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This paper addresses the behavior of three-dimensional multilayered pipe beams with interlayer slip
condition, under general 3-D large displacements, in global riser and pipeline analysis applications. A
new finite element model, considering the Timoshenko beam for each element layer, has been formulated
and implemented. It comprises axial, bending and torsional degrees-of-freedom, all varying along the
length of the element according to discretization using Hermitian functions: constant axial and torsional
loadings, and linear bending moments. Transverse shear strains due to bending are included in the for-
mulation by including two generalized constant degrees-of-freedom. Nonlinear contact conditions,
together with various friction conditions between the element layers, are also considered. These are
accounted in the model through a proper representation of the constitutive relation for the shear stress
behavior in the binding material. The element formulation and its numerical capabilities are evaluated by
some numerical testing results, which are compared to other numerical or analytical solutions available
in the literature. The tests results show that the new element provides a simple yet robust and reliable
tool for general multilayered piping analyses.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction In the literature, several analytical and numerical solutions
Multilayered pipelines have been widely used in the petroleum
industry to transport almost all types of fluids in the oil production
system. Flexible lines are the most common example of this type of
structure, which consists of a tubular arrangement of concentric
metallic and polymeric material layers. Although widely in use,
appropriate representation of flexible lines in numerical simula-
tion still represents a great numerical challenge, mainly due to
their nonlinear dynamic behavior in global riser analysis and to
nonlinearities caused by its multilayered cross section.

An alternative to flexible lines is the use of steel rigid lines,
which also have static (pipelines) and dynamic (risers) applica-
tions. As well as flexible lines, the rigid pipelines often have multi-
layered cross section, due to internal corrosion resistant alloys
(CRA) and external thermal insulation coatings. In both, mechani-
cal design and global riser analyses, the presence of these addi-
tional layers are neglected, mainly due to difficulties of current
available numerical models to adequately represent the behavior
of multilayered pipes.
have been proposed since Newmark et al. [1] first proposed a
two-layered Euler–Bernoulli beam model considering linear
behavior. More recently, Schnabl et al. [2], Foraboschi [3] and
Ecsedi and Baksa [4], proposed analytical solutions for two-layered
laminated beams considering interlayer slip condition, but re-
stricted to small displacements and linear constitutive models for
each layer material. Some of these papers also included transverse
shear deformation in their formulation. Attempts for more general
analytical solutions have been proposed by Girhammar and Gopu
[5] and Girhammar and Pan [6] who presented exact solutions,
for first and second order analysis procedures, allowing estimation
of the magnitude of beam deformation and internal actions be-
tween layers. Chen et al. [7] presented a solution where the com-
bined action of arbitrary transverse and constant axial loadings,
under static conditions, is considered in a non-uniform slip stiff-
ness model. In the same line of investigation, numerical methods
were also proposed by many authors, mainly based on the finite
element method (FEM) approach. A strain-based FEM, based on
the Timoshenko beam theory for each element layer, applicable
to linear static analysis of two-layer planar composite beams, with
interlayer slip, was proposed by Schnabl et al. [8]. Using a similar
approach, Čas et al. [9,10] presented a finite element formulation
that considers non-linear time-dependent constitutive models for
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Fig. 1. Beam element reference configurations.
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the element layers and a non-linear relationship between the slip
and the shear stress at the interface. In this formulation, the geo-
metrically non-linear Reissner’s beam theory was used. Krawczyk
and Frey [11,12], proposed a 2D beam element for geometric non-
linear analysis of multilayered beams considering interlayer slip.
The element formulation is based on the co-rotational approach
with Timoshenko’s beam theory assumptions. The element is as-
sumed to undergo large displacements and rotations, but with
small deformations and moderate slip between layers. A 2D model
comparing the FEM solutions with extended Euler–Bernoulli’s for-
mulation and Timoshenko’s beam model of slab beams for various
loadings was presented by Zona and Ranzi [13]. It is shown that
displacement and stress results in composite members are con-
trolled by the interaction between bending and shear (short or long
beams), in each case study. The behavior of general multi-stacked
composite beams with interlayer slip was considered by Sousa Jr.
and Silva [14] for the rectangular section where curvature locking
difficulties were identified. Their model represents the composite
beam as an association of beams and interface elements, providing
an efficient solution for the multilayered beam problem.

Several studies on multilayer beams are now available in the lit-
erature. However most of them have their application limited to
laminated beams under in plane loading only. To the best of
author’s knowledge, an appropriate representation of multilayered
pipes in three-dimensional nonlinear analysis has not yet been ad-
dressed in the literature.

In this work, a multilayered pipe beam formulation, which ac-
counts for axial and bending degrees-of-freedom at each layer is
proposed. It includes classical modes of deformation and nonlinear
interlayer slip (with shear deformation assumed constant through
the interlayer material thickness). In this model, damage at the
interface is accounted by considering a yielding-type function for
the interface material constitutive model, in a nonlinear fashion
of analysis. The FEM formulation considers the nonlinear behavior
of multilayered pipes under general 3-D large displacements. An
updated Lagrangian formulation is employed including large dis-
placements and rotations. The conventional two-node Hermitian
displacement functions [15] are employed to represent the ele-
ment in convected (co-rotated) coordinates. The element combines
Euler–Bernoulli beam solutions, with constant transverse shear
strains along the length, by adding two generalized degrees-
of-freedom to the conventional axial, bending and torsional ones.
The additional shear degrees-of-freedom are statically condensed
throughout the solution procedure. Interface binding conditions,
which have been considered in previous 2-D models, are also in-
cluded in the 3-D element model formulation, and are dealt within
a unique and novel fashion, allowing the element to represent the
behavior of multilayered pipes in non-linear static analysis. A few
representative solutions are presented and compared to other
independently obtained numerical results.

The contributions of this work are: novel nonlinear formulation
for tubular pipes that are used as risers in the offshore industry;
treatment of interfaces in multilayered pipes. While there is a
plenty of literature in laminated and multilayered plates, such is
not the case for multilayered pipes; methodology to couple the
interfaces of multilayered pipe systems. For instance, a new inter-
layer contact model is embedded in a plasticity framework.

2. Multilayered pipe beam element

The multilayered pipe beam FEM presented in this work is based
on the co-rotational formulation, which have been the subject of
various publications [15–17]. It refers to a straight spatial reference
configuration, defined by the updated coordinates of the element
two nodal points. In the multilayered element formulation, it is
assumed that the element is subjected to large displacements and
rotations, but restricted to small strains and small slip condition
between layers. Timoshenko hypothesis is assumed for all element
layers, i.e., initially plane layer cross sections remain plane and
non-deformed in and out of its plane after element deformation,
but not necessarily perpendicular to the beam longitudinal axis.
Under torsion, cross sections remain plane without warping. All ele-
ment layers share the same transverse displacements at element
nodes i.e., no separation between layers is allowed. In the element
formulation, all variables are referred to a co-rotational configura-
tion obtained from geometric transformations, including rigid
body translations and rotations, from an initial non-deformed
configuration. These variables can be identified from three distinct
configurations: initial configuration (Cini) which is represented by
the element in its non-deformed configuration, at spatial position
t = 0, reference configuration (Cref) that is represented by the config-
uration in which the element has been subjected from its initial
position to rigid body motions only, and deformed configuration
(Cdef) that is represented by the element in its current configuration
at time t, after moving with rigid body motions and deformations
due to applied external loads.

Reference systems attached to the beam element at each config-
uration are shown in Fig. 1 and are described as follows

� The global system ðX Y ZÞ is a spatial coordinate system
whereby the structure is referred to. This system remains fixed
during the entire beam analysis;
� The initial local element system ðX0Y 0Z0Þ is a coordinate system

associated to the element at its initial non-deformed configura-
tion (Cini). At this configuration, the element is assumed straight
with the X0-axis coinciding with the element longitudinal direc-
tion and the other two Y0 and Z0 axes along the cross section
principal directions of inertia;
� The local element system ðX Y ZÞ is associated to the reference

configuration (Cref), which is the initial local element system
with rigid body motion. The X-axis lies on the straight line
defined by the two element nodes at the updated position.
The formulation of the co-rotational element is developed based
on this reference system;
� The element layer nodal systems ðxk

i yk
i zk

i Þ are the coordinate sys-
tems associated to each node-i, for each layer-k, in the co-rotational
formulation. The nodal systems of each layer are fixed to the
element nodes, following its movements (translation and rotation).

2.1. Basic formulation for large rotations

When dealing with a reference vector in 3-D transformations, an
orthogonal spatial transformation matrix R(h) should be considered

v1 ¼ RðhÞv0 ð1Þ



Fig. 2. Spatial transformation between two vectors.
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which is represented in terms of only three independent parame-
ters as shown by Pacoste and Eriksson [18]. This approach results
from the use of a pseudo-vector of rotation, defined as h ¼ hê, which
represents a unique rotation with an angle h about a fixed axis de-
fined by the unit vector ê. (see Fig. 2).

In this case, considering the magnitude of the rotation angle

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y þ h2

z

q
, the orthogonal rotation matrix (Rodrigues) can

be expressed by [17]
R ¼ Iþ sin h
h

SðhÞ þ 1� cos h

h2 SðhÞSðhÞ ð2Þ
where I is the 3 � 3 identity matrix and S(h) is a skew-symmetric
matrix obtained from the rotation pseudo-vector components hx,
hy and hz, as follows:
SðhÞ ¼
0 �hz hy

hz 0 �hx

�hy hx 0

2
64

3
75; h ¼

hx

hy

hz

2
64

3
75 ¼ hê ð3Þ
In the co-rotational formulation used in this work, matrix R as
defined in Eq. (2) is used to update the element reference configu-
ration as well as the nodal reference systems.
Fig. 3. Multilayer element in two successive configurations.
2.2. Kinematics of deformation

Incremental and iterative analysis is considered in the formula-
tion with all element reference systems (see Fig. 1) being updated
after each iteration, i.e., the co-rotational approach is updated at
each iteration. In this way, two neighboring configurations of a
segment of a pipe beam with multiple layers, in two successive
configurations, at instants t and t + Dt, are as shown in Fig. 3,

where Dt is the time increment, XkðtÞ
P and XkðtþDtÞ

P are the position
vectors of a point P in layer-k cross section, at instants t and t + Dt,
respectively; XkðtÞ

G and XkðtþDtÞ
G are layer-k geometric center position

vectors at instants t and t + Dt, respectively; point P position in
both configurations is expressed in terms of the coordinates
(x, y, z) in the local reference system rk and the geometric center
position vector ðXk

GÞ, i.e.:

XkðtÞ
P ¼ XkðtÞ

G þ yr̂kðtÞ
2 þ zr̂kðtÞ

3

XkðtþDtÞ
P ¼ XkðtþDtÞ

G þ yr̂kðtþDtÞ
2 þ zr̂kðtþDtÞ

3

ð4Þ

The incremental displacement vector at point P is then obtained:

uk
P ¼ uk

P vk
P wk

P

� �T

¼ XkðtþDtÞ
P � XkðtÞ

P

¼ uk
G þ yðr̂kðtþDtÞ

2 � r̂kðtÞ
2 Þ þ zðr̂kðtþDtÞ

3 � r̂kðtÞ
3 Þ

ð5Þ

where uk
G is the k-th layer geometric center incremental displace-

ment vector:

uk
G ¼ XkðtþDtÞ

G � XkðtÞ
G ¼ uk v w

� �T ð6Þ

Transformations between the local reference system vectors rk
i

(i ¼ 1; . . . ;3), shown in Fig. 3, at time t and at time t + Dt are ob-
tained from incremental cross section rotations (hx, hy, hz). This
transformation is obtained by using a suitable rotation matrix
R(hx, hy, hz),

r̂kðtþDtÞ
i ¼ Rr̂kðtÞ

i ði ¼ 2;3Þ ð7Þ

Substituting Eq. (7) into Eq. (5), one obtains point P incremental dis-
placements as

uk
P ¼ uk

G þ yðR � IÞr̂kðtÞ
2 þ zðR � IÞr̂kðtÞ

3 ð8Þ

An approximation for the rotation matrix presented in Eq. (2) is ob-
tained by considering terms up to second order from the series
expansion of the trigonometric terms. Thus, the Rodrigues formula
results in the following rotation matrix:

R ¼
1� h2

yþh2
z

2 �hz þ hxhy

2 hy þ hxhz
2

hz þ hxhy

2 1� h2
xþh2

z
2 �hx þ hyhz

2

�hy þ hxhz
2 hx þ hyhz

2 1� h2
xþh2

y

2

2
6664

3
7775 ð9Þ

Substituting this second order approximation for the rotation ma-
trix into Eq. (8), one obtains the displacement vector components
of a point P, in a given layer-k, as function of the displacements
and rotations of the layer cross-section, referred to the local refer-
ence system rk, in the form:

uk
P ¼ uk � yhk

z þ zhk
y þy hk

xhk
y

2 þ z hk
xhk

z
2

vk
P ¼ v � zhk

x �y hk2
x þhk2

z
2 þ z

hk
yhk

z

2

wk
P ¼ wþ yhk

x|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Linear

þy
hk

yh
k
z

2
� z

hk2
x þ hk2

y

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Non-Linear

ð10Þ

where: uk
P , vk

P and wk
P are the displacements of point P, in the local

reference system rk of layer-k; uk, hk
x , hk

y and hk
z are axial displace-

ments and rotations measured at the geometric center of each
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layer-k; v and w are the transverse displacements (assumed equal
for all layers); and y and z are the local coordinates of point P, de-
fined within layer-k thickness (rk

i 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
6 rk

o), with rk
i and rk

o

being the inner and outer radius, respectively.
The Green–Lagrange strain tensor components, used in the

evaluation of the element strain energy, with the principle of vir-
tual work (PVW) [19], is obtained from the displacements at a
point P of any layer cross section as

exx ¼
@up

@x
þ1

2
@up

@x

� �2

þ 1
2

@vP

@x

� �2

þ 1
2

@wP

@x

� �2

cxy ¼
@uP

@y
þ @vP

@x
þ @uP

@x
@uP

@y
þ @vP

@x
@vP

@y
þ @wP

@x
@wP

@y

cxz ¼
@uP

@z
þ @wP

@x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
LinearðeijÞ

þ @uP

@x
@uP

@z
þ @vP

@x
@vP

@z
þ @wP

@x
@wP

@z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Non-LinearðgijÞ

ð11Þ

2.3. Finite element formulation

The multilayered element formulation is obtained considering
the contribution of each layer – associated to linear and nonlinear
strain contributions – and straining at each interface material be-
tween layers. Considering the equilibrium of a single element layer
at time (t + Dt), the PVW for updated Lagrangian formulation, gives
[19]:Z

V
StþDt

ij detþDt
ij dV ¼ RtþDt ð12Þ

where StþDt
ij is the second Piola–Kirchoff tensor [20]; etþDt

ij is the
Green–Lagrange strain tensor [20]; and RtþDt is the virtual work
due to external loading (body and surface forces), given by:

RtþDt ¼
X

i

Z
V

f BðtþDtÞ
i dui dV þ

Z
S

f SðtþDtÞ
i dui dS

� �
ð13Þ

with f BðtþDtÞ
i and f SðtþDtÞ

i being body and surface force components,
respectively; and dui is the virtual displacement vector component.

Variables in Eq. (12) are accounted from the configuration Cref

shown in Fig. 1. Linearized incremental equation requires small
displacement increments, therefore, the second Piola–Kirchoff
stress and the Green–Lagrange strain tensor components can be
written in incremental form as

StþDt
ij ¼ st

ij þ Dsij and etþDt
ij ¼ et

ij þ Deij ð14Þ

where st
ij are known Cauchy stress tensor components; Dsij are the

incremental stress components; et
ij are the known Cauchy–Green

strain tensor components; and Deij are the incremental strains,
which are obtained from Eq. (11) by using the incremental displace-
ments. Thus, Eq. (12) can be rewritten as follows:Z

V
ðst

ij þ DsijÞdðet
ij þ DeijÞdV ¼ RtþDt ð15Þ

In the reference configuration the element is subjected to rigid body
motions only, i.e., there is no deformation, so det

ij ¼ 0. Thus, Eq. (15)
turns:Z

V
DsijdDeij dV þ

Z
V
st

ijdDeij dV ¼ RtþDt ð16Þ

The incremental stresses (Dsij) are obtained from the incremental
strains (Deij) by using a suitable constitutive relation:

Dsij ¼ CijklDekl ð17Þ

where Cijkl is the material constitutive tensor.
As shown in Eq. (11), the incremental strains have linear (Deij)

and nonlinear (Dgij) terms, i.e.:

Deij ¼ Deij þ Dgij ð18Þ
Assuming a linear approximation for the incremental stresses and
strains, one obtains:

Dsij ¼ CijklDekl and dDeij ¼ dDeij ð19Þ

Substituting Eqs. (18) and (19) into Eq. (16), one obtains the follow-
ing linearized equation:Z

V
CijklDekldDeij dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Linear

þ
Z

V
st

ijdDgij dV|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Nonlinear

¼ RtþDt|fflffl{zfflffl}
External Forces

�
Z

V
st

ijdDeij dV|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Internal Forces

ð20Þ

In this equation, the left hand side leads to the linear and nonlinear
stiffness matrices and the right hand side leads to the external and
internal force vectors.

2.4. Element displacement field interpolation

For a given layer, displacements within the element are ob-
tained from interpolated nodal displacements using Hermite poly-
nomials [19], which represent straight-beam linear solutions
under constant normal, transverse shear and torsional internal
loadings, under Euler–Bernoulli beam assumptions. Thus, the dis-
placement field at layer-k is:

uk¼ 1�n
‘

� �
uk

1þ
n
‘

uk
2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

uk
0

þ6/1

‘
yv1�

6/1

‘
yv2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�dv0
dn

y

þ6/1

‘
zw1�

6/1

‘
zw2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�dw0
dn

z

þ/2zhk
y1
�/3zhk

y2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
hk

yz

þð�/2yhk
z1
þ/3yhk

z2
Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�hk
z y

þð1�6/1Þzbk
1þð1�6/1Þybk

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bk

1 and bk
2 constants in n

vk¼/4v1þ/6v2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
v0

þ � 1�n
‘

� �
zhk

x1
�n
‘

zhk
x2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�hk
x z

þ/5‘h
k
z1
�/1nhk

z2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�vk

þðn�/7‘Þbk
2

wk¼/4w1þ/6w2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
w0

þ 1�n
‘

� �
yhk

x1
þn
‘

yhk
x2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hk
x y

þð�/5‘h
k
y1
þ/1nhk

y2
Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wk

þðn�/7‘Þbk
1

ð21Þ

where uk
0 is the axial displacements of the element centerline at

layer-k; n is the longitudinal coordinate along element; v0 and w0

are transverse displacements at the element centerline; vk and wk

are transverse displacements along the layer-k centerline due to
the nodal rotations hk

z and hk
y, respectively; and bk

1 and bk
2 are shear

strains at planes (n–y) and (n–z), respectively (assumed constant
along element length); and /i are the standard Hermite polynomials
[19].

Eq. (21) can be extended to element coordinates at layer-k, in
matrix form, as follows:

ukðn; y; zÞ vkðn; y; zÞ wkðn; y; zÞ
� �T ¼ Hkðn; y; zÞuk ð22Þ

where ukðn; y; zÞ vkðn; y; zÞ and wkðn; y; zÞ are the displacements at a
point of local coordinates (n, y, z), at the element layer-k. The ele-
ment interpolation matrix Hkðn; y; zÞ is obtained from Eq. (21) and
is presented explicitly in Appendix B.1. The incremental displace-
ment vector uk (nodal translations and rotations) associated to ele-
ment layer-k results in

ukT ¼ uk
1 vk

1 wk
1 hk

x1
hk

y1
hk

z1
uk

2 vk
2 wk

2 hk
x2

hk
y2

hk
z2

bk
1 bk

2

h i
ð23Þ

Each linear strain component in Eq. (11), obtained from the dis-
placements given by Eq. (21), are defined at any point of layer-k by:
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ek
xx ¼

duk

dn
¼ duk

0

dn
� d2v0

dn2 y� d2w0

dn2 zþ
dhk

y

dn
z� dhk

z

dn
y

� 6
d/1

dn
bk

1z� 6
d/1

dn
bk

2y ð24Þ

or

ek
xx ¼ �

1
‘

uk
1 þ

6y
‘

d/1

dn
v1 þ

6z
‘

d/1

dn
w1 þ z

d/2

dn
hk

y1
� y

d/2

dn
hk

z1
þ 1
‘

uk
2

� 6y
‘

d/1

dn
v2 �

6z
‘

d/1

dn
w2 � z

d/3

dn
hk

y2
þ y

d/3

dn
hk

z2
� 6z

d/1

dn
bk

1

� 6y
d/1

dn
bk

2 ð25Þ

Similarly, the linear shear strain components ek
xy and ek

xz are:

2ek
xy ¼

duk

dy
þ dv

dn

¼ �dv0

dn
� hk

z þ ð1� 6/1Þbk
2

� �

þ dv0

dn
� dhk

x

dn
z� dvk

dn
þ 1� d/7

dn
‘

� �
bk

2

 !
ð26Þ

or

2ek
xy ¼

z
‘
hk

x1
þ ‘

d/5

dn
� /2

� �
hk

z1
� z
‘
hk

x2

þ /3 � /1 �
d/1

dn
n

� �
hk

z2
þ 2� 6/1 �

d/7

dn
‘

� �
bk

2 ð27Þ

and,

2ek
xz ¼

duk

dz
þ dw

dn

¼ �dw0

dn
þ hk

y þ ð1� 6u1Þb
k
1

� �

þ dw0

dn
þ dhk

x

dn
yþ dwk

dn
þ 1� du7

dn
‘

� �
bk

1

 !
ð28Þ

or

2ek
xz ¼ �

y
‘
hk

x1
þ /2 � ‘

d/5

dn

� �
hk

y1
þ y
‘
hk

x2

þ /1 � /3 þ n
d/1

dn

� �
hk

y2
þ 2� 6/1 � ‘

d/7

dn

� �
bk

1 ð29Þ

Thus, from Eqs. (25), (27), and (29), linear strain components results
in the following matrix form

e ¼ ek
xx 2ek

xy 2ek
xz

h iT
¼ Bk

Luk and de ¼ Bk
Lduk ð30Þ

where Bk
L is the linear compatibility matrix for layer-k, as defined in

Appendix B.2.
Similarly, for the nonlinear term in Eq. (20) the following matrix

form is used:

sijdDgij ¼ dukT
BkT

G sBk
Guk ð31Þ

where Bk
G is the nonlinear (geometric) compatibility matrix for

layer-k, as defined in Appendix B.3, and:

sk ¼

sk
xx 0 0 sk

xy 0 sk
xz 0

0 sk
xx 0 0 0 0 sk

xz

0 0 sk
xx 0 sk

xy 0 0

sk
xy 0 0 0 0 0 0

0 0 sk
xy 0 0 0 0

sk
xz 0 0 0 0 0 0
0 sk

xz 0 0 0 0 0

2
6666666666664

3
7777777777775

ð32Þ
Stress components, at each element layer-k, in local coordinates, are
obtained from the beam internal forces, at the element nodes, as
indicated below.

sk
xx ¼ Nk

Ak þ
Mk

y

Ik z� Mk
z

Ik y

sk
xy ¼ �

Mk
x

Jk zþ Vk
y

Ak

sk
xz ¼

Mk
x

Jk yþ Vk
z

Ak

; with :

Nk ¼ �Fk
1

Vk
y ¼ �Fk

2

Vk
z ¼ �Fk

3

Mk
x ¼ �Fk

4

Mk
y ¼ Fk

3nþ Fk
5

Mk
z ¼ �Fk

2nþ Fk
6

ð33Þ

where Fk
i are the layer-k vector of internal forces and moments

components; Ak is the layer-k cross section area; Ik is the layer-k
cross section moment of inertia with respect to the axis of symme-
try; Jk = 2Ik is the layer-k cross section polar moment of inertia with
respect to the geometric center; and n is the local coordinate along
element length. Details on the derivations of the geometric compat-

ibility matrix (Bk
G) and the stress components matrix (sk) are pre-

sented in Bathe and Bolourchi [15].

2.5. Element layer stiffness matrices

For a given layer-k, the element linear stiffness matrix is ob-
tained by substituting Eq. (30) in the first term of Eq. (20):

Kk
L ¼

Z ‘

0

Z rk
o

rk
i

Z 2p

0
rBkT

L CkBk
L dudr dn ð34Þ

where BL is the linear compatibility matrix, as defined in Appendix
B.2, using y ¼ r cos / and z ¼ r sin /, and

Ck ¼
Ek 0 0
0 Gk 0
0 0 Gk

2
64

3
75 ð35Þ

The geometric stiffness matrix contribution of each layer ðKk
GÞ is

obtained from Eq. (31) and the second term of Eq. (20) that
results in

Kk
G ¼

Z ‘

0

Z rk
o

rk
i

Z 2p

0
rBkT

G skBk
G dudr dn ð36Þ

Appendices B.5 and B.6 present ðKk
LÞ and ðKk

GÞ matrices explicitly.

2.6. Contact conditions

In this section, the model solutions for the interlayer contact
used in the finite element formulation are derived. The longitudi-
nal and circumferential relative displacements between layers re-
sults in shear stresses at the interlayer material, as shown in
Fig. 4. In the model each interface is assumed under constant
(through the thickness) shearing straining as its thickness (h) is
very small when compared to other pipe cross section dimensions.

Thus, shear strain and stress at interface are evaluated using the
following linear approximation:

c ¼ Du
h

and s ¼ Gc ¼ G
h

Du ¼ kc ð37Þ

where G is the interface material shear modulus; k = G/h is the over-
all contact stiffness; and c ¼ Du is the interlayer relative
displacement.

The idea behind this proposal is to employ material constitutive
relations that may represent the overall physical meaning of con-
tact conditions at the interface material including certain damage
conditions. These attempts are described as follows:
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Fig. 4. Details of interface straining in a two-layer pipe wall segment.

Fig. 6. Layer contact with static friction.

Fig. 7. Layer contact with kinetic friction.

Fig. 8. Rupture – multi-linear elastic-perfect plastic model.
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A. Linear elastic slip
In this case the interlayer material behaves according to the

constitutive relation shown in Fig. 5. Contact stress is proportional
to the layers relative displacement. This constitutive relation is
represented by the linear model solution where total strain energy
in the adhesive is preserved after unloading.

B. Slip with static friction
In this case rupture occurs when shear stress in adhesive mate-

rial reaches a limit value s‘. Thereafter, contact condition between
layers remains through friction (static) forces and the ‘‘material
law’’ follows the bi-linear constitutive relation shown in Fig. 6. In
a cycle loading process, total strain energy at interface material
is not preserved.

C. Slip with kinetic friction
In this case a multi-linear constitutive model is required to rep-

resent material rupture but with kinetic friction between layers.
After reaching a limit value, shear stress drops to a lower value
keeping it constant as in kinetic friction force fashion. Again, as
in the previous case, total potential energy in the adhesive is par-
tially preserved.

D. Rupture
In this case, a multi-linear constitutive model is employed to

represent material rupture with no friction between layers. Thus,
after reaching a limit value, shear stress at interface vanishes. By
this model, in a cycling loading process, the total strain energy
stored during the interface linear behavior is completely lost.

2.7. Interface constitutive model

In this section, the nonlinear constitutive relations shown in
Figs. 6–8 for the interface material, is presented in detail. For sim-
plicity, the models presented above are one-dimensional. How-
ever, in a multi-layered pipe, the relative displacements can
occur in the axial (cx) as circumferential (cu) directions, as shown
in Fig. 9.

For all contact conditions discussed, stress state at the interface
material must remain within the following domain

Ds ¼ fs 2 Rjf ðs;aÞ � 0g ð38Þ

where f(s, a) is the associated yield-type function, expressed in
terms of the contact stresses s and hardening parameter a, with:
Fig. 5. Linear elastic constitutive relation – slip model representation.
s ¼ sx su
� �T ð39Þ

The choice of an appropriate yield function defines the slip condi-
tion model. Table 1 presents the corresponding yield function used
to represent each of the contact conditions studied in this work, as
discussed in Section 2.6.

where jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x þ s2
u

q
; with sx and su being the contact stresses

in the axial and circumferential directions as shown in Fig. 9; and

s‘ is the limit contact stress.
According to Simo and Hughes [21], the nonlinear slip model

can be characterized by means of the following set of equations



Fig. 9. Directions for relative displacements.

Table 1
Slip model conditions.

Slip model Yielding function H

A. Linear elastic slip Not applicable –
B. Slip in static friction (bi-linear) f(s) = |s| � s‘ 0
C. Slip in kinetic friction (multi-linear) f(s, a) = |s| � s‘(a) According to the hardening law
D. Rupture (multi-linear)

148 L.L. Aguiar et al. / Computers and Structures 138 (2014) 142–161
c ¼ ce þ cin

s ¼ kce ¼ kðc� cinÞ

dcin ¼ kr ¼ k
df
ds

da ¼ k

ð40Þ

where c, ce and cin are the vectors of total, elastic and inelastic slip
measures obtained from relative longitudinal and circumferential
relative displacements between layers; s is the vector of contact
stresses; k is the elastic contact stiffness parameter; a is the harden-
ing parameter; k is the inelastic slip increment to be determined;
and r is a unit vector that indicates the ‘‘yield’’ direction given by:

r ¼ 1
jsj

sx

su

� 	
ð41Þ

Thus, the associated mathematical problem consists in: given
fcn;cin

n ; sn;ang and cnþ1 as a known solution state and new relative
displacements, respectively, obtain cin

nþ1, an+1 and sn+1. This problem
is solved in two steps. First, an elastic increment is assumed to ob-
tain the following trial state

s�nþ1 ¼ kðcnþ1 � cin
n Þ � sn þ kDcn

cin�
nþ1 ¼ cin

n

a�nþ1 ¼ an

f �nþ1 ¼ js�nþ1j � s‘n

ð42Þ

From the trial state, it is possible to determine if the increment of
slip is elastic or inelastic according to the criterion

f �nþ1

� 0 ¼> elastic increment k ¼ 0
> 0 ¼> inelastic increment k > 0



ð43Þ

Assuming an inelastic increment, one obtains the stress sn+1 in
terms of the trial stress s�nþ1 and the inelastic slip modulus k as:

snþ1 ¼ kðcnþ1 � cin
nþ1Þ ¼ kðcnþ1 � cin

n Þ � kðcin
nþ1 � cin

n Þ
¼ s�nþ1 � kkrnþ1 ð44Þ

Therefore, since k > 0, the actual state is written as
snþ1 ¼ s�nþ1 � kkrnþ1

cin
nþ1 ¼ cin

n þ krnþ1

anþ1 ¼ an þ k

fnþ1 ¼ jsnþ1j � s‘nþ1 ¼ 0

ð45Þ

Now the above problem is solved explicitly in terms of the trial elas-
tic state by the following procedure:

jsnþ1jrnþ1 ¼ js�nþ1jr�nþ1 � kkrnþ1 ð46Þ

Collecting terms in Eq. (46), one obtains

½jsnþ1j þ kk�rnþ1 ¼ js�nþ1jr�nþ1 ð47Þ

As k > 0 and k > 0, the term within brackets in Eq. (47) is necessarily
positive. Therefore it is required that

rnþ1 ¼ r�nþ1 ð48Þ

along with the condition

jsnþ1j þ kk ¼ js�nþ1j ð49Þ

From Eqs. (45) and (49), the yield criterion fn+1 is written as

fnþ1 ¼ js�nþ1j � kk� s‘ðan þ kÞ ¼ 0 ð50Þ

Depending on the hardening law s‘ðan þ kÞ, Eq. (50) can be nonlin-
ear and must be solved numerically for k. The inelastic constitutive
relation is then obtained from the consistency condition ðkdf ¼ 0Þ,
as described in Simo and Hughes [21]. If k > 0, then

df ðs;aÞ ¼ df
ds

dsþ df
da

da ¼ 0 ð51Þ

Substituting values for df/ds, df/da, ds and da, one obtains

rTkðdc� krÞ � kH ¼ 0 ð52Þ

where H = df/da is set for each hardening law, as shown in Table 1 .
Solving Eq. (52) for k, one obtains

k ¼ kr
kþ H

dc ð53Þ

that substituted into the rate form of the elastic relationship given
by the second Eq. (40), yields
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ds ¼ kH
kþ H

dc ð54Þ

Therefore,

ds ¼ kep dc ð55Þ

where

kep ¼
k if k ¼ 0
kH

kþH if k > 0

(
ð56Þ
2.8. Interface stiffness matrix

At the interface, adhesive material is assumed under constant
pure shear deformation, throughout the cross-section thickness.
Interface contribution to the element stiffness matrix is obtained
by considering the strain energy associated to the interface mate-
rial due to adjoining layers relative displacements ðclÞ, which de-
notes the equivalent shear strains. These are due to axial and
torsional displacements between layers (say layers k and k + 1),
and an equivalent strain vector is defined with two components:

ck
i ¼ ck

x ck
u

h iT
ð57Þ

with

ck
xðuÞ ¼ ðukþ1ðuÞ � ukðuÞÞ

ck
u ¼ rðhkþ1

x � hk
xÞ

ð58Þ

where uk(u) and hk
x are the longitudinal displacement and torsional

rotation of layer-k cross section, respectively; and u is the angular
coordinate at the interface cross section, as shown in Fig. 10.

For a linearly elastic model, the constitutive relation at the
interface material above layer-k results in

sk
i ¼

sk
x

sk
u

" #
¼

kk
c 0

0 kk
c

" #
ck

x

ck
u

" #
¼ kk

c I
ck

x

ck
u

" #
ð59Þ

where kk
c is associated to contact stiffness between layers k and

k + 1; and sk
x and sk

u are contact stress components along the longi-
tudinal and circumferential directions, respectively.

Slip condition between layers is modeled by imposing a limit
value on the shear stress (s‘) at the interface material, as described
in Section 2.6. This is obtained by using a suitable constitutive
model, according to one of the yield-type functions presented in
Table 1, in Section 2.7. Thus, the constitutive relation for interface
k results in

sk
i ¼ kep

c Ick
i ð60Þ

where sk
i and ck

i are as in Eqs. (59) and (57), respectively; and the
nonlinear slip modulus (kep

c ) is obtained from Eq. (56).
r

ϕ

z

y layer k

layer k+1

Fig. 10. Angular coordinate u at the interface.
Thus, considering the strain energy due to shearing at the inter-
face material, one obtains

pk
si
¼ 1

2

Z
S
skT

i ck dS ð61Þ

Substitution of the expressions for sk
i and ck leads to

pk
si
¼ 1

2

Z ‘

0

Z 2p

0
kep

c rððukþ1 � ukÞ2 þ r2ðhkþ1
x � hk

xÞ
2Þdudn ð62Þ

The variation of the interface strain energy is:

dpk
si
¼
Z ‘

0

Z 2p

0
kep

c rððukþ1 � ukÞdðukþ1 � ukÞ

þ r2ðhkþ1
x � hk

xÞdðh
kþ1
x � hk

xÞÞdudn ð63Þ

which can be rewritten in the following compact matrix form

dpk
si
¼ du

Z ‘

0

Z 2p

0
rBkT

i kep
c Bk

i dudn

� �
u ð64Þ

The stiffness matrix associated to each interface material between
layers is

Kk
i ¼

Z ‘

0

Z 2p

0
rBkT

i kep
c Bk

i dudn ð65Þ

where Bk
i is the interface compatibility matrix, defined in Appendix

B.4. The incremental displacement vector, for element interface k, in
the local element system is given by

ukT ¼
uk

1 hk
x1

hk
y1

hk
z1

uk
2 hk

x2
hk

y2
hk

z2
ukþ1

1 hkþ1
x1

hkþ1
y1

hkþ1
z1

ukþ1
2 hkþ1

x2
hkþ1

y2
hkþ1

z2
bk

1 bk
2 bkþ1

1 bkþ1
2

" #
ð66Þ

In a linear-elastic slip model, with no damage in the interface mate-
rial, the stiffness matrix is obtained analytically, as shown in
Appendix B.7. However, in models with slip condition between lay-
ers, the stiffness matrix is obtained from the integral form in Eq.
(65), which must be solved numerically.

2.9. Transverse displacement compatibility

At any spatial configuration, all element layers share the same
axis, allowing slip between layers in axial and circumferential
directions only, but requiring compatible transverse displace-
ments. In the present work, this constraint condition is applied
by using the penalty method for simplicity, considering equality
constraints. By this method, two degrees-of-freedom are physically
linked through an elastic member, with the constraint condition
being imposed numerically. The choice of the appropriate value
for the elastic constant relies on a numerical trial procedure. Thus,
if any two degrees-of-freedom (ui and uj) are linked by a spring of
stiffness kp, the strain energy (due to the relative displacement), to
be added to the variational indicator of the problem, is given by

p� ¼ 1
2

Z
u

kpðuj � uiÞ2 du ð67Þ

The choice of the penalty parameter kp is generally left to numerical
investigation. In the present study, this parameter has been taken to
be equal to the largest numerical value amongst all terms in the ele-
ment stiffness matrix.

For the multilayer pipe beam element, the transverse degrees-
of-freedom constraints between any layer (k) and the reference
layer (k = 1) are obtained by using the following penalty matrix

Kk
p ¼ kp kp 0

0 kp

" #
; with : kp ¼

1 0 �1 0
0 1 0 �1
�1 0 1 0
0 �1 0 1

2
6664

3
7775 ð68Þ
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which is associated to the following nodal incremental displace-
ment vector:

uk
p ¼ v1

1 w1
1 vk

1 wk
1 v1

2 w1
2 vk

2 wk
2

� �T ð69Þ

Special attention must be given to the transformations applied to
the penalty matrix, as it must be computed in the nodal reference
system. As shown in Fig. 11, for two initially aligned elements, in
the element system, the penalty stiffness at the adjoining node of
adjacent elements ‘‘1’’ and ‘‘2’’ are applied in different directions.
To overcome this difficulty nodal reference system is used and, in
this case, stiffness contributions from both elements are applied
in a unique direction.

2.10. Element stiffness matrix

The multilayered pipe beam element can be considered as ‘‘fully
bonded’’ or ‘‘unbonded’’, depending on the type of interaction be-
tween layers. For the unbonded element case, the stiffness matrix
(Ke) is obtained by the regular FEM assembling process, accounting
for the influence of each layer and interfaces. The element penalty
matrix (Kp) is referred to each node reference system and is ob-
tained by using the same procedure. After the assembly process,
the element stiffness matrix (Ke) is of order 14nlayers � 14nlayers. In
the fully bonded condition, there is no contribution of interface
and penalty matrices, and the element matrix is obtained by sim-
ply adding all layer matrices. In this case the element matrix
dimension is 14 � 14. Eq. (70) shows both processes.

Klay ¼ A
nlayers

k¼1
ðKk

L þ Kk
GÞ

Kint ¼ A
nlayers�1

k¼1
ðKk

i Þ

Ke ¼ Klay þ Kint; element reference system

Kp ¼ A
nlayers

k¼2
ðKk

pÞ; nodal reference system

9>>>>>>>>>>=
>>>>>>>>>>;
! unbonded

Ke ¼
Xnlayers

k¼1

ðKk
L þ Kk

GÞ ! fully bonded

ð70Þ

where Klay is the element layers stiffness matrix; Kint is the element
interfaces stiffness matrix; Ke is the element stiffness matrix includ-
ing all layers and interfaces; Kp is the element penalty matrix; A

stands for the assembly process.
In both cases, static condensation on the generalized degrees-

of-freedom for shear strains is used to reduce matrix dimension.
In this way, Ke matrix is partitioned as

Ke ¼
Kuu Kub

Kbu Kbb

� 	
ð71Þ

and, by applying static condensation, the element stiffness matrix is
obtained.
Element System Node System

1

2

1

2
pk1

pk2

p k2
p k1 +

Fig. 11. Reference systems for penalty method.
3. Implementation of the three-dimensional multilayer
element

The three-dimensional multilayered element has been imple-
mented in a C++ code using object-oriented techniques, such as
proposed by Lages et al. [22]. The program uses some of the algo-
rithms presented by Leon et al. [23], to solve the resulting nonlin-
ear equilibrium equations. Details of this implementation are
presented in the following sections.

3.1. Global equilibrium equation

The present formulation includes large displacements and non-
linear constitutive relations within the interface material. Numer-
ical solutions are obtained using an incremental procedure for
equilibrium. The global dynamic equilibrium equation is presented
in the following matrix form:

KiDU ¼ Riþ1 � Fi ð72Þ

where K is the structure global stiffness matrix, obtained from the
elements matrices through an assemblage process; DU is the global
incremental displacements vector; R is the global external loading
vector; and F is the structure global unbalanced internal forces
vector.

A step-by-step procedure has been implemented considering

Uiþ1 ¼ Ui þ DU ð73Þ

where Ui is a known solution at iteration-i.
3.2. Element updating procedure

The nonlinear equilibrium equation, shown in Eq. (72), is solved
by an iterative and incremental algorithm. Thus, at each equilib-
rium iteration, all stiffness matrices and internal force vectors,
for each element, must be updated. In the following sections, the
formulation for large displacements and rotations is presented.
An updating procedure applied to all multilayered pipe beam ele-
ment matrices is also detailed. It uses the element incremental dis-
placements and rotations, obtained in the solution process at each
iteration-i, to update all element reference systems. The procedure
is performed according to the following steps:

1. Nodal positions and direction cosines of the element (straight
axis direction) are updated from the incremental displacements
(Dui) obtained in the previous iteration;

2. Element and nodal transformation matrices are updated:
2.1. Nodal rotation matrices (RkðiÞ

n1 and RkðiÞ
n2 ), for each layer, are

updated from incremental rotations at each node: nodal
incremental rotation matrices (RkðiÞ

inc1 and RkðiÞ
inc2) are obtained

from the rotation increments using Eq. (2). Previous nodal
rotation matrices are pre-multiplied by each of these matri-
ces, i.e.,
RkðiÞ
n1 ¼ RkðiÞ

inc1Rkði�1Þ
n1 and RkðiÞ

n2 ¼ RkðiÞ
inc2Rkði�1Þ

n2 ð74Þ

2.2. The element transformation matrix ðRi
eÞ is obtained from

the straight element axis (defined by current nodal point
positions) and from nodal rotation matrices: the first row
in the element rotation matrix ðRi

eÞ is given by the updated
direction cosines of the element (vector X); the second row
(vector Y) is given by averaging the second rows of the ref-
erence layer nodal matrices R1ðiÞ

n1 (vector y1
1) and R1ðiÞ

n2 (vector
y1

2); and the third row (vector Z) is obtained from the cross
product between the first and second rows (Z = X � Y);

3. Relative displacements vectors (ui
r and ui

p), in the local element
and nodal reference systems, respectively, are then calculated.
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3.1. Relative displacements between layers are obtained as
follows:

3.1.1. First, the relative axial displacement of the reference
layer (innermost layer) is computed subtracting its
updated deformed length (‘i) from element non-
deformed length (‘0):
D‘i ¼ ‘i � ‘0 ð75Þ
3.1.2. Then, nodal relative displacements between each
layer (k) and the reference layer (k = 1) are computed
in the global reference system. This must be done
individually for each node:
Duk
1 ¼uk

1�u1
1 and Duk

2 ¼uk
2�u1

2; k¼2 to Nlayers ð76Þ
3.1.3. The nodal relative displacements for each layer are
transferred to local element system and also to the
nodal reference systems:
8
Duk
e1¼RðiÞ

T

e Duk
1 and Duk

e2¼RðiÞ
T

e Duk
2

Duk
n1¼RðiÞ

T

n1 Duk
1 and Duk

n2¼RðiÞ
T

n2 Duk
2

<
: k¼2 to Nlayers

ð77Þ
3.2. Nodal relative rotation between each layer and the
straight axis of element are obtained from the nodal trans-
formation matrices of each layer and from the element
transformation matrix in the reference configuration.
According to Crisfield [17], these rotations can be obtained
from the expressions below
2 sinðDhk
1xÞ ¼ �zk

1Y þ yk
1Z

2 sinðDhk
1yÞ ¼ �xk

1Zþ zk
1X

2 sinðDhk
1zÞ ¼ �yk

1Xþ xk
1Y

and

2 sinðDhk
2xÞ ¼ �zk

2Y þ yk
2Z

2 sinðDhk
2yÞ ¼ �xk

2Zþ zk
2X

2 sinðDhk
2zÞ ¼ �yk

2Xþ xk
2Y
ð78Þ
3.3. The vector of relative displacements (ui
r) is assembled on

the local system of the element from the nodal relative
displacements (Duk

e1 and Duk
e2) and rotation vectors (Dhk

1

and Dhk
2) of each layer. For a given layer-k, vector uk

r is
obtained as:
uk
rðjÞ ¼ Duk

e1ðjÞ; j ¼ 1 to 3

uk
rðjþ3Þ ¼ Dhk

1ðjÞ; j ¼ 1 to 3

uk
rð7Þ ¼ Duk

e2ð1Þ þ D‘i

uk
rðjþ6Þ ¼ Duk

e2ðjÞ; j ¼ 2 to 3

uk
rðjþ9Þ ¼ Dhk

2ðjÞ; j ¼ 1 to 3

ð79Þ
3.4. The vector of relative displacements ðui
pÞ, used in the cal-

culation of penalty internal forces, is assembled. This vec-
tor refers to relative displacements in two different
reference systems, one for each node, and is assembled
from the nodal displacements vectors of each layer (Duk

n1

and Duk
n2). The vector uk

p, for layer-k, is obtained as follows:
uk
pðjÞ ¼ Duk

n1ðjÞ; j ¼ 1 to 3

uk
pðjþ6Þ ¼ Duk

n2ð1Þ; j ¼ 1 to 3
ð80Þ
Fig. 12. The two layer pipe beam under axial loading.
4. Each part of the internal force vector is calculated in its corre-
sponding reference systems and then transferred to global coor-
dinate system as follows:
f i
lay ¼ Klayui

r

f i
int ¼ Kintui

r

f i
p ¼ Kpui

p

ð81Þ
4.1. Total internal force vector, in the global reference system,
is thus obtained
f i
g ¼ RðiÞe ðf

i
lay þ fi

intÞ þ RðiÞn fi
p ð82Þ
where f i
lay is the element internal force vector due to defor-

mation at layers; f i
int is the element internal force vector

due to deformation at interfaces; f i
p is the element internal

force vector due to penalty method; and RðiÞe and RðiÞn are
transformation matrices:
Ri
e ¼

Ri
e 0 0 0 0

0 Ri
e 0 0 0

0 0 Ri
e 0 0

0 0 0 . .
.

0
0 0 0 0 Ri

e

2
666666664

3
777777775

and Ri
n ¼

Ri
n1 0 0 0 0

0 Ri
n1 0 0 0

0 0 . .
.

0 0
0 0 0 Ri

n2 0

0 0 0 0 Ri
n2

2
666666664

3
777777775

ð83Þ
5. The element stiffness matrix ðKi
eÞ and penalty matrix ðKi

pÞ are
then assembled in their respective local coordinate systems,
from the matrices of each layer and interface, and then trans-
ferred to the global coordinate system ðKi

gÞ:
Ki
g ¼ RðiÞTe Ki

eRðiÞe þ RðiÞTn Ki
pRðiÞn ð84Þ
4. Numerical tests

The multilayer pipe beam element has been numerically imple-
mented, according to the formulation presented in the previous
sections. A number of representative analyses were carried out,
to verify the element’s performance.

4.1. Two layer pipe beam subjected to axial loading

A two layer straight beam, restrained at one end at the inner
layer and loaded by an axial force F, applied at the free end of the
outer layer, was considered in this example. The beam was modeled
by 15 uniform finite elements, using material and cross section geo-
metrical properties listed in Fig. 12. Each layer Young’s modulus
was set such that the axial stiffness at both layers are equal, i.e.,
EintAint = EoAo, resulting in symmetric interlayer shear stress distri-
bution along the length, with respect to beam mid-section. Two
studies considering possible slip conditions between layers were
approached: the linear slip and the slip with static friction. In the
first, a linear elastic constitutive model was used for the interface
material resulting in a typical linear elastic analysis. And, in
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the second the elastic-perfect plastic material model was employed
as in the derivations presented for case B, in Section 2.7.

In the linear elastic analysis an axial force F = 1000 kN was ap-
plied. Figs. 13 and 14 show obtained distribution results for the ax-
ial displacement at each layer of the beam and for the contact shear
stress at the interface between layers, respectively. In these pic-
tures the corresponding analytical solutions are also presented
and a good agreement between the results is observed.

In the nonlinear analysis using the slip with static friction mod-
el, a limit contact shear stress s‘ = 200.0 kN/m2 was used. One of
the analysis objectives is to evaluate the model solution results un-
der axial loading, up to its theoretical limit F‘ = 2printLs‘. Starting
from the elastic slip limit value F = 490 kN, the applied load history
was set in 45 equal steps up to F = 879.65 kN. In Fig. 15 the contact
stress distribution along the beam, for certain load values, is pre-
sented. From these results one can notice the adhesive material
damage propagation, starting from both ends and towards the cen-
ter of the beam, but still preserving symmetry. Fig. 16 shows the
resulting residual contact stresses obtained after load F = 0.95F‘
has been applied and then removed. The nonlinear nature of the
numerical response can also be observed in the load-end displace-
ment plots in Fig. 17, for both layers.

4.2. Two-layer cantilever beam

In this example the behavior of a two layer cantilever pipe beam
under pure bending loading, as shown in Fig. 18, is investigated.
Considering an equivalent homogeneous beam, analytical solu-
tions for the cross-section rotation (h), horizontal (u) and vertical
(w) displacements, at the tip of the beam, are given by [24]:

h ¼ ML
EI
; u ¼ L

sinðhÞ
h
� 1

� �
and w ¼ L

h
ð1� cosðhÞÞ ð85Þ

In the analysis, interlayer contact conditions (linear elastic slip) are
set with stiffness of kc = 106 kN/m3 and a bending moment My, re-
quired to curl the beam into a complete circle (h = 2p), is progres-
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sively applied at the beam inner layer free end, in ten equal loading
increments. The equivalent homogeneous beam bending stiffness is
obtained from adding the inner and outer layer bending stiffness,
i.e.: (EI)eq = EiIi + EoIo. Considering the perfect binding condition be-
tween layers, stress analytical distributions along the pipe thickness
may be obtained from:
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Fig. 19. Bending moment distributions
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rk ¼
EkMyz
ðEIÞeq

ð86Þ

where k is layer index.
Fig. 19 presents bending moment distributions along the beam

length, at each element layer, considering the same material for
both layers, i.e.: Ei = Eo = 200 GPa. In these bending distributions
required equilibrium conditions at each layer as well as the global
beam equilibrium are satisfied.

Considering the mid-section of the beam, where pure bending
moment occurs at each layer, the normal stress presents linear
distribution along the pipe wall, as shown in the numerical results
in Fig. 20. As indicated a good agreement with exact solutions for
perfectly bonded beams, given by Eq. (86), is also observed.

If layers with different materials are considered (i.e.:
Ei = 2Eo = 200 GPa), the bending moment distributions along the
length of beam is as shown in Fig. 21. Considering the mid-section
of the beam, normal stress distributions remain linear but discon-
tinuous at the interface. As shown in Fig. 22 numerical and analyt-
ical solutions are in good agreement.

Fig. 23 shows obtained numerical displacement results as com-
pared to the analytical solutions in Eqs. (85). A good agreement be-
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Table 3
Support reactions at top and bottom connections.

Reference Vbottom (kN) Vtop (kN) Hbottom (kN) Htop (kN)

McNamara et al. (FEM) 35.83 91.45 11.92 11.57
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tween solutions is observed. It also indicates that the transverse
displacement compatibility at both layers is well represented by
the analysis results, as displacements at the tip of the beam are
the same in both layers.
McNamara et al. (cable) 35.77 91.51 12.02 12.02
Yazdchi and Crisfield 35.86 91.61 12.04 12.04
Present work

Inner 12.60 30.34 3.85 3.83
Middle 1.36 3.45 0.45 0.45
Outer 21.88 57.84 7.72 7.74
Sum 35.84 91.63 12.02 12.02
4.3. Flexible riser in catenary configuration

In this example a 350.0 m long flexible catenary riser is consid-
ered under in-plane analysis. The riser is connected at the top to a
floating unit and at the bottom to a sub-sea tower which is located
at a water depth of 150.0 m and horizontally displaced 150.0 m
from the top connection. The riser is assumed to be fully filled of
seawater. A finite element mesh with 20 elements was used, 16
equal elements with a length of 20.0 m, 2 elements with 10.0 m
and 2 with 5.0 m. The geometrical and material properties used
in this model, as well as the detailed finite element mesh consid-
ered, are shown in Fig. 24. The same riser system has already been
analyzed in various publications [25–27].

In the present study the riser was modeled using three element
layers, with properties shown in Table 2. A flexible riser is a com-
posite construction of interlocked steel and polymeric layers de-
signed to give the structure an axial stiffness approximately five
30
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Internal diameter 0.20 m
Bending s�ffness, EI 20.96 kNm²
Axial s�ffness, EA 15.38E5 kN
Seawater density, wγ

γ
10.05525 kN/m³

Riser material density, r 26.85648 kN/m

FE Mesh:

Fig. 24. Flexible riser in catenary configuration.

Table 2
Multilayer riser properties.

Internal diameter, Di 0.20 m
External diameter, Do 0.26 m
Inner layer thickness, ti 0.003 m
Middle layer thickness, tm 0.024 m
Outer layer thickness, to 0.003 m
Inner layer Young modulus, Ei 6.76E+05 kN/m2

Middle layer Young modulus, Em 6.76E+03 kN/m2

Outer layer Young modulus, Eo 6.76E+05 kN/m2

Inner layer density, ci 129.12 kN/m3

Middle layer density, cm 1.2912 kN/m3

Outer layer density, co 129.12 kN/m3

Stiffening factor, (EA/EI) 7.3378E+04
Contact stiffness, kc 1.0E+06 kN/m3
orders of magnitude greater than its bending stiffness. Thus, to
reproduce the stiffness properties presented in Fig. 24, a stiffening
factor (EA/EI) was used for all layers.

A static analysis has been carried out considering self-weight
and buoyancy forces only. Horizontal and vertical reaction forces
at the supporting points are listed in Table 3 and the bending mo-
ment diagram along the length of the riser is shown in Fig. 25.
Solution results for the present model are presented for each indi-
vidual layer and for the total sum, which is in good agreement with
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the solutions given by McNamara et al. [25] and Yazdchi and Cris-
field [26], what verifies the accuracy of the element model.
5. Concluding remarks

In this paper, a multilayered beam element for large dis-
placement analysis of risers and pipelines has been presented.
Its main features include the possibility of modeling a multilay-
ered pipe cross section in detail and representing the slip con-
dition between layers, including friction. The element allows
representation of both bonded and unbonded pipes. For the
unbonded model, the number of degrees-of-freedom is propor-
tional to the number of element layers. The global results are
in agreement with traditional beam formulations available in
the literature. Additionally, the element provides detailed infor-
mation on local results such as stress distribution and internal
forces at each pipe layer, and also the contact stress distribution
between layers. The new pipe beam formulation provides the
detailed representation of multilayered pipes, yet remains effi-
cient, even with the additional degrees-of-freedom of each layer,
in large displacement analysis of pipelines.

Appendix A. Nomenclature
H

i

kðn; y; zÞ
vector index; node index; iteration

t
 time

X, Y, Z
 local element reference system

x, y, z
 nodal reference system; local coordinates on element

cross section

k
 element layer index

Nlayers
 number of layers

h
 pseudo-vector of rotation

hx, hy,

hz
components of rotations about X, Y and Z axis,
respectively
u
 displacement vector

u, v, w
 components of displacements in the X, Y and Z

directions, respectively

/i
 Hermitian polynomials

n
 element coordinate in the longitudinal (X) direction

‘
 element length

b
 generalized degree-of-freedom for shear strain

H
 interpolation matrix

exx
 normal strain component

cxy, cxz
 shear strain components

eij
 ði; jÞ linear strain components

gij
 ði; jÞ nonlinear strain components
¼
1� n

‘
6y
‘
/1

6z
‘
/1 0 z/2 �y/2

n
‘
� 6y

‘
/1

0 /4 0 � 1� n
‘

� �
z 0 ‘/5 0 /6

0 0 /4 1� n
‘

� �
y �‘/5 0 0 0

2
64
BL
� 6z
‘
/1

0

/6
compatibility matrix for linear strains

KL
 linear stiffness matrix

C
 linear-elastic constitutive tensor

u
 angular coordinate at layer or interface cross section

Ek
 layer material Young modulus

Gk
 layer material shear modulus

Ak
 layer cross section area

Ik
 layer cross section moment of inertia with respect to

the axis of symmetry

Jk
 layer cross section polar moment of inertia with

respect to the geometric center

KG
 geometric (nonlinear) stiffness matrix

BG
 geometric compatibility matrix

s
 stress components matrix

sxx
 normal stress component

sxy, sxz
 shear stresses components

ci
 interlayer slip vector

cx
 longitudinal slip component

cu
 circumferential slip component

kc
 contact stiffness between layers (slip modulus)

kep

c

nonlinear slip modulus
sx, su
 contact stresses between layers in longitudinal an
circumferential directions, respectively
Ki
 interface stiffness matrix

kp
 penalty parameter

Kp
 penalty stiffness matrix

Ke
 element stiffness matrix in the local system

Kg
 element stiffness matrix in the global system

fe
 element internal forces vector in the local system

fp
 penalty internal forces vector in the local system

fg
 element internal forces vector in the global system

K
 stiffness matrix for the whole structure in the global

system

U
 displacement vector for the whole structure in the

global system

R
 external forces vector in the global system

F
 internal forces vector for the whole structure in the

global system

Re
 element rotation matrix

Rn
 nodal rotation matrix
Appendix B. Element matrices

B.1. Element interpolation matrix

From Eq. (21), the element interpolation matrix results in:
0 �z/3 y/3 ð1� 6/1Þz ð1� 6/1Þy
� n

‘
z 0 �n/1 0 ðn� ‘/7Þ

n
‘
y n/1 0 ðn� ‘/7Þ 0

3
75

3�14

ðB:1Þ
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B.2. Linear compatibility matrix
The linear compatibility matrix is obtained from Eqs. (25), (27),
and (29), which results in:
Bk
L ¼

� 1
‘

6y
‘

d/1
dn

6z
‘

d/1
dn 0 z d/2

dn �y d/2
dn

1
‘
� 6y

‘
d/1
dn � 6z

‘
d/1
dn 0 �z d/3

dn y d/3
dn �6z d/1

dn �6y d/1
dn

0 0 0 z
‘

0 ‘ d/5
dn � /2 0 0 0 � z

‘
0 /3 � /1 � n d/1

dn 0 2� 6/1 � ‘ d/7
dn

0 0 0 � y
‘

/2 � ‘ d/5
dn 0 0 0 0 y

‘
/1 � /3 þ n d/1

dn 0 2� 6/1 � ‘ d/7
dn 0

2
664

3
775

3�14

ðB:2Þ
B.3. Nonlinear compatibility matrix

The nonlinear (geometric) compatibility matrix is defined as:
Bk
G ¼

� 1
‘

6y
‘

d/1
dn

6z
‘

d/1
dn 0 z d/2

dn �y d/2
dn

1
‘
� 6y

‘

d/1
dn � 6z

‘

d/1
dn 0 �z d/3

dn y d/3
dn �6z d/1

dn �6y d/1
dn

0 d/4
dn 0 z

‘
0 ‘ d/5

dn 0 d/6
dn 0 � z

‘
0 �/1 � n d/1

dn 0 1� ‘ d/7
dn

0 0 d/4
dn � y

‘
�‘ d/5

dn 0 0 0 d/6
dn

y
‘

/1 þ n d/1
dn 0 1� ‘ d/7

dn 0

0 6
‘
/1 0 0 0 �/2 0 � 6

‘
/1 0 0 0 /3 0 1� 6/1

0 0 0 1� n
‘

0 0 0 0 0 n
‘

0 0 0 0
0 0 6

‘
/1 0 /2 0 0 0 � 6

‘
/1 0 �/3 0 1� 6/1 0

0 0 0 n
‘
� 1 0 0 0 0 0 � n

‘
0 0 0 0

2
66666666666664

3
77777777777775

7�14

ðB:3Þ
with y ¼ r cos u and z ¼ r sin u.
B.4. Interface compatibility matrix

The interface compatibility matrix is defined as:
Bk
i ¼

n
‘
�1 0 �z/2 y/2 � n

‘
0 z/3 �y/3

0 r n
‘
�1

� �
0 0 0 �r n

‘
0 0

"
1� n

‘
0 z/2 �y/2

n
‘

0 �z/3 y/3

0 r 1� n
‘

� �
0 0 0 r n

‘
0 0

ð6/1�1Þz ð6/1�1Þy ð1�6/1Þz ð1�6/1Þy
0 0 0 0

	
2�20

ðB:4Þ



L.L. Aguiar et al. / Computers and Structures 138 (2014) 142–161 159
B.5. Linear stiffness matrix

By solving the integrals in Eq. (34), one rewrites linear stiffness
matrix for element layer-k, as follows:
ðB:5Þ
where Ek and Gk are material Young and shear modulus of layer-k,
respectively; Ak, Ik and Jk are cross section area, moment of inertia with
respect to the cross-section axis of symmetry, and polar moment of
inertia with respect to the layer-k geometric center, respectively.

B.6. Geometric stiffness matrix

Accordingly, the stiffness matrix associated to the nonlinear
strain components defined in Eq. (11) is obtained as:
ðB:6Þ
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with:

C1 ¼
6
5‘
þ 12Ik

Ak
‘3

 !
; C2 ¼

1
10
þ 6Ik

Ak
‘2

 !
;

C3 ¼
2‘
15
þ 4Ik

Ak
‘

 !
and C4 ¼

‘

30
� 2Ik

Ak
‘

 !
B.7. Interface stiffness matrix

The stiffness matrix for interface-k, considering a linear-elastic
slip model is given by:
ðB:7Þ
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