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The Park–Paulino–Roesler (PPR) potential-based model is a cohesive constitutive model
formulated to be consistent under a high degree of mode-mixity. Herein, the PPR’s gener-
alization to three-dimensions is detailed, its implementation in a finite element framework
is discussed, and its use in single-core and high performance computing (HPC) applications
is demonstrated. The PPR model is shown to be an effective constitutive model to account
for crack nucleation and propagation in a variety of applications including adhesives,
composites, linepipe steel, and microstructures.
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1. Introduction and motivation

Cohesive zone modeling of fracture processes dates to Dugdale’s strip yield model [1]. In this model, yield magnitude
closure stresses are applied between the actual crack tip and a notional crack tip, the length of the total plastic zone, to
circumvent the unrealistic prediction of infinite stresses at the crack tip. Barenblatt [2] placed material-specific stresses
according to a prescribed distribution in the aforementioned inelastic zone, leading to the many cohesive zone models
(CZMs) available today. Applications of CZMs abound in the literature. Hillerborg et al. [3] were the first to model failure
in a material by adapting a CZM into a finite element analysis. The cohesive finite element method (CFEM) has been used
to conduct studies across a wide range of material systems: rock (e.g. Boone et al. [4]), ductile materials at the microscale
(e.g. Needleman [5] and Iesulauro [6]), ductile materials at the macroscale (e.g. Tvergaard and Hutchinson [7] and Scheider
and Brocks [8]), concrete (e.g. Ingraffea et al. [9]; Elices et al. [10]; Park et al. [11]), bone (e.g. Tomar [12] and Ural and
Vashishth [13]), functionally graded materials (Zhang and Paulino [14]), and asphalt pavements (Song et al. [15]). Hui
et al. [16] and Park and Paulino [17] have presented a review of the literature in the field and thus the reader is referred
to these articles and the references therein.

The fracture behavior in potential-based cohesive zone models is characterized by a potential function, from which trac-
tion–separation behavior proceeds. Taking the first derivative of this potential function with respect to the displacement
separation, results in the cohesive tractions. The second derivative, in turn, provides the material tangent modulus. A cursory
search of potential-based CZMs in the literature will undoubtedly return hundreds of models. Needleman’s potential from
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Nomenclature

B strain-displacement matrix
E Young’s modulus
D material tangent stiffness matrix
D coupled damage parameter
f internal force vector
J Jacobian
K stiffness matrix
K strength coefficient
m, n non-dimensional exponents
N1, N2, N3, N4 shape functions for 8-noded cohesive element
n, t1, t2 opening and sliding directions
t traction vector
Tn normal cohesive traction
Tt effective tangential cohesive traction
Tt1, Tt2 tangential cohesive tractions in sliding directions
Tmax coupled coupled cohesive strength
a, b shape parameters
Cn, Ct energy constants
Dn normal separation
Dt effective sliding displacement
Dt1, Dt2 sliding displacements
Dmax

n ;Dmax
t max normal and tangential separations reached during loading/unloading

dn, dt normal and tangential final crack opening widths
dnc, dtc normal and tangential critical opening displacements at which Tn and Tt equal rmax and smax, respectively
�dn; �dt normal and tangential conjugate final crack opening widths
ep plastic strain
kn, kt initial slope indicators
m Poisson’s ratio
n, g natural coordinate system axes
rmax, smax normal and tangential cohesive strengths
/n, /t fracture energies
W PPR model’s potential function

h�i Macaulay bracket hxi ¼ 0; x < 0
x; x � 0

�
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1987 [5], often cited in the literature, describes the normal, Mode I, interaction with a polynomial potential; however, it is
limited because it only considers decohesion by normal separation. Tvergaard extended Needleman’s potential to better ac-
count for mode-mixity with the use of an interaction formula defining an effective displacement [18]. Needleman later
developed a potential accounting for debonding by tangential separation [19] whereby the normal and tangential interac-
tions are described by exponential and periodic functions, respectively. Alternatively, Xu and Needleman developed a poten-
tial where the normal and tangential separations are both described by exponential functions [20].

Park et al. published a unified potential-based CZM, the PPR (Park–Paulino–Roesler) CZM [21], that addresses the short-
comings of the prevailing potential-based CZMs in the literature, particularly with respect to mode-mixity, user flexibility,
and consistency. First, it characterizes different fracture energies and cohesive strengths in each fracture mode, an accom-
modation not made by most CZMs. Moreover, it provides for several material failure behaviors by allowing the modeler to
define the shape of the softening curve in both the normal and shear traction–separation relations; in most CZMs, softening
behavior is hard-coded and cannot be changed. Finally, and perhaps most important, it is consistent in anisotropic fracture
energy conditions; it demonstrates a monotonic change of the work-of-separation for both proportional and non-propor-
tional paths of separation, a quality not seen in most CZMs.

This paper describes the generalization of the PPR model to three dimensions, details its implementation in a finite ele-
ment framework, and presents its use in single-core and high performance computing (HPC) applications. We identify a vari-
ety of examples which assess the various features of the PPR model considering different loading conditions (e.g. quasi-static
and dynamic), mode-mixity, bulk material behavior, and interfacial behavior (investigating the parameter space that defines
the traction–separation relationship). The examples include a mode I T-peel specimen, a mixed-mode (I and II) bending spec-
imen, an edge crack torsion (ECT) specimen (modes II and III), the Battelle Drop-Weight Tear (BDWT) test, and intergranular
fracture (grain-boundary decohesion) at the microstructural scale.
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2. Implementation

A description of the PPR’s implementation and verification in two-dimensions can be found in Park et al. [21]. The gen-
eralization of the intrinsic PPR model to three-dimensions is discussed here.

2.1. Brief overview

Fig. 1 gives an overview of the cohesive interactions of the PPR model. The normal cohesive interaction region is rectan-
gular and bounded by dn and �dt. Complete cohesive normal failure occurs when the normal separation, Dn, reaches the nor-
mal final crack opening width, dn, or the effective sliding displacement, Dt, reaches the tangential conjugate final crack
opening width, �dt. The tangential cohesive interaction, in turn, is rectangular and bounded by dt and �dn. Complete cohesive
tangential failure occurs when the effective sliding displacement reaches the tangential final crack opening width, dt, or nor-
mal separation reaches the normal conjugate final crack opening width, �dn.

The shape parameters a and b control the normal and tangential softening curve shapes. A shape parameter less than 2
causes plateau-type behavior, whereas a shape parameter greater than 2 yields behavior indicative of quasi-brittle materials.

When Dn reaches the critical opening displacement, dnc, the normal cohesive traction is at its maximum, rmax (the normal
cohesive strength). When the sliding displacement reaches the critical sliding displacement, dtc, the effective tangential trac-
tion is at its maximum, smax (the tangential cohesive strength). The area under the normal cohesive interaction for Dt = 0
corresponds to the normal fracture energy, /n, while the area under the tangential cohesive interaction for Dn = 0 corre-
sponds to the tangential fracture energy, /t.

The three cohesive tractions Tn, Tt1, and Tt2 are dependent upon the normal separation, Dn, and two sliding displacements,
Dt1 and Dt2. Fig. 2 illustrates these displacements.

The effective sliding displacement, Dt, is given by
Dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDt1Þ2 þ ðDt2Þ2

q
ð1Þ
The tangential cohesive tractions, Tt1 and Tt2, relate to Dt as follows:
Tt1ðDn;Dt;Dt1Þ ¼
Dt1

Dt
TtðDn;DtÞ

Tt2ðDn;Dt;Dt2Þ ¼
Dt2

Dt
TtðDn;DtÞ

ð2Þ
where Tt is an effective tangential traction formulated in the next section.
Fig. 1. Traction–separation relation of the PPR model.
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Fig. 2. Cohesive element collapsed (a) and deformed (b) with separations demarcated.
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2.2. Expressions for the cohesive tractions

The PPR model is a function of four basic independent parameters in the normal and shearing fracture modes, namely
cohesive strength, fracture energy, shape of softening curve, and initial slope of the traction–separation relationship. The po-
tential, W, is given by:
WðDn;Dt1;Dt2Þ ¼minð/n;/tÞ þ Cn 1� Dn

dn

� �a m
a
þ Dn

dn

� �m

þ h/n � /ti
� �

� Ct 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDt1Þ2 þ Dt2ð Þ2
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As a matter of notation, the energy constants are Cn and Ct; the fracture energies are /n and /t; the non-dimensional
exponents are m and n; the shape parameters are a and b; the final crack opening widths are dn and dt; the normal cohesive

separation is Dn; and the effective sliding displacement is Dt. Note that h�i is the Macaulay bracket, where hxi ¼ 0; x < 0
x; x � 0

�
.

The energy constants Cn and Ct are given by:
Cn ¼
a
m

� 	m
; /n < /t

�/n
a
m

� 	m
; /n P /t

(

Ct ¼
b
n

� 	n
; /t 6 /n

ð�/tÞ b
n

� 	n
; /t > /n

( ð4Þ
The non-dimensional exponents m and n are functions of the shape parameters and initial slope indicators, kn and kt, as:
m ¼ aða� 1Þk2
n

1� ak2
n

; n ¼ bðb� 1Þk2
t

1� bk2
t

ð5Þ

kn ¼
dnc

dn
; kt ¼

dtc

dt
ð6Þ
The initial slope indicators are measures of cohesive stiffness and control cohesive elastic behavior. Smaller initial slope
indicators cause higher cohesive stiffness, which in turn decrease artificial elastic deformation. They are functions of dnc and
dtc, the normal and tangential critical crack opening widths, respectively, corresponding to maximum normal and tangential
cohesive strength, and dn and dt, the normal and tangential final crack opening widths, respectively, given by the
expressions:
dn ¼
/n

rmax
aknð1� knÞa�1 a

m
þ 1


 � a
m
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 �m�1

dt ¼
/t
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bktð1� ktÞb�1 b

n
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� �
b
n

kt þ 1
� �n�1 ð7Þ
Taking the gradient of the potential W yields the normal and effective tangential cohesive tractions Tn and Tt, respectively.
They are given below:
TnðDn;DtÞ ¼
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The shear tractions, Tt1 and Tt2, are subsequently determined from (2). The normal, shear, and effective shear tractions are
plotted in Fig. 3 for /t > /n, quasi-brittle behavior for mode I, and plateau-type behavior for modes II and III.

2.3. Implementation in FE frameworks

For details regarding the formulation of the material tangent stiffness matrix, D, and provisions for unloading/reloading
and contact, refer to Appendix A. Of particular interest:

� The traction–separation relation for the 3D implementation is defined by /n, /t, kn, kt, rmax, smax, a, and b, the same as the
2D implementation.
� Resistance to sliding in the two shearing directions is equal—Tt1 and Tt2 are not scaled to yield anisotropic sliding behav-

ior, but could theoretically be altered to do so.
� The normal conjugate final crack opening width is determined by solving the nonlinear equation:
Fig. 3.
where
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while the tangential conjugate final crack opening width follows in the same manner from:
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� The PPR model is implemented in ABAQUS as an 8-noded UEL with four integration points in the natural coordinate sys-
tem over the domain �1 6 n P 1 and �1 6 g P 1.
n ¼ �0:707 g ¼ �0:707
n ¼ 0:707 g ¼ �0:707
n ¼ 0:707 g ¼ 0:707
n ¼ �0:707 g ¼ 0:707
The isoparametric formulation is given in Fig. 4, where K is the element stiffness matrix, f the internal force vector, B the
strain–displacement matrix, and |J| the determinant of the Jacobian.

� The initial thickness of a cohesive element is simply the distance in the normal direction between nodes belonging to the
same nodal pair. For zero-thickness cohesive elements, the two nodes forming a pair are initially collapsed upon one
another. For cohesive elements with an initial thickness, this thickness is not included in the measure for Dn as cohesive
normal separation is a relative measure.
Cohesive tractions with /n = 100 N/m, /t = 200 N/m, rmax = 40 MPa, smax = 30 MPa, a = 5, b = 1.3, kn = 0.1, and kt = 0.2. It is assumed that Dt2 = 0.4Dt,
Dt1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

t � D2
t2

q
.



Fig. 4. Isoparamteric formulation of 8-noded cohesive elements.

A. Cerrone et al. / Engineering Fracture Mechanics 120 (2014) 26–42 31
� Finite Element All-Wheel Drive (FEAWD) is employed for HPC applications. FEAWD is an ‘‘in-house’’ high performance
research finite element code developed at Cornell University. It is built on MPI, FemLib, PETSc [22–24], ParMETIS, and
HDF5.

3. Application case studies

3.1. Mode I: T-peel specimen

Debonding is investigated in aluminum/epoxy T-peel joints. Mechanical tests performed by Alfano et al. [25] and Alfano
[26] using the T-peel joint specimen, Fig. 5(a), investigated bond strengths for grit blasted specimens. The experiment is sim-
ulated here in both 2D (plane stress) and 3D using the PPR model.

The bulk material, AA6085-T6, was modeled with a Mises plasticity model. The yield stress and plastic modulus were
250 MPa and 525.8 MPa, respectively. It was assigned a linear elastic, isotropic material model with E = 68 GPa and
m = 0.33. The epoxy, Loctite Hysol 9466, was modeled with the PPR and was represented by a single layer of cohesive ele-
ments with an initial thickness of 0.25 mm. A maximum acceptable cohesive zone length was determined from the plastic
zone size estimates discussed in Rice [27]. Both 2D and 3D models were loaded in displacement-control. The 2D mesh was
composed of 4-noded bilinear elements with reduced integration and hourglass control (CPS4R) and four-noded, quadrilat-
eral PPR UELs. The 3D mesh was composed of 8-noded linear bricks with reduced integration and hourglass control (C3D8R)
and eight-noded PPR UELs of length 0.450 mm.

A comparison of the experimental results and the numerical simulations is given in Fig. 5(b). It is apparent that the 2D and
3D simulations qualitatively reproduce the experimental data within the error bounds. For the 2D simulations, the curves in
Fig. 5(b) do not exhibit the fluctuations in post-peak strength which the 3D simulations and experimental results reflect.
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Given that the adhesive is a ductile material, it would seem that relatively low shape parameters, a and b, would replicate
more accurately experimental behavior; however, as Fig. 6 suggests, the 3D solution shows no sensitivity to softening
behavior.

3.2. Modes I and II: mixed-mode bending (MMB) specimen

The MMB specimen is detailed in ASTM standard D 6671/D 6671M [28]. The MMB test [29], a combination of the double
cantilever beam and end-notch flexure tests, was developed by Reeder and Crews and is used widely to investigate mixed-
mode fracture in composites, Fig. 7.

Numerical simulations with the PPR model replicating the MMB test were conducted in 2D by Park et al. [21], and the
numerical results were compared against the analytical solution given by Mi et al. [30]. The simulations are extended here
to 3D using ABAQUS. A modified Riks method was employed to capture the negative stiffness of the load–displacement re-
sponse. The zero-thickness cohesive elements were extended along the beam’s midplane, just beyond the initial delamina-
tion. The mesh was composed of 0.398 mm-length 8-noded PPR UELs and 8-noded linear bricks with reduced integration
and hourglass control (C3D8R). The specimen was assigned a linear elastic, isotropic material model with E = 122 GPa and
m = 0.25. Informed by Park et al. [21], the initial slope indicators kn and kt were assigned values 0.005 and 0.025, respectively,
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while the shape parameters a and b were both assigned a value of 3. Normal and tangential cohesive strengths, rmax and
smax, were both set to 10 MPa and the normal and tangential fracture energies, /n and /t, were 0.5 N/mm.

A comparison of the analytical solution and numerical simulation is given in Fig. 8. Notice that the simulation results con-
verge to the analytical.

3.3. Modes II and III: edge crack torsion (ECT) specimen

The edge crack torsion (ECT) specimen is used to characterize mode III delamination fracture in laminated composites.
Considering Ratcliffe’s modified ECT specimen [31], Fig. 9, the rectangular specimen has an edge delamination at the mid-
plane. Two pins impart load to the specimen in a symmetric fashion causing Mode III shear sliding at the midplane. Mode
II develops at the edges of the specimen. Ratcliffe’s modified ECT specimen is considered here for verification of the three-
dimensional PPR model under mixed-mode loading.

The material is S2/8552, a glass-epoxy prepreg, with properties given in Table 1 [32]. The stacking sequence was [90/0/
(+45/�45)7/(�45/+45)7/0/90]s, with each ply modeled as a single, orthotropic layer. The specimen was modeled in ABAQUS
with 8-noded linear bricks with reduced integration and hourglass control (C3D8R) and 8-noded PPR UELs ranging in length
from 0.210 mm to 1.0 mm. The two crack surfaces were assigned frictionless tangential contact controls, and to prevent
interpenetration, augmented Lagrangian contact controls were assigned. The specimen was loaded on the top surface via
two node-based kinematic boundary conditions in the z-direction. Roller supports were positioned on the bottom, min-x,
and max-y surfaces, per Fig. 9.

A visualization of the deformed configuration and a load–displacement plot with simulation and Ratcliffe’s experimental
results [31] are given in Figs. 10 and 11, respectively. Two initial crack lengths, 15.2 mm and 19.0 mm, were investigated.
From a calibration study on the a = 19.0 mm configuration, each cohesive element at the midplane was assigned parameters
/n = 1.5 N/mm, /t = 4.7 N/mm, rmax = smax = 58 MPa, kn = kt = 0.002, and a = b = 6. For the uncalibrated a = 15.2 mm configu-
ration, the numerical simulation’s peak load was approximately 4560 N at displacement 3.9 mm, 180 N higher than the
experimental peak at displacement 3.6 mm. It is apparent that the PPR-based simulations can reproduce observed Mode
II/III behavior within a reasonable tolerance.

3.4. Dynamic analysis: Battelle Drop-Weight Tear Test

The Battelle Drop-Weight Tear (BDWT) test is used commonly in the steel pipeline industry to determine transition tem-
perature based on evaluated fracture surface appearance. Recent investigations in Igi et al. [33] and Nonn and Kalwa [34] are
focused on the study of this test to determine the crack propagation characteristics of long-running ductile cracks,
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Table 1
S2/8552 material properties.

Property Value

E11 47.71 GPa
E22, E33 12.27 GPa
m12, m13 0.278
m23 0.403
G12, G13 4.83 GPa
G23 4.48 GPa
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specifically the crack arrest capabilities of the underlying material. Associated standards are given in the following references
[35–37]. A schematic of the apparatus showing hammer, supports, and test specimen is given in Fig. 12(a). This test was con-
ducted with drop energy of 105 kJ resulting from a hammer weight of 2.8 tonnes and falling height of 3.8 m. The test spec-
imen was a rectangular bar with dimensions of 76 mm height, 305 mm length, and a thickness corresponding to the
thickness of linepipe, here 18.4 mm. The full thickness specimen extracted circumferentially from the pipe contained a
5 mm pressed notch to increase the probability of cleavage fracture initiation at the root of the notch. When the specimen
was impacted in three-point bending, a crack nucleated at the root of the pressed notch and propagated upwards towards
the hammer. The test was conducted at room temperature and instrumented to register force vs. time curves, which allow
for the determination of specific crack initiation and propagation energies. In addition, shear area fractions were evaluated
from the appearance of the fracture surface without considering a length equal to the pipe thickness at each end. This is due
to the fact that the material below the notch and at the back end of the specimen experiences work hardening during the
indentation of the notch and by the impact of the hammer, respectively.

The BDWT experimental results presented in Nonn and Kalwa [34] are used here to gauge the suitably of the PPR in
describing the fracture behavior in X100 steel under dynamic loading. The analysis was dynamic with an implicit integration
solution scheme. The finite element analyses were performed using ABAQUS. By means of symmetry, only a fourth of the
specimen was modeled. The support and hammer were modeled as analytical rigid bodies, the specimen with 8-noded linear
bricks with reduced integration and hourglass control (C3D8R), and the crack path with 0.414 mm-length 8-noded PPR UELs.
The X100 steel was modeled by a rate-sensitive Mises plasticity model with the flow curve given in Fig. 12(b) and elastic
properties E = 210 GPa and m = 0.30. The flow curve was formulated from experimental data and is valid until the onset of
uniform elongation; thereafter, the extension of the curve is represented by the power law function (r = Kep

n). Strength coef-
ficient K = 897.8 MPa and strain hardening exponent n = 0.0321 were adjusted to the experimental stress–strain data. The
strain rate dependence of the material was accounted for in the plasticity model by defining the yield strength values as
a function of different strain rate levels.
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Fig. 12. Battelle Drop-Weight Tear test (BDWT) test specimen and simplified apparatus (a) and flow curve for rate sensitive Mises plasticity model (b).
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The PPR model was employed to capture experimentally observed behavior. The parameters were estimated based on the
literature recommendations in Negre et al. [38], Roy and Dodds [39], and Scheider et al. [40] (e.g. cohesive strength should lie
in the range 2.0–3.0 � yield stress, �700 MPa, and the fracture energy corresponds approximately to the J-integral value at
initiation, 240 N/mm). Cohesive elements along the entire length of the midplane were assigned kn = kt = 0.002. Three sets of
PPR parameters were considered in the present study. A visualization of the deformed configuration, PPR parameters, and a
load–time plot with simulation and experimental results are given in Fig. 13.

Two of the simulations employed PPR parameters indicative of X100, but considered different softening behaviors. The
third used a substantially smaller cohesive strength and higher fracture energy to better replicate post-peak behavior, par-
ticularly for time >4 ms. Here, cohesive strength dictates the maximum load-bearing capacity of the beam while the fracture
energy dictates to what extent this load can be carried—the higher the fracture energy, the longer the beam can sustain the
hammer’s impact.

Ductile softening behavior (i.e. plateau-type) most accurately captured peak, but did a relatively poor job capturing decay.
Brittle softening, on the other hand, caused more rapid decay behavior while only underestimating the experimental peak by
approximately 5% (0.5 ms before the experimental peak). Physically realistic PPR parameters (/ = 240 N/mm, r = 2000 MPa,
a = b = 6) for X100 roughly replicated decay behavior, but underpredicted the decay for time >4 ms. For the simulation with a
relatively high fracture energy, the decay for time >4 ms was more accurately characterized.
3.5. Intergranular fracture

Intergranular fracture, commonly referred to as grain boundary decohesion, is a highly complex fracture phenomenon
governed by many microstructural characteristics including grain size, shape, and orientation. One of the first studies inves-
tigating intergranular fracture was conducted in two-dimensions by Raj and Ashby [41]. With the advent of microstructure
generation toolsets, robust surface and volumetric meshing routines, massively parallelized finite element drivers and
accompanying HPC solutions, and the PPR model, it is now possible to model three-dimensional grain boundary decohesion
and avoid numerical difficulties such as locking.

A polycrystal discretized along the grain boundaries with cohesive elements is an ideal medium by which to explain lock-
ing. Here locking is defined as a numerical phenomenon marked by a nonlinear solver’s inability to reach a converged solu-
tion because an insufficient number of load paths exist to accommodate additional deformation. In a polycrystal, if a soft
grain is pinned between stiffer grains, the cohesive elements surrounding the soft grain allow additional deformation insofar
that they do not completely fail. If too many cohesive elements fail, the soft grain no longer has a release by which to unload
accumulated deformation. Consequently, the model ‘‘locks’’ in place as the nonlinear solver is unable to reach a converged
solution.
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Iesulauro [6] modeled grain boundary decohesion in synthetically generated microstructures with a three-dimensional
adaptation of the Tvergaard and Hutchinson [7] coupled cohesive zone model. The model couples the normal and tangential
tractions and displacements into coupled measures. Mode-mixity is considered through the interaction formula:
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dn

dn

� �2

þ Dt

dt

� �2
s

; ð15Þ
where the influence of normal and shear is proportional. When D = 1, the cohesive surface loses all ability to transmit
traction.

Consider the scenario where a grain boundary is loaded normally so that it no longer has the capacity to transmit traction
normally. If modeled with a coupled CZM, the interface has no capacity to transmit traction in either mode, a physically real-
istic behavior. If modeled with an uncoupled CZM without regard for energetically consistent boundary conditions, the inter-
face will continue to transmit traction tangentially and yield physically unrealistic behavior. If modeled with the PPR, the
interface will fail normally and still be able to transmit tangential tractions, as long as Dn < �dn. The PPR is preferred for this
application not only because it replicates physically realistic behavior, but also, in the presence of mode-I, II, or III failure,
preserves the cohesive interactions of the un-failed modes according to the final crack opening and conjugate final crack
opening widths.

To demonstrate the PPR model’s ability to model intergranular fracture, a synthetic polycrystal generated with a Voronoi
tessellation technique was considered. The microstructure was volumetrically meshed with tetrahedra, cohesive elements
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were inserted along the grain boundaries, and the model was loaded statically in simple tension with a 3% applied strain,
Fig. 14. One analysis was performed with the PPR model describing the constitutive response of the grain boundaries; a sec-
ond analysis was performed with the Tvergaard and Hutchinson coupled CZM.

The cohesive parameters used in the analyses are given in Tables 2 and 3. Note that the parameters were chosen to yield
nearly identical cohesive behavior. For example, cohesive strengths, final crack opening widths, and softening behavior were
matched, rendering discrepancies in numerical metrics like solver convergence solely the product of the coupled/uncoupled
nature of the models. The bulk material was assigned linear elastic, isotropic behavior with E = 75 GPa and m = 0.33.

FEAWD was used to formulate and solve the nonlinear system, employing a trust region nonlinear solver, a conjugate gra-
dient Krylov subspace method, and a Jacobi preconditioner as implemented in PETSc. The default linear and nonlinear solver
tolerances were used. Converged function norms for the analyses are given in Fig. 15. Here, convergence is reached once the
l2-norm of the residual is less than or equal to the product of the l2-norm of the residual evaluated at the initial guess and a
200μm
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Fig. 14. Cubic polycrystal model (a) and corresponding cohesive grain boundary surfaces (b).

Table 2
PPR model parameters.

rmax, smax /n, /t kn, kt a, b

450 MPa 1136 N/mm 0.005 2

Table 3
Coupled CZM parameters.

Tmax coupled ko dn, dt

450 MPa 50 � Tmax coupled 0.005 mm
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Fig. 15. Nonlinear function norms for polycrystal analysis.
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user-specified relative tolerance (1e�4 in this study). It is apparent that once an appreciable amount of cohesive softening
was initiated in the polycrystal, the nonlinear solver in the coupled CZM analysis struggled to converge to pre-softening lev-
els, raising doubts about the accuracy of the resulting output. The nonlinear solver in the PPR analysis, on the other hand, had
some difficulty reaching pre-softening levels of convergence for the intermediate load steps; however, unlike the coupled
analysis, the solver fully recovered for the final 300 load steps.

Locking can be blamed for the convergence trend of the coupled CZM analysis. Referring to Fig. 16, a plot of stress in the
loading direction at 2.4% strain across line A-B in Fig. 14(a), it is apparent that the models converged to different answers.
While both models developed a through crack at the same location, the stresses in Fig. 16 indicate an abnormality in the
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Fig. 16. Plot of rz along line A-B shown in Fig. 15(a) at 2.4% strain.
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and without PPR CZM on grain boundaries (b).
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center of the coupled model. It is apparent that the PPR model has nearly completely unloaded; however, the coupled model
has obviously retained a significant capacity to resist complete decohesion. Given the unrealistic nature of this result, par-
ticularly a small segment of a grain boundary being able to resist complete decohesion, and the nonlinear solver’s poor per-
formance discussed previously, it is apparent that the coupled CZM model’s solution is unrealistic while the PPR model is
physically acceptable.

The PPR model’s application in a polycrystalline finite element analysis is discussed here. DREAM.3D [42,43] was used to
create a statistically representative 240-grain microstructure of a nickel-based superalloy with an annealed twin in the cen-
ter; the geometry was volume meshed, with cohesive elements along the grain boundaries, loaded in simple tension, and
analyzed in FEAWD, Fig. 17(a). A grain-size-sensitive crystal plasticity model was employed to model bulk behavior while
the PPR model accounted for grain boundary decohesion. A model with perfectly bonded grains and another with PPR cohe-
sive grain boundaries were considered.

The mesh with cohesive grain boundaries had 12.6-million degrees-of-freedom (DOFs) and 272,636 quadratic, triangular
cohesive elements. The simulation ran on 512 processors on the Texas Advanced Computing Center’s Sun Constellation Linux
cluster Ranger for approximately twelve hours before slip began to accumulate on the slip systems. The sum of the accumu-
lated irreversible slip on the six cubical and twelve octahedral slips systems,

P18
a¼1ca, was considered throughout both poly-

crystals, mapped to a line extending from A to B in Fig. 17(a) as shown in Fig. 17(b). Grain boundary decohesion altered the
slip state in the microstructure, in some grains facilitating slip while in others impeding it.

Intergranular fracture is a complex microstructural deformation mechanism, and the investigations presented herein are
included simply to motivate further study and establish the PPR model as an adequate means to address this phenomenon in
a HPC FE framework. Obviously, to model this mechanism accurately, cohesive parameters would need to be calibrated, and
there is no guarantee that a single set of parameters would be appropriate for every grain boundary in the microstructure.
For example, special consideration would need to be paid to triple junctions and twin boundaries.
4. Conclusions and extensions

This paper has detailed the PPR model’s extension to three-dimensions and demonstrated its efficacy in modeling mixed-
mode fracture in single-core and HPC applications across a variety of applications. A description of the PPR model in relation
to the prevailing cohesive zone modeling methodologies, its formulation in three-dimensions, and its implementation in a
three-dimensional finite element framework were given. Appendix A contains a formulation of the material tangent stiffness
matrix and provisions for unloading/reloading and contact.

The T-peel joint (mode I), MMB (modes I and II), and ECT (modes II and III) specimens were modeled to verify the three-
dimensional PPR implementation. The T-peel PPR simulations yielded experimentally-consistent Mode I behavior. The MMB
PPR simulation reproduced accurately the analytically-predicted results. The ECT simulations, with both Mode II and III com-
ponents, yielded experimentally-consistent load–displacement data for different crack lengths. The Battelle Drop Weight
Tear test was modeled to demonstrate the PPR model’s capability for dynamic loading and gauge its ability to model the high
rate of crack propagation inherent to the experiment. Here, the PPR model was shown to capture adequately experimental
load-bearing behavior. Finally, the case of intergranular fracture was considered to demonstrate the PPR model’s perfor-
mance under severe mode-mixity in a HPC environment. It was shown that the PPR model outperforms a coupled CZM in
modeling intergranular fracture, not only because it is energetically consistent, but also because it does not present the non-
linear solver a computationally intractable problem to solve. The PPR model, therefore, could be extended to many applica-
tions where the crack path is not known a priori and the loading is such that a high degree of mode-mixity exists in the
continuum.

Such extensions could use the PPR model (as described in this paper) as the basic platform in which additional physics
could be inserted. These extensions include anisotropic sliding behavior (as pointed out in Section 2.3), rate dependency in
the traction–separation relationship, healing effect (relevant for asphalt and other polymer-based composites), and function-
ally graded cohesive behavior to account for interphase changes (in this case the cohesive properties are functions and not
constants anymore). Some of these issues are currently being pursued by the authors.
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Appendix A. Material tangent matrix

A.1. Formulation

The material tangent stiffness matrix D is defined as follows:
Dij ¼
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@Dj
ðA:1Þ
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A.2. Unloading/reloading

Define Dmax
n and Dmax

t to be the maximum normal and tangential separations, respectively, reached during loading/unload-
ing. If Dn ¼ Dmax

n and Dt ¼ Dmax
t , meaning that both the normal and shear are in the loading phase, the material tangent stiff-

ness matrix is given by Eq. (A.2).
If Dt < Dmax

t and Dt ¼ Dmax
t , meaning that the normal is in the unload/reload phase and shear is loading, the matrix is given

by:
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If Dn ¼ Dmax
n and Dt < Dmax

t , meaning that the normal is loading and the shear is in the unload/reload phase, the matrix is gi-
ven by:
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Finally, if Dn < Dmax
n and Dt < Dmax

t , meaning that the normal and shear are unloading/reloading, the matrix is given by:
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A.3. Contact

Material self-penetration is prevented through a penalty method. When Dn < 0, the normal traction is given by:
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where the expression in braces, the penalty stiffness, is assigned to the Dnn entry of the material tangent stiffness matrix. The
matrix is given by:
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