data structure, analysis codes can take
advantage of efficient topological queries and mesh modification
operations required by some classes of applications, e.g. fracture
propagation [12,40] and adaptive simulations. One of the main
goals of the TopFEM system is to provide a common basis onto
which independent finite element analysis codes can be consis-
tently integrated. While still in an early stage of development,
the current implementation of the TopFEM system has been suc-
cessfully applied to the solution of a variety of problems, as dis-
cussed in Section 4. The basic class organization of the system is
briefly presented next.

Fig. 3.1 shows an illustration of the high-level classes of the
TopFEM system. The FemDomain class (Fig. 3.1) is a container
responsible for storing the finite element mesh and associated
model attributes, such as materials, boundary conditions and load
objects, which can be specified using the FemModelBuilder class.
Although in the context of traditional FEM the only data structures
required for representing the finite element mesh are a table of
nodes and a table of elements, in TopFEM, however, the mesh is
represented by a TopModel object, provided by the TopS data
structure. As a result, efficient access to the complete set of topo-
logical relationships is made available to the analysis application
without significant additional memory and performance penalties
compared with the simple mesh representation.
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TopNode
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TopElement

FemNode FemElement
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FemTransientAnalysis

FemLoad

Fig. 3.1. High level classes of the TopFEM system. Note: the box illustrates the separation between the mesh and analysis domains.
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Fig. 3.2. Element class and the composition objects that represent the fundamental components in forming the finite-element quantities, such as stiffness and mass matrices.
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Fig. 3.3. FemAnalysis class for creating and modifying the governing equations in finite element analyses.
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Per-element and per-node attributes are represented by the
FemNode and FemElement classes (Fig. 3.1), which are associated
to the corresponding topological entities in the finite element
mesh, TopNode and TopElement. The TopNode entity and its
associated attribute set (FemNode), correspond to a discrete point
in the finite element domain for which response quantities are de-
fined. The function of TopNode is to store the geometric coordi-
nates of the point, while FemNode is responsible for the response
quantities (e.g. displacement, velocity and acceleration). Each
TopElement is connected to a number of TopNodes. Topological
information such as the number of nodes of an element and node
identifiers are obtained from the element through the interface of
the TopModel class. The FemElement object associated to a
TopElement entity is responsible for computing analysis-specific
element quantities, such as stiffness and mass matrices. The
FemElement class represents the finite elements and is extended
by the subclasses FemParametricElement and FemBeamEle-

ment, which represent, respectively, the parametric finite elements
and the beam elements, as shown in Fig. 3.2.

The separation of concerns between mesh representation and
analysis attributes (the finite element domain) allows either the
mesh representation or analysis attributes to be replaced or



Fig. 4.1. Structural model of a 3D building with 6104 beam elements, 4065 nodes, and 24,390 degrees of freedom used to demonstrate the capabilities of the TopFEM
software.

Fig. 4.2. Physical model, renderings and topology optimization results of a 3D building with 12,800 brick (B8) elements, 25,760 nodes, and 76,806 degrees of freedom used to
demonstrate the capabilities of the TopFEM software (left and central figures courtesy of Skidmore, Owings and Merrill).
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adapted regardless of each other, in order to suit different applica-
tion needs. Specific node and element data and behavior required
by an analysis application can be modeled through specialized sub-
Table 1
Performance of building analysis.

Software Solver Elapsed time (s) Max. displ

Dx

TopFEM UMFPACK 0.548 0.7613
CROUT 1.690 0.7613

ABAQUS ABAQUS/standard 1.000 0.7613
Strand7 Unknown, sparse 0.858 0.7613
classes of FemNode and FemElement, respectively. This allows the
TopFEM framework to be extended with new types of nodes and
elements. Nodal and element attributes are efficiently stored in dy-
acement at node 4062 (m, rad)

Dy Dz Rz Ry Rz

0.000 0.000 0.000 0.002015 0.000
0.000 0.000 0.000 0.002015 0.000
0.000 0.000 0.000 0.002015 0.000
0.000 0.000 0.000 0.002015 0.000
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namic arrays that are automatically managed by the TopS data
structure. This grants the analysis application fast indexing of data
and avoids memory fragmentation associated with linked lists.

In order to promote the reuse of numerical analysis code,
additional helper classes are provided by TopFEM, which can be
combined to form specialized element and node attributes. The
FemShape class (Fig. 3.2) specifies an element shape function along
with all the behavior associated to the interpolation and mapping
between natural and Cartesian coordinate spaces. The FemInte-

gration class (Fig. 3.2) specifies the method and order of numer-
ical integration within an element, and contains the behavior
associated to the computation of the integrals over the element.
With regards to the different types of analyses that can be con-
ducted, the approach adopted here follows FEMOOP [34] where
the object FemElement has an object FemAnalysisModel, which
represents its analysis model (see Fig. 3.3). The FemAnalysisMod-
el class is an abstract base class that defines the generic behavior
of the different models implemented in the program, such as plane
stress, plane strain, and solid.

The FemAnalysis abstract class (Fig. 3.3) defines a common
interface for general finite element analyses. It is responsible for
forming and solving the governing equations for the finite element
model and updating the response quantities at nodes and ele-
ments. The main tasks performed in a finite element analysis are
abstracted into separate classes as follows: FemIntegrator, Fem-
LinearSolver and FemSolutionAlgorithm.

The FemIntegrator class is responsible for computing the
contributions of the FemElement and FemNode objects to the
system of equations. The FemLinearSolver is responsible for
storing and solving the systems of equations used in the analysis.
The FemSolutionAlgorithm performs an equilibrium analysis
on the FemDomain to find the equilibrium state. Examples of
subclasses of FemSolutionAlgorithm are FemLinear and
FemNewtonRaphson.

In the current implementation we are able to accommodate
different constitutive models (e.g. plasticity, hyper-elasticity),
Fig. 4.3. Finite element model and topology optimization results of a 3D building
with 24 beam elements, 9120 brick (B8) elements, 18,392 nodes, and 55,176
degrees of freedom.
large displacement analysis, dynamic loads, among others. In gen-
eral, the solution of a nonlinear finite element problem requires a
time stepping procedure. The approach adopted here follows
OpenSees [41] where the FemAnalysis object is a composition
of objects from other classes (see Fig. 3.3). To account for nonlin-
earities, the class FemSolutionAlgorithm, responsible for
specifying the steps to solve the equations at the current time step,
must find the solution to a nonlinear system of equations (e.g, the
Newton–Raphson algorithm). The pseudo-code of such a stepping
analysis is illustrated below:

In this pseudo-code, the object m_integrator (e.g. FemNew-
mark) is responsible for obtaining the matrices and vectors associ-
ated to each iteration of the current step; the object m_algorithm
(e.g. FemNewtonRaphson) has all the attributes necessary to ob-
tain the solution in the current step; and the object m_linsys
(e.g. FemCroutSolver) solves the linear system of equations that
arises in each iteration. The pseudo-code below illustrates the
Newton–Raphson algorithm.
Fig. 4.4. Time versus number of inserted CZ elements for linear and quadratic
tetrahedral meshes [40].

7.62

V=0.05m/s2.54

1.905

sl

ls=10.16 10.16

11.4311.43

Fig. 4.5. Specimen dimensions (in cm) for the three-point-bending fracture test.
The pre-crack is shifted to a position als , where ls is half the distance between the
two supports and 0 6 a � 1. [40].
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In the current framework, the domain is updated after each iter-
ation with the current state of the finite element model. After con-
vergence of the solution algorithm, the current state is committed.
Cases where the material models depend not only on the commit-
ted/current state have not been considered in the current imple-
mentation and further studies are needed to address it.

Furthermore, to include material nonlinearities, subclasses of
FemMaterial implement procedures for modifying the stress–
strain response to account for different constitutive models. Exam-
ples of subclasses of FemMaterial are FemMatElasticIso and
FemMatVonMises, as illustrated in Fig. 3.2.

4. Numerical examples

In this section, we analyze and present several examples to
highlight the capabilities of the TopFEM program, using both a
Crout solver and an UMFPACK (unsymmetric multifrontal sparse
LU factorization package) solver [42–45]. These capabilities are
demonstrated for a large-scale three-dimensional high rise struc-
ture and also in the context of topology optimization of such struc-
tures. Some comments are also made on the benefits of extending
the TopFEM framework to fracture and fragmentation simulations.

4.1. Finite element analysis and performance

The first example presented here is the analysis of a large three-
dimensional structural model of a building. The model includes
6104 beam elements and 4065 nodes, with a total of 24,390 de-
grees of freedom. The loading and boundary conditions are shown
together with the finite element model in Fig. 4.1.

In Table 1, we report the maximum displacements and rotations
computed with the TopFEM framework at the top central node of
the model (Node 4062) and compare the results to several other
structural engineering commercial software packages. We observe
that TopFEM with the UMFPACK solver performs comparably to
other commercial software packages.

4.2. Topology optimization using the TopFEM framework

An application of the TopFEM framework is evident within the
context of topology optimization problems. Topology optimization
is a relatively new and powerful tool in the field of structural
mechanics, where the goal is to find the optimal layout of a struc-
ture within a specified region [46,47]. Using topology optimization,
the geometric representation of a structure can be described as
similar to a black-white rendering of an image with ‘‘pixels’’ given
by the finite element discretization [46]. The general optimal de-
sign problem can be stated as follows:

min
d

f ðd;uÞ ð4:1Þ

s:t: giðd;uÞ ¼ 0 for i ¼ 1; . . . ; k

giðd;uÞ � 0 for i ¼ kþ 1; . . . ; m
Fig. 4.6. Stress contour and crack pattern for pre-crack three-point-bendin
where f is the objective function; d is the design field, u is the re-
sponse, which are related through the equality and inequality con-
straint functions gi. A canonical example is the minimum
compliance problem:

min
d

f ðd;uÞ ¼ uT KðdÞu ð4:2Þ

s:t: g1ðd;uÞ ¼ KðdÞu� p

g2ðdÞ ¼ VðdÞ � V

where f is the structural compliance, g1 represents the equilibrium
constraint, while g2 is the constraint on the allowable volume of
material, V . For demonstrative purposes, we will use the minimum
compliance problem throughout this section, though other objec-
tives, such as eigenfrequency, maximum critical buckling load,
stress, etc. are also applicable.

For the first problem, topology optimization is performed on the
Lotte Tower in Seoul (South Korea) (see [48]). The tower uses an
exterior diagrid structure transformed in shape from a square at
the base to a circle at the top. The tower is modeled with 12,800
brick (B8) elements and 25,760 nodes, and has 76,806 degrees of
freedom.

In Fig. 4.2, the results for the topology optimization for the
model are shown, where the analysis at each iteration was per-
formed using the TopFEM framework (see Fig. 4.3).

Next, an example illustrating the combination of discrete and
continuum elements for building design (see Fig. 29 of [49]) is
studied using topology optimization with the TopFEM framework.
Since this framework was written in a generic fashion, the incorpo-
ration of different types of elements was straightforward.

4.3. Fracture and fragmentation simulation

Evolution problems such as those involving dynamic fracture
and fragmentation can benefit from a topological data structure
representation [50–52]. During the fracture process, the numerical
simulation requires switching from a continuum to a discrete dis-
continuity, which can be investigated by means of a cohesive zone
model (CZM) [53]. The discontinuity appears as cracks nucleate,
initiate and propagate. As indicated by Paulino et al. [40], the topo-
logical data structure allows effective insertion of cohesive ele-
ments in an arbitrary mesh. Fig. 4.4 shows the elapsed time
against the number of cohesive elements for linear and quadratic
tetrahedral meshes. Notice that these results show linear scaling
with the size of the model, i.e. the time is linearly proportional
to the number of inserted cohesive elements. As an example,
Fig. 4.5 illustrates a 3D mixed-mode dynamic crack growth prob-
lem of a pre-cracked three-point bending beam which was tested
by John and Shah [54]. Fig. 4.6 illustrates a typical stress contour
and crack pattern for this specimen. Notice that at the time that
the simulation is shown (1.5 ms), there are numerous new surfaces
that have been created during the damage evolution process. In
summary, large-scale simulation of separation phenomena in sol-
g specimen with crack position parameter a ¼ 0:5 at t = 1.5 ms. [40].
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ids, such as fracture, branching, and fragmentation, can benefit
from a scalable data structure representation, such as TopS, during
the evolution process for such moving boundary problems.
5. Conclusions

In this work, we have presented the development of a finite ele-
ment analysis system, TopFEM, based on the compact topological
data structure, TopS [1,2]. This new framework was written to take
advantage of the topological data structure together with object-
oriented programming concepts to handle a variety of finite ele-
ment problems, spanning from fracture mechanics to topology
optimization, in an efficient, but generic fashion.

The class organization of the TopFEM system was also pre-
sented and discussed in comparison to other frameworks in the lit-
erature that share similar ideas, such as GetFEM++, deal.II, FEMOOP
and OpenSees. The main difference with TopFEM is the way in
which the connectivity and topological information for adaptive
mesh refinement is handled. The topological data structure is used
to represent finite elements of any type, while utilizing the concept
of oriented entities to significantly reduce the storage space
requirements.

The effectiveness of the TopFEM framework was demonstrated
through numerical examples illustrating the analysis capabilities,
in addition to its application in topology optimization. We showed
how TopFEM can provide a common basis onto which independent
finite element analysis codes can be consistently integrated in the
topology optimization context. Future implementations in TopFEM
will involve evolution problems such as those of Section 4.3.
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