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Introduction

Structural optimization has a long history of applications with
buildings. Lateral bracing systems are often used to provide lateral
stiffness to buildings. These may span one or several bays, single or
several stories high (Fig. 1).

Topology optimization, a density-based approach to optimiza-
tion, has been applied to optimal bracing system problems
with various conclusions (Neves et al. 1995; Mijar et al. 1998;
Allahdadian et al. 2012; Stromberg et al. 2012), including the
finding that the optimal bracing point is not always at
midheight. Topology optimization is a powerful technique, but
the interpretation of the results and subsequent member sizing
is not straightforward. An alternative approach is the ground
structure method (Dorn et al. 1964; Ben-Tal and Bendsøe
1993; Sokół 2011). The ground structure method results in
solutions with a large number of members that asymptotically
converge to the theoretical optimum for problems with known
(analytical) solutions (Michell 1904; Hemp 1973). The approach
used in this work simultaneously optimizes truss geometry (node
locations) and member sizes (Felix and Vanderplaats 1987;
Hansen and Vanderplaats 1988; Lipson and Gwin 1977). The
structural connectivity is fixed, and no members are added or re-
moved. Zero cross-sectional areas are a special case which cannot
be allowed because of a known discontinuity in member’s stresses
(Kirsch 1990). However, a very small cross-sectional area has an
effect similar to removing the bar. The bracing system is modeled
as an elastic truss with static loads and small displacements.
The connection costs are considered to be constant or null.

This indicates that the cost to connect members with different
cross-sectional areas and angles is assumed not to change.

The manuscript is organized as follows: “Four Complementary
Formulations” section describes the optimization formulations used
and highlights the properties of each. “Formulation Equivalency”
section discusses the analogies between all formulations and points
out the conditions for these to be equivalent. A single brace in
two and three dimensions is analytically optimized in “Single-
Brace Analysis” section. Extension to multiple braces and bays
with the inclusion of vertical loads are analyzed in “Multiple
Bays/Stories” section. Finally, conclusions and findings are sum-
marized in the “Conclusions” section.

Four Complementary Formulations

The question of where is the optimal bracing point is actually a
subjective one: the math and physics involved are exact, but to
define an optimum, a benchmark or measure needs to be chosen.
The options for the objective function (measure) are limitless, but
only a few are important to the practicing engineer, and even less
are used in practice. The following four objectives are explored in
the present work:
• Minimize the volume;
• Minimize the load-path;
• Minimize compliance; and
• Minimize displacements.

These objectives require constraints in order for the solution to
be bounded and unique. In all cases, the structural internal–external
force equilibrium is enforced, either by Ku ¼ f, or an equivalent
expression. The problems considered in this paper are elastic lateral
bracing systems with small deformations, and no self-weight or
connection costs (or constant). Nonetheless, some of the concepts
and conclusions can be extended to a wider range of options and
constraints (e.g., buckling or frequencies). Each formulation has
some properties, advantages, and disadvantages. A brief discussion
of these will be presented in the following section.

Volume Formulation

An intuitive formulation for a practicing engineer is to minimize the
volume of structural material. Typically, the cost of a structure is
proportional to its weight. Thus, minimizing the total weight of the
structure minimizes its cost (when the connection and joint costs
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are constant). A stress constraint prevents the member’s cross-
sectional areas from approaching zero. The minimum volume for-
mulation is as follows:

minA;x V ¼ ATL
s:t: σc ≤ σi ≤ σt ∀ i ¼ 1 : : : ne

A ≥ 0
with Ku ¼ f

ð1Þ

where L and A are column vectors with the member lengths
and cross-sectional areas, respectively, x is a vector with the joint
coordinates,K the stiffness matrix, u the nodal displacements, f the
nodal force vector, σi the member stresses, and σc and σt the stress
limits on compression and tension, respectively.

The volume formulation is arguably the most intuitive and
common (Michell 1904; Hemp 1973; Achtziger 2007). The
strength of this formulation is that dealing with different stress
limits for compression and tension is simple and straightforward.
Euler buckling constraints, for example, can also be included in
the formulation with an additional stress constraint

− π2E
ðκLi=riÞ2

≤ σi ∀ i ¼ 1 : : : ne ð2Þ

where E is the modulus of elasticity, κ is the column effective
length factorr is the member’s radius of gyration, r ¼ ffiffiffiffiffiffiffiffi

I=A
p

and I is the member's area moment of inertia. Because Euler's buck-
ling criterion overestimates the buckling strength of structural
members, better criteria and safety factors should be considered
(AISC 2011).

Load-Path Formulation

The load-path formulation, also called performance index or
Michell’s number (Lev 1981; Sokół 2011; Mazurek et al. 2011),
has equal treatment of compression and tension members and takes
into account the distance these forces have to travel through the
members to the supports.

minA;x Z ¼ P
i
ðNðtÞi − NðcÞiÞLi ¼

P
i
jNijLi

s:t:
P
i
AiLi ≤ V̄

A ≥ 0
with Ku ¼ f

ð3Þ

where Ni stands for the axial force in member i, and V̄ is a
prescribed limit on the volume.

The load-path formulation has the difficulty of an absolute value
in the objective function (alternatively, the compression and tension
loads can be split into two positive variables, thus making the ob-
jective a linear function). The biggest advantage of this formulation
is that for statically determinate trusses, the axial load does not
depend on the cross-sectional areas. In other words, the member
sizing problem is decoupled from the geometry, reducing the
design variables from ðnd × nn þ neÞ to just ðnd × nnÞ, where
nd, nn, and ne are the problem’s dimension, number of nodes,
and number of elements, respectively. The formulation can be
extended to treat compression and tension differently by introduc-
ing a parameter γ ¼ −σt=σc and rewriting the objective for Eq. (3)
to include this penalization parameter (Sokół 2011)

minA;x Z⋆ ¼ P
i
ðNðtÞi − γNðcÞiÞLi

s:t:
P
i
AiLi ≤ V̄

A ≥ 0
with Ku ¼ f

ð4Þ

Including a buckling constraint on the other hand is not straight-
forward.

Compliance Formulation

Recent works on structural optimization center around stiffness
measures for the structure’s performance (Bendsøe and Sigmund
2003). A typical formulation for this purpose is the compliance for-
mulation: an energy measure related to maximizing the stiffness of
the structure for given loads

Fig. 1. Examples of single and multiple bays braced buildings: (a) John Hancock Center, Chicago (SOM, Ezra Stoller, © Esto, with permission);
(b) Alcoa Building, San Francisco (SOM, © Mak Takahashi, with permission); (c) building in Presidente Riesco Ave., Santiago, Chile (image by
Tomás Zegard)
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minA;x C ¼ uTKu ¼ uTf
s:t:

P
i
AiLi ≤ V̄

A ≥ 0
with Ku ¼ f

ð5Þ

The main advantage of the compliance formulation is that the
objective function is self-adjoint: when computing the sensitivity,
the solution to the adjoint problem is known (Giles and Pierce
2000), making this formulation computationally attractive. Stress
and buckling constraints can be implemented, but are, again, not
straightforward.

Displacement Formulation

Displacement objective functions are used typically in minimizing
the maximum displacement (i.e., top story of a building or inter-
story drift). Considering a single displacement Δ ¼ jujj (Fig. 2),
the displacement formulation takes form:

minA;x Δ ¼ uj
s:t:

P
i
AiLi ≤ V̄

A ≥ 0
with Ku ¼ f

ð6Þ

The displacement formulation is simple and has the advantage
of possessing a direct physical meaning for the engineer. It has
similar characteristics to the compliance formulation, but it is not
self-adjoint.

Formulation Equivalency

The four objectives presented in Eqs. (1), (3), (5), and (6) may seem
different, but under typical conditions, these formulations will
result in the same optimal brace point location. In other words,
the stiffest structure in a direction, the least compliant structure,
the least weight structure, and the one with the smallest load-path
all have the same optimum solution. The focus of this section is to
explain when this occurs and what happens when some of the con-
ditions are violated.

Optimal structures in material efficiency tend to be fully stressed
(Michell 1904; Lev 1981; Topping 1983). The proof is intuitive
with the formulation in Eq. (1): for a structure that is not fully
stressed, a reduction of the cross-sectional areas will decrease

the objective without violating the constraints. With no displace-
ment, buckling, or symmetry constraints (manufacturing con-
straints), the optimal design is often fully stressed. This
statement is not true for the case of multiple loading conditions
and is not considered in the present work. The fully stressed
condition leads to the stress–ratio method [that relates to Michell’s
solutions (Lev 1981)], where the cross-sectional areas are updated
at each iteration as

AiðnewÞ ¼ max

�
σc

σi
;
σt

σi

�
Ai ð7Þ

Optimal structures have a tendency to be statically determinate,
but as (Schmidt 1962) correctly concluded, a statically indetermi-
nate form could sometimes give a lighter structure than a statically
determinate one, although this situation is only valid with multiple
loading scenarios.

Load-Path to Volume

The connection between volume and load-path was pointed out by
Michell (Lev 1981). If the structure is fully stressed, then there exist
limit stress values σc and σt such that

NðcÞi ¼ σcAi NðtÞi ¼ σtAi ð8Þ

With these, the objective in Eq. (4) becomes

Z⋆ ¼
X
i

�
σtAijðtÞ −

�
− σt

σc

�
σcAijðcÞ

�
Li ¼ σt

X
AiLi ¼ σtATL

ð9Þ
and Eq. (3) is a subcase of the previous. Therefore, if the structure is
fully stressed, minimizing the performance index is equivalent to
the formulation in Eq. (3) (multiplied by a constant).

Compliance to Load-Path

The compliance problem in Eq. (5) with a single load P, indepen-
dent of the variables and displacements, can have the objective
simplified as

C ¼ uTf ¼ PΔ ð10Þ
where Δ is the displacement in the direction of the load P. For a
truss with a single point load, the principle of work and energy
(Baker 1992) states that

PΔ ¼
X
i

N2
i Li

AiE
¼

X
i

jNij2Li

AiE
ð11Þ

Including the fully stressed assumption with jNij=Ai ¼ σ̄,
results in

C ¼
X
i

jNij2Li

AiE
¼ σ̄

E

X
i

jNijLi ð12Þ

thus making it equivalent to the formulation in Eq. (3) (multiplied
by a constant).

Displacement to Compliance

If the displacement problem from Eq. (6) has a single constant load
P (independent of design variables and displacements), and the
displacement Δ being minimized is in the direction of the force
P, then

Fig. 2. Displacements of a lateral bracing system due to a load P;
because of symmetry, u3 ¼ u4 ¼ Δ
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minΔ ¼ minPΔ ¼ minuTf ð13Þ

leading to the formulation in Eq. (5). If the objective function in
Eq. (6) is a linear combination of several displacements of the truss,
then the equivalency is preserved if and only if the loads in the dis-
placement directions are in the same ratio as the coefficients in the
linear combination. If the aforementioned condition is not met, then
the optimal design, which minimizes some displacement Δ, is not
fully stressed.

The relationship and requirements for equivalency between for-
mulations are then summarized in Fig. 3. The requirements for
equivalency shed light on when these connections may be broken.
In particular, previous studies have already shown cases where the
minimum weight and fully stressed design are not equivalent
(Kicher 1966; Razani 1965).

Single-Brace Analysis

The following analytical derivations for two-dimensional braces
extend the conclusions derived by (Stromberg et al. 2012), where
the optimal bracing point was found to be at x ¼ 0.75H for single-
bay multiple-story braces optimized for compliance. In addition,
Stromberg has an application of these optimal braces in a real
design (Stromberg et al. 2012). The findings in this section form
the basis for more general bracing rules in the following sections.
The bracing point location in Fig. 4 will be optimized using for-
mulations discussed earlier.

Using the symmetry condition, only half of the brace needs to be
analyzed. Consideration of different values for σt and σc is not
important because the direction of lateral loads in buildings is

uncertain, therefore a single value σ̄ is used to limit positive and
negative stresses.

The compliance of the structure is

C ¼ 4P2

EB2

�
L3
1

A1

þ L3
2

A2

þ L3

A3

y2
�

ð14Þ

where B denotes the bay width (Fig. 4). The volume for the half-
structure is

V ¼
X3
i¼1

AiLi ¼ A1L1 þ A2L2 þ A3H ð15Þ

where H denotes the bay height (Fig. 4). The derivatives of the
member lengths L with respect to variable y are:

dL1

dy
¼ y

L1

dL2

dy
¼ y −H

L2

dL3

dy
¼ 0 ð16Þ

and derivatives of the axial loads with respect to the variable y are

dN1

dy
¼

�−2P
B

��
y
L1

�
dN2

dy
¼

�
2P
B

��
y −H
L2

�
dN3

dy
¼ 2P

B

ð17Þ
where N is the axial load on the member, P is the load at the top, B
andH are the width and height of the brace, respectively, and x and
y locate the bracing point.

The three-dimensional case is symmetric with respect to the
x1x3 and x2x3 planes (lateral forces in a building are often consid-
ered in one direction at a time); therefore, only one quarter of the
brace needs to be solved: corner columns participate in both load-
ing directions. Fig. 5 illustrates the bracing system loaded in the

Fig. 3. Equivalency requirements between formulations

Fig. 4. Two-dimensional lateral bracing system Fig. 5. Three-dimensional lateral bracing system

© ASCE 04014063-4 J. Struct. Eng.
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plane x1x3. If the base is square B1 ¼ B2, the resulting optimal bra-
ces in both planes are the same. This can be interpreted as the cost
of the diagonals being twice that of the two-dimensional case: a
cost (or multiplicity) variable α ¼ 1 for the two-dimensional case
and α ¼ 2 for the three-dimensional case will be used.

Minimum Volume Optimal

The Lagrangian for the minimum volume objective is:

L ¼ αA1L1 þ αA2L2 þ A3H þ λ11ð−A1σ̄ − N1Þ
þ λ12ð−A1σ̄ þ N1Þþ · · ·

λ21ð−A2σ̄ − N2Þ þ λ22ð−A2σ̄ þ N2Þþ · · ·

λ31ð−A3σ̄ − N3Þ þ λ32ð−A3σ̄ þ N3Þ ð18Þ

which has a single feasible optimum at

λ11 ¼ αL1=σ̄ λ12 ¼ 0 λ21 ¼ 0

λ22 ¼ αL2=σ̄ λ31 ¼ 0 λ32 ¼ H=σ̄ ð19Þ

Therefore, the optimal bracing point is located at

x ¼ 2αþ 1

4α
H y ¼ 2α − 1

4α
H ð20Þ

Load-Path Optimal

The Lagrangian for the minimum load-path objective (introducing
fictitious equivalent forces in the three-dimensional case to enforce
symmetry, i.e., taking α ¼ 2) is

L ¼ α
2PL1

B
L1 þ α

2PL2

B
L2 þ

2Py
B

H ð21Þ

with no constraint because the structure is statically determinate.
The optimal bracing point is located at

x ¼ 2αþ 1

4α
H y ¼ 2α − 1

4α
H ð22Þ

Compliance Optimal

The Lagrangian for the minimum compliance objective (introduc-
ing fictitious equivalent forces in the three-dimensional case to en-
force symmetry, i.e., taking α ¼ 2) is

L ¼ 4P2

EB2

�
L3
1

A1

þ L3
2

A2

þ L3

A3

y2
�
þ λðαA1L1 þ αA2L2 þ A3H − V̄Þ

ð23Þ

The optimum is found for

λ ¼ 4P2y2

EB2A2
3

ð24Þ

and the optimal bracing point is at

x ¼ 2
ffiffiffi
α

p þ 1

4
ffiffiffi
α

p H y ¼ 2
ffiffiffi
α

p − 1

4
ffiffiffi
α

p H ð25Þ

Displacement Optimal

The Lagrangian for the minimum displacement objective (introduc-
ing fictitious equivalent forces in the three-dimensional case to
enforce symmetry, i.e., taking α ¼ 2) is

L ¼ Σ
N2

i Li

AiE
þ λðαA1L1 þ αA2L2 þ A3H − V̄ ð26Þ

The stress values in the members as a function of λ are:

σ1 ¼
ffiffiffiffiffiffiffiffiffi
PEλ

p
σ2 ¼ σ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
αPEλ

p
ð27Þ

and the optimal bracing point is found at:

x ¼ 2
ffiffiffi
α

p þ 1

4
ffiffiffi
α

p H y ¼ 2
ffiffiffi
α

p − 1

4
ffiffiffi
α

p H ð28Þ

Result Summary

Results obtained with the four objectives discussed are compared in
Table 1.

The methods can be grouped (or characterized) by objectives:
weight/cost and stiffness/performance. In two-dimensional braces,
all four formulations result in the same solution. In the three-
dimensional case, however, optimizing for weight/cost or for stiff-
ness/performance results in different bracing points. It is important
to note that the member stresses will not be constant for the 3D
performance-optimized case (σ2 ¼ σ3 ¼

ffiffiffi
α

p
σ1): the optimal de-

sign and fully stressed condition don’t match (Kicher 1966; Razani
1965). In other words, given the symmetry constraints in two axes,
the fully stressed condition is broken, and thus, the equivalency
between all formulations cannot be achieved (Fig. 3).

The decrease in the objective function for the optimal bracing
point (as in Table 1), compared to the midpoint brace (x ¼ 0.5H),
depend on the aspect ratio of the brace. As expected, the improve-
ment in the compliance objective (displacement decrease) with
a volume constraint, is the square of the improvement in the vol-
ume objective with stress constraints, for a single two-dimensional
brace:

Vðx ¼ 0.75H;AoptÞ
Vðx ¼ 0.5H;Aopt

x¼0.5HÞ

����
2D

¼ 4B2 þ 7H2

4B2 þ 8H2
ð29Þ

Cðx ¼ 0.75H;AoptÞ
Cðx ¼ 0.5H;Aopt

x¼0.5HÞ

����
2D

¼
�
4B2 þ 7H2

4B2 þ 8H2

�
2

ð30Þ

However, this is not true for the (symmetry-constrained) three-
dimensional case. The optimization for loads in two different
directions results in an optimal structure that is not fully stressed
for each of the loads. The ratio of the objectives for the three-
dimensional problem is as follows:

Vðx ¼ 0.625H;AoptÞ
Vðx ¼ 0.5H;Aopt

x¼0.5HÞ

����
3D

¼ 16B2 þ 23H2

16B2 þ 24H2
ð31Þ

Table 1. Optimal Bracing Point Location in Two and Three Dimensions
with Different Objectives

Height x

Weight-Cost Performance

Volume Load-Path Compliance Displacement

2D 0.75H 0.75H 0.75H 0.75H
3D 0.625H 0.625H 0.6768H 0.6768H

© ASCE 04014063-5 J. Struct. Eng.
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Cðx ¼ 0.6768H;AoptÞ
Cðx ¼ 0.5H;Aopt

x¼0.5HÞ

����
3D

¼
�
8B2 þ ð7þ 4

ffiffiffi
2

p ÞH2

8B2 þ ð8þ 4
ffiffiffi
2

p ÞH2

�2
ð32Þ

The comparison of the improvement in the objective function
for a single brace, for the cases of (B ¼ H) and (1.5B ¼ H), is sum-
marized in Table 2.

Multiple Bays/Stories

The previous section deals with a single brace loaded laterally, but
in building applications, the bracing system may span several sto-
ries or bays (side by side) as in Fig. 6. Additionally, the braces
could also be loaded vertically by a load Pz, but this load is
only taken downwards as opposed to the lateral Px that may act
in any direction.

The best possible solution has a different optimal bracing
point for each bay and story. Nonetheless, a unique bracing
point for the whole bracing system is desirable for construc-
tion and aesthetic reasons. In this section, the optimal bracing
point for several different cases is found assuming a single op-
timal bracing point height for all bays. For statically indetermi-
nate trusses, the cross-sectional areas must be included in the
optimization.

Single Bay—Multiple Stories

Single bay braces (several stories high) as in Figs. 6(a and c) are
statically determinate, and the optimal bracing point using the
load-path formulation requires no member sizing. The addition
of vertical loads does not have an effect on the optimal bracing
point location. Vertical loads transfer directly to the base through
the columns, and therefore affect only the sizes of the columns.
The optimal is found to be at x ¼ 0.75H using all of the presented
formulations.

Limit Case of Infinite Bays—Single Story

The bracing system is statically indeterminate in this case, and
the cross-sectional areas must be included in the optimization.
Taking advantage of the symmetry, the analysis can be done
as in Fig. 7 for a single braced column. The optimum bracing
points are found to be at x ¼ 0.50H using all of the presented
formulations. The columns get sized with a zero cross-sectional
area, and the addition of vertical loads does not change the lo-
cation of the optimum bracing points. This can be interpreted
as a shear transfer problem across stories, and as expected, the
optimal solution is perfectly straight diagonal braces as depicted
in Fig. 8.

Multiple Bays—Multiple Stories

The solution to this problem [Fig. 6(d)] is not trivial because
of the large number of variables introduced by the cross-
sectional areas and the nonlinearity of the problem, and there-
fore the problem is solved numerically. The stress ratio method
introduced in Eq. (7) tends to drive the solution to a local mini-
mum for large enough problems. The cross-sectional areas are

Table 2. Single-Brace Improvement in the Objective Function for the
Optimal Bracing Compared to a Midheight Bracing Point

Improvement
over
x ¼ 0.5H

Weight-cost Performance

B ¼ H
(%)

1.5B ¼ H
(%)

B ¼ H
(%)

1.5B ¼ H
(%)

2D 8.33 10.23 15.97 19.41
3D 2.50 3.21 9.02 11.28

(a) (b)

(c) (d)

Fig. 6. Two-dimensional bracing systems consisting of multiple bays
and stories with horizontal and vertical loads: (a) 1 × 1 brace;
(b) 1 × 3 brace; (c) 2 × 1 brace; (d) 2 × 3 brace

Fig. 7. Two-dimensional single-story bracing system with infinite bays: (a) brace with loads; (b) load and boundary conditions for horizontal load;
(c) loads and boundary conditions for vertical load
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introduced into the optimization along with the bracing point
variable, and the optimization is done using the interior-point
method (Karmarkar 1984; Wright 2005). Based on tributary
areas, the lateral and vertical loads double at internal nodes.
For low levels of vertical loads, the optimal solution lies between
the previous solutions x ¼ 0.50H and x ¼ 0.75H, and these val-
ues act like upper and lower bounds of all possible solutions.
This is proven false when a bracing system is subjected to high
vertical loads and multiple stories, as the solution may fall
below x ¼ 0.5H and slowly converge to it from below. From
Fig. 9, it can be inferred that an increase on the number of
bays or on the vertical loads will drive the solution closer to
x ¼ 0.5H. In general, the bracing point location decays asymp-
totically towards x ¼ 0.5H. As an example, the solution for the
case with no vertical loads Pz ¼ 0.0, and a single story is pre-
cisely described by

xð1−story;Pz¼0.0Þ ¼
�
0.25
bays

þ 0.5

�
H ð33Þ

and on the limit of infinite bays converges to x ¼ 0.5H as
predicted.

Three-Dimensional Case

Three-dimensional braces composed of several bays have their use,
for example, in mechanical floors of buildings and machine sup-
ports (Fig. 10). Based on tributary areas and compared to corner
nodes, loads double at edge nodes and quadruple at interior nodes.
The solutions are similar to the two-dimensional case, but with
different upper bounds: for cost/weight optimization, the upper
bound is at x ¼ 0.625H ¼ 5=8H, and for stiffness/performance,
the upper bound is at x ¼ 0.6768H for Pz ¼ 0.0, but this upper
limit gets reduced when increasing the number of stories or vertical
load (Fig. 11).

Fig. 8. Two-dimensional optimal single story bracing system with
infinite number of bays

1 2 3 4 5 6
0.45

(a) (b)

(c)

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Stories = 1

bays

x/
H

Pz /Px =0.0

Pz /Px =0.5

Pz /Px =1.0

1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Stories = 2

bays

x/
H

Pz /Px =0.0

Pz /Px =0.5

Pz /Px =1.0

1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Stories = 3

bays

x/
H

Pz /Px =0.0

Pz /Px =0.5

Pz /Px =1.0

Fig. 9. Multiple bays—multiple stories optimal bracing locations in two dimensions: (a) one story high; (b) two stories high; (c) three stories high

Fig. 10. Three-dimensional brace with three bays and two stories
(potential uses: stage supports, machine supports, mechanical floors,
warehouses, etc.)
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Conclusions

Optimal structures, and consequently bracing systems, are said to
be optimal in accordance to the objective function used. Four typ-
ical formulations (using different objective functions) for structural
optimization were presented. Similarities, differences, and connec-
tions between them were highlighted and explored. Compared to
geometrical optimization, the member sizing problem is better
known and understood. Therefore, the focus of this work was
placed on the bracing point location, leaving the member sizing
to be done a posteriori (although, in obtaining the bracing points
for statically indeterminate braces, the members were sized).

The optimal bracing point location in two dimensions is the
same regardless of the objective function (formulation) used. In
most cases, the optimal bracing point is found to be in a feasible
region delimited by x ¼ 0.50H and an upper limit or bound. The
optimal bracing point location may fall below x ¼ 0.50H if the
structure is subjected to high vertical loads. If the bracing system
is subjected to vertical loads, and/or if the bracing system is com-
posed of multiple bays, then the optimal bracing point location
approaches the lower limit. The upper limit is x ¼ 0.75H ¼
3=4H for the 2D case, regardless of the objective function. For
the three-dimensional case, the upper limit is x ¼ 0.625H ¼
5=8H for cost/weight optimized structures, and for the stiffness/
performance case, the upper limit is x ¼ 0.6768H or a lower value
if subjected to vertical loads.

The symmetry constraint in three-dimensional trusses breaks
the fully stressed condition for structures optimized for stiffness/
performance. In other words, material is not being used efficiently
(or at full capacity), but the resulting structure will still be the
stiffest.

The purpose of this paper is to provide insight for the initial
guess of cost-effective or high-performing lateral braces. These
findings can aid the engineer in the initial stages of design and also

provide guidance to improve common engineering practices that
often put the bracing point at the middle x ¼ 0.5H, or worse, at
the top x ¼ H. A natural extension of his work is the consideration
of the dynamic behavior of the structure.

Appendix. Extension to Nonsquare
Three-Dimensional Braces

The analysis of three-dimensional braces is limited to square bases
to narrow the scope of the paper. However, the authors extended
this work to nonsquare braces. As an example, the optimal bracing
point for a single nonsquare three-dimensional brace, optimized
for volume/cost considering different loads in each direction P1

and P2 is:

x ¼ H
4

�
2þmaxðλ1;λ2Þ

λ1 þ λ2

�
y ¼ H

4

�
2 −maxðλ1; λ2Þ

λ1 þ λ2

�
ð34Þ

with λ1 ¼ P1=B1, λ2 ¼ P2=B2, and the width of the bay in the x1
and x2 directions being B1 and B2, respectively (Fig. 5).
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Fig. 11.Multiple bays—multiple stories optimal bracing locations in three dimensions: (a) one story high; (b) two stories high; (c) three stories high
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Notation

The following symbols are used in this paper:
A, A = cross-sectional area and vector of all cross-sectional

areas, respectively;
B = brace width;
C = compliance of the truss (strain energy);
E = elastic modulus;
f = nodal force vector;
H = brace height;
I = member’s area moment of inertia;
K = stiffness matrix associated with the structure;

L, L = truss member length and vector of all member lengths,
respectively;

L = Lagrangian function;
N = member’s axial load;
nd,

nn, ne
= structure’s dimensions, number of nodes, and elements,
respectively;

P = lateral or vertical load on the bracing system;
r = member’s radius of gyration =

ffiffiffiffiffiffiffiffi
I=A

p
;

u, u = nodal displacement and vector of displacements,
respectively;

V = volume of the structure;
x, y = bracing point height and clear, respectively; xþ y ¼ H;
Z = Michell’s number (performance index);
α = diagonal member’s cost variable; α ¼ 1 in 2D and α ¼ 2

for 3D braces;
γ = limit stress in tension and compression ratio;

γ ¼ −σt=σc;
Δ = displacement (or linear combination of displacements) to

be minimized;
κ = column effective length factor (used in buckling

calculations);
λ = Lagrange multiplier; and
σ = internal stress.
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