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SUMMARY

We present a method to reduce mesh bias in dynamic fracture simulations using the finite element method
with adaptive insertion of extrinsic cohesive zone elements along element boundaries. The geometry of the
domain discretization is important in this setting because cracks are only allowed to propagate along element
facets and can potentially bias the crack paths. To reduce mesh bias, we consider unstructured polygonal
finite elements in this work. The meshes are generated with centroidal Voronoi tessellations to ensure ele-
ment quality. However, the possible crack directions at each node are limited, making this discretization
a poor candidate for dynamic fracture simulation. To overcome this problem, and significantly improve
crack patterns, we propose adaptive element splitting, whereby the number of potential crack directions is
increased at each crack tip. Thus, the crack is allowed to propagate through the polygonal element. Geo-
metric studies illustrate the benefits of polygonal element discretizations employed with element splitting
over other structured and unstructured discretizations for crack propagation applications. Numerical exam-
ples are performed and demonstrate good agreement with previous experimental and numerical results in
the literature. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In numerical dynamic fracture simulations, researchers aim to predict real world failure phe-
nomenon, especially for cases where experiments would not be feasible because of the size or cost of
the experimental set up. A simulation ought to produce physically meaningful results, without bias
or influence from the numerical method itself. In this work, we employ the finite element method
(FEM) and inter-element cohesive zone modeling to simulate dynamic fracture. These methods,
however, are known to suffer from mesh bias, as cracks are forced to propagate along element
boundaries [1]. To greatly reduce mesh bias, we use polygonal finite elements and propose an
element splitting technique to improve crack patterns.

The concept of restricting the cracks to element boundaries was studied by Camacho and Ortiz
[2], who proposed an adaptive strategy to insert cohesive elements at the facets where softening
occurs. By limiting the location of crack propagation to the facets, issues of crack branching, crack
coalescence, and fragmentation are naturally handled by the mesh topology. The primary drawback
of this method is that the initial mesh, if chosen poorly, can adversely influence the path(s) of crack
propagation. Several meshing strategies have been proposed to circumvent this issue.
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Unstructured meshes are preferred for fracture applications because they possess no preferen-
tial path directions (i.e., isotropic), which can result in more realistic crack patterns than their
structured counterparts [3, 4]. Methods to create arbitrary meshes for crack propagation prob-
lems have been studied extensively. Ingraffea, Wawrzynek, and coworkers, for example, have
developed an algorithm to generate meshes on arbitrary domains for fracture applications [5]
and have recently presented a parallel technique for mesh generation [6]. However, structured
meshes have their benefits too: they can be systematically generated and may posses a hierar-
chical subdivision, making them suitable for refinement schemes. Hence, researchers have used
structured meshes with special properties or additional adaptivity operators in an attempt to gain
the benefits of a structured mesh with the isotropy of an unstructured mesh. The pinwheel mesh
possesses the isoperimetric property, meaning that, as the element sizes tend to zero, it is able
to represent any arbitrary crack path [7, 8]. However, applications of the pinwheel mesh are lim-
ited because the convergence of crack lengths and angles exists only in the limit sense and may
not be achieved with practical ranges of mesh size. Furthermore, construction of the pinwheel
mesh is not straightforward. The 4k mesh with adaptivity operators proposed in [1] is a prac-
tical alternative to the pinwheel mesh. Hence, we will use it for comparison with the present
approach.

The structured 4k mesh has been widely used in finite element applications. It can easily be
generated, even for arbitrary domains [9], and its structure and multi-level representation have made
it a popular candidate for mesh refinement and coarsening strategies [9, 10]. A weakness of the
structured 4k mesh is that it suffers from an inherent anisotropy and introduces a significant error
in the crack length for angles other than those at 45ı increments. Recently, nodal perturbation and
edge-swap operators have been proposed to unstructure the geometry and topology of the 4k mesh,
respectively, and to reduce the error in crack path convergence [1]. These operators significantly
reduce the error in the crack path; however, the mesh still introduces unwarranted anisotropies into
the problem domain [11, 12].

The unstructured, conjugate-directions mesh is presented by Rimoli and coworkers [11, 12]. They
use a barycentric subdivision of the k-means mesh to construct a new mesh that has the same
isotropic property of the k-means mesh, but has more potential crack directions. The scheme pro-
posed in the present study aims to achieve similar results to that of the conjugate-directions mesh in
geometric studies; however, because the element splitting is performed adaptively (i.e., as needed),
the computational storage costs are less than what they would be to store an entire conjugate-
directions mesh. Additionally, unlike the conjugate-directions mesh, the method of splitting the
elements in the proposed approach is controlled to limit the presence of elements with small edges,
which may not be well suited for finite element applications.

Alternatively, unstructured, isotropic meshes may be achieved by the use of polygonal elements
constructed by means of Voronoi tessellations. Many researchers have used polygonal discretiza-
tions for fracture applications. Li and Ghosh model multiple crack growth with the extended Voronoi
cell FEM [13] in brittle materials [14, 15]. Ooi et al. [16–18] develop a hybrid finite element-
scaled boundary finite element technique to propagate cracks. For a more detailed discussion of
Voronoi tessellations applied to fracture problems, we direct the reader to [19]. Bishop and cowork-
ers use a framework similar to that studied in this work to model pervasive fracture phenomena.
The finite element meshes are generated with randomly close-packed Voronoi tessellations, and
cohesive elements are adaptively inserted at element boundaries [20, 21]. Other than the dynamic
insertion of cohesive elements, however, the mesh remains fixed throughout the simulations. There-
fore, to obtain more realistic crack patterns in the present study, the mesh is adaptively modified
when needed.

The remainder of the paper is organized as follows. The numerical framework for our study is
outlined in Section 2. In Section 3, we present the element splitting algorithm and discuss the path
convergence characteristics of the polygonal mesh compared to the 4k mesh. Numerical examples
are discussed in Section 4. Finally, in Section 5, we present our conclusions and extensions for
future work.
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Figure 1. Arbitrary domain with applied boundary conditions.

2. MODELING FRAMEWORK

This work uses arbitrary polygonal finite elements and inter-element cohesive zone elements to
perform dynamic fracture simulations. In this section, we present an overview of the finite element
formulation for dynamic fracture problems with polygonal elements, the cohesive zone model to
govern the separation of surfaces, and the topological data structure to manage on-the-fly mesh
modification.

2.1. Finite element formulation

Consider the case of an arbitrary domain, �, that is subjected to surface tractions, TTT , along the
boundary, � , and cohesive tractions, TTT coh, along the fractured surfaces, �coh, illustrated in Figure 1.
The equations of motion are derived using the principle of virtual work, which statesZ

�

ıuT � RuC ı"T �d� D
Z
�

ıuTTd� C
Z
�coh

ı�TTTT cohd� (1)

where � is the mass density, � is the stress, u is the displacement, Ru is the second time derivative of
the displacement (i.e., acceleration), ı� is the virtual separation across the fractured surfaces, ıu is
the virtual displacement, and ı" is the virtual strain. The stress and strain measures used in this work
are the 2nd Piola–Kirchhoff stress tensor and the Green–Lagrange strain tensor, respectively. The
effects of body forces and damping are neglected. The continuous problem is converted to a discrete
problem via the standard Galerkin approximation. Finite deformations are taken into account by
means of the total Lagrangian formulation, in which all quantities are measured with respect to the
initial configuration [22].

2.1.1. Mesh generation. The domain, �, is discretized into a collection of arbitrary convex polyg-
onal elements. All of the meshes presented in this work are constructed using PolyMesher [23], a
MATLAB code for general-purpose polygonal mesh generation on arbitrary domains. We employ
the centroidal Voronoi tessellation (CVT) method, whereby the generating point of the Voronoi cell
is located at the center of mass of the cell.

The CVT results in a discretization in which there is little variation in the range of element sizes,
when compared to a polygonal mesh generated using randomly placed seeds. We refer to a mesh
with more uniform edge lengths as higher quality than one with a large variation in edge length,
in the sense that they are better suited for finite element analysis applications [23] (see [24] for
a statistical analysis of CVT quality). We also investigated randomly close packing the element
generating seeds, but found little difference in results when compared to the CVT (Section 3.2).
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Figure 2. Triangular areas used to define ˛i .

2.1.2. Shape functions for polygonal elements. By the virtue of the Galerkin approximation, the
same functions are used for the test and trial functions. Field quantities are determined at any point
in the domain via interpolation from nodal quantities. The separation across the cohesive elements is
interpolated using linearly varying shape functions. On the volumetric elements, we use Wachspress
shape functions [25] that satisfy the desirable properties of shape functions [26]. Isoparametric
mapping is employed to map quantities from a regular n-gon in the reference coordinate system to
the arbitrary convex polygon in the physical coordinate system. The Wachspress shape functions
[26] for a reference n-gon are expressed as

Ni .�/ D
˛i .�/Pn
jD1 ˛j .�/

(2)

where the interpolants ˛i are of the form

˛i .�/ D
A
�
�i�1; �i ; �iC1

�
A .�i�1; �i ; �/ A

�
�i ; �iC1; �

� (3)

and A denotes the area of the triangle made up of the points in its arguments. For example, Figure 2
shows a reference hexagon with shaded triangular regions to indicate the areas used in the compu-
tation of ˛i in the shape function of the node at �i evaluated at point �. For a detailed discussion of
the construction and implementation of the Wachspress shape functions for finite element applica-
tions, the reader is directed to [27]. The Wachspress shape functions are generated once, before the
fracture simulation begins, and the necessary quantities (i.e., shape functions and their derivatives
evaluated at the integration points) are stored and accessed on an as-needed basis.

2.1.3. Numerical integration. After discretization of Equation (1), integration is performed via
numerical quadrature, for which there are many schemes available. One scheme is to use quadrature
rules that have been designed specifically for polygonal domains [28, 29]. In this work, we opt to
subdivide the reference n-gon into n non-overlapping triangles meeting at the centroid of the poly-
gon. We then use a 3-point quadrature rule on each triangle. The contribution from each triangle is
summed up to obtain the integral over the entire element. Alternatively, the reference n-gon could
be subdivided into quadrilaterals and a 2 � 2 quadrature rule used on each quadrilateral.

To achieve a continuous stress field across the domain (except across cracks), we first extrapolate
stresses from the quadrature points to the nodes then conduct a least squares minimization over
each element [30]. Finally, the nodal stress value is computed as the average of that node’s stress
contribution from each adjacent element.

To evaluate the dynamic response of a system, we use an explicit time integration scheme: the
well known explicit central difference method, which is a subset of the classical Newmark method
[31]. The mass matrix is diagonal in order for the central difference method to be explicit; hence we
apply a standard mass lumping technique in which the diagonals of the consistent mass matrix are
calculated and scaled [32, 33].
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2.2. Park–Paulino–Roesler potential-based extrinsic cohesive zone model

In the dynamic simulations performed in this work, the creation of fractured faces, that is, crack
advancement, is achieved by means of cohesive zone elements, which are inserted at facets between
finite elements. The cohesive zone elements represent the inelastic zone in front of the crack tip. The
finite element formulation of the cohesive elements (i.e., construction of the element force vector)
is not described here, instead the readers are referred to the following [34–36]. Either an intrinsic or
extrinsic approach can be employed. In the former, the cohesive zone elements are inserted into the
domain a priori, and their activation criterion is internal to the formulation. This approach is known
to produce artificial compliance in the system and can lead to unrealistic results in certain settings
[37]. Therefore, we use the extrinsic approach, in which the criterion to insert the traction-separation
relationship is external to the formulation. A cohesive element is inserted once the averaged normal
or tangential stress along an edge exceeds the normal or tangential cohesive strength, respectively.
Once the extrinsic cohesive element is inserted, its behavior is governed by the traction-separation
relationship of the extrinsic Park–Paulino–Roesler (PPR) cohesive model [38]. Next, we describe
the PPR softening model, and also comment on the unloading/reloading and contact formulations
used in this work.

2.2.1. Park–Paulino–Roesler softening model. The PPR cohesive model is chosen to represent the
nonlinear softening behavior in the inelastic zone in front of the crack tip [38]. The PPR cohesive
model is potential based, meaning that the traction-separation relationship is derived from a potential
and the unloading relationship and contact formulation are independent of the model. The potential
is given by

‰ .�n; �t / D min .�n; �t /C

�
�n

�
1 �

�n

ın

�˛
C h�n � �t i

�"
�t

�
1 �
j�t j

ıt

�ˇ
C h�t � �ni

#
(4)

where the Macaulay bracket h�i is defined as

hxi D

²
0 x < 0

x x > 0 (5)

The normal, Tn, and tangential, Tt , tractions are determined by taking the derivative of the potential
with respect to the normal opening, �n, and tangential opening, �t , respectively. Hence,
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where �n and �t are mode I and mode II fracture energies, and ˛ and ˇ are mode I and mode II
shape parameters, respectively. The energy constants �n and �t are defined as

�n D .��n/
h�n��t i=.�n��t / ; �t D .��t /

h�t��ni=.�t��n/ .�n ¤ �t / (8)

for different fracture energies and as

�n D ��n; �t D 1 .�n D �t / (9)

if the fracture energies are the same for both mode I and mode II separation.
The cohesive tractions are defined within a rectangular domain of dependence that is defined by

final crack opening widths and conjugate final crack opening widths, as illustrated in Figure 3. The
normal and tangential final crack opening widths are

ın D ˛�n=�max; ıt D ˇ�t=	max (10)
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Figure 3. Domain of dependance for the (a) normal Tn and (b) tangential Tt interactions: defined by the
final crack opening widths (ın, ıt ) and the conjugate final crack opening widths ( Nın; Nıt ).

Figure 4. Traction-separation relations for (a) normal opening (�n D 100N=m, �max D 40MPa, ˛ D 3:0)
and (b) tangential opening (�t D 200N=m, 	max D 30MPa, ˇ D 5:0).

Figure 5. Uncoupled unloading schemes for (a) normal and (b) tangential interactions [39].

respectively, and the normal and tangential conjugate final crack opening widths are

Nın D ın � ın

�
h�n � �t i

�n

�1=˛
; Nıt D ıt � ıt

�
h�t � �ni

�t

�1=ˇ
(11)

respectively, where �max and 	max are the mode I and mode II cohesive strengths, respectively. In
total, there are six user inputs to the extrinsic PPR cohesive model: �n, �t , ˛, ˇ, �max , 	max .
A set of sample traction-separations relationships are illustrated in Figure 4, for �n D 100N/m,
�max D 40MPa, ˛ D 3:0, �t D 200N/m, 	max D 30MPa, and ˇ D 5:0.

2.2.2. Unloading/reloading. For this study, the unloading/reloading relationship is uncoupled,
meaning that the unloading in the normal direction is independent from the unloading in
the tangential direction. Unloading is assumed to occur linearly back to the origin, as seen
in Figure 5.

2.2.3. Contact. Contact is assumed to occur when the normal separation within a cohesive element
becomes negative. We use the penalty stiffness approach, in which a high stiffness counteracts the

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 100:555–576
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Figure 6. Topological entities: (a) unoriented entities include nodes and elements (explicitly stored) and
edges, vertices, and facets (implicitly stored); (b) oriented entities include edge-uses (eu), facet-uses (fu),

and vertex-uses (vu).

interpenetration of elements. The stiffness is assumed to be linear, with a relation of Tn D ˛p�n,
where ˛p is the slope of the penalty stiffness:

˛p D 10�max=ın: (12)

2.3. Consistent topological data structure

The use of an extrinsic cohesive zone model requires on-the-fly mesh modification during the simu-
lation. In order to handle these mesh modifications, the present work uses the consistent topological
data structure (TopS) [40, 41], which allows for efficient modifications to the adjacency relations
on an as-needed basis. Adjacency information is retrieved, and cohesive elements are dynamically
inserted in time proportional to the number of entities retrieved/inserted.

Node and element entities are explicitly stored in memory, while edges, vertices, and facets are
implicit entities. From the application point of view, there is no difference between implicit and
explicit entities as they are accessed in the same way. TopS is a complete topological data structure,
meaning that from any entity, the adjacency of all entities can be determined (e.g., from a given
node, all adjacent nodes, elements, facets, edges, and vertices can be found). Additional entities,
called uses, are oriented and indicate the use of an edge, vertex, or facet by an element. The entity
definition and storage used in the TopS data structure makes it applicable for both 2D and 3D
mesh representation. Several finite elements are supported by TopS, including classic elements (e.g.,
linear and quadratic triangles and quads, linear and quadratic tetrahedron and bricks, etc.) and the
2D linear polygonal elements that may contain any number of nodes used in this work. A schematic
of the TopS entities for a polygonal element is illustrated in Figure 6. In 2D, edges and facets are
equivalent, as are nodes and vertices. Cohesive elements are also supported by TopS; in this work,
we use 2D linear cohesive elements to be compatible with the linear polygonal elements.

3. INNER-ELEMENT CRACKING BY ELEMENT SPLITTING

Crack patterns on geometrically structured meshes often suffer from mesh bias [7]. To reduce this
bias, unstructured meshes, such as those employed in this work with polygonal elements, are desir-
able. However, crack patterns on polygonal element meshes are quite restricted because each node
typically only has three to four edges emanating from it; therefore, there are only two or three pos-
sible directions for a crack to propagate from a crack tip node. To circumvent this problem, and
improve crack patterns on polygonal element meshes, we implement an element splitting operator
that increases the potential crack directions at each crack tip, as illustrated in Figure 7.

3.1. Methodology

Cracks are advanced by inserting extrinsic cohesive zone elements when and where they are needed
during the dynamic fracture simulation. At the same time that the insertion of cohesive elements is
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Figure 7. Schematic of a crack in a polygonal mesh, where crack faces are illustrated with solid black lines,
the crack tip is indicated by a black circle, and potential crack paths are shown as dashed lines. (a) Crack
directions are limited to existing facets on a plain mesh. (b) The crack may propagate to any adjacent node,
with no restrictions, when element splitting is enabled. (c) Element splitting is restricted to certain nodes, in

order to preserve element quality.

Figure 8. Schematic of potential new elements that would result from splitting element between nodes 1
and (a) 3 and (b) nodes 4 and (c) 5. The configuration shown in (b), where the element is split with node 4,
minimizes the difference between the areas, A1 and A2, of the resulting new elements. Once an element is

split, the resulting two elements cannot be split again.

checked, bulk elements are also evaluated for splitting. To start the procedure, stresses are computed
at nodes, and nodes with principal stress greater than 90% of the cohesive strength are flagged for
further inspection. The flagged nodes are used to identify (1) potential elements to be split and
(2) potential facets along which to insert cohesive elements. Although a stress-based criterion has
been adopted, the present methodology can be used in conjunction with other criteria, as used in
references [42–45].

Each element adjacent to a flagged node is checked for splitting. Starting from the flagged node,
the element may be split using the node that minimizes the difference in the areas between the two
newly created elements. The element edge size is directly related to the critical time step for the
explicit dynamic time integrator. Thus, the approach of limiting the nodes on which an element can
be split is taken to avoid additional reduction of the already small time step. Furthermore, once an
element is split, the resulting two elements cannot be split again. Thus, recurring element splitting is
not allowed in the present work. For example, in Figure 8, node 1 is flagged and the element could
be split with either node 3, 4, or 5, as shown in parts (a), (b), and (c), respectively. The resulting areas
are indicted by the shaded regions and labeled, A1 and A2, in Figure 8. The element is only allowed
to be split with node 4 because it produces two new elements whose difference in area is minimized
when compared to splitting with node 3 or 5. To determine if the element should actually be split,
the traction along the facet is computed by averaging the facet’s nodal stresses. If the average normal
traction along the facet that would connect the splitting nodes is greater than the normal cohesive
strength, then the element is split. In the example in Figure 8, the two new elements connected
by nodes 1-4-3-2 and 1-6-5-4, respectively, (Figure 8(b)), will not be split again. The insertion of
cohesive elements through the polygonal element by means of the adaptive splitting proposed here
is illustrated in Figure 9.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 100:555–576
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Figure 9. Schematic of a cohesive element being inserted at the new facets of split polygonal element. (a)
The element ahead of the crack tip meets the criteria to be split, indicated by the dashed line. (b) The
polygonal element is split, and a cohesive element is inserted at the new facets. The zoomed-in region shows

a schematic of the cohesive tractions given by Equations (6)–(7).

Use of the TopS data structure, discussed in Section 2.3, ensures that the splitting operation is
computationally efficient. The original polygonal element is removed then two new polygonal ele-
ments are inserted using appropriate functions available in the TopS API. Linear polygons are used
in this work, so no new nodes are created when elements are split; therefore, it is not necessary to
interpolate new nodal values. If higher order elements were used, mid-side nodal quantities would
need to be interpolated from existing nodes. Moreover, because all of the polygons in the original
mesh are convex, the polygons that result from splitting the element along its nodes are also convex.
Thus, we do not encounter issues of degenerate finite elements.

Numerical integration of the split elements is accomplished by the same means as in the intact ele-
ments: the n-sided element is subdivided into n non-overlapping triangles that meet at the centroid
of the polygon. Then, a three-point quadrature rule is employed on each triangle, and its contribution
is added to the element. Thus, new integration points are created in the element splitting procedure.
In the current work, we use a bulk material model in which the state of the material is completely
characterized by the displacement field, and cohesive elements are never split. Thus, there is no need
to map history-dependent internal state variables from the original set of integration points to the
new set. However, if a more complex model were used, a technique to map internal state variables,
such as that proposed in [46], would be necessary.

The methodology presented here is effective because all of the elements (whether they have been
split or not) are polygons, so the shape functions for the n-gons are always computed in the same
fashion. This would not be the case, however, if element splitting were employed on a mesh of
alternative linear elements. For example, a split linear quad element would result in two linear
triangles, which have different shape functions.

During a time step, element splitting is performed before cohesive elements are inserted. The
criteria for inserting cohesive elements is the same as that to split an element, so all split elements
will have a cohesive element inserted along the new facet.

3.2. Geometric studies on crack length and angle

To investigate the quality of the crack paths produced by finite element meshes, we perform com-
parison studies on crack lengths and angles between 4k meshes and the polygonal element meshes
proposed here. 4k structured meshes are widely used in finite element analysis as they are easily
generated and lend themselves well to mesh refinement and coarsening. To reduce bias in the 4k
mesh, Paulino et al. [1] proposed the nodal perturbation and edge-swap topological operators. Nodal
perturbation, shown in Figure 10, results in an unstructured geometry by randomly perturbing the
internal nodes. The edge-swap operator reduces undesirable crack patterns by supplying all inter-
nal element vertices with the same number of potential crack directions, shown in Figure 11. We
compare the polygonal element meshes with and without element splitting to 4k meshes with and
without nodal perturbation and with and without edge swapping.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 100:555–576
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Figure 10. 4k mesh (a) without nodal perturbation and (b) with nodal perturbation.

Figure 11. Potential crack path directions on a 4k mesh where the solid nodes have eight potential crack
directions and the white nodes have only four directions. (a) Bold edges can be swapped. (b) After the

edge-swap operator is applied, the dashed edges become available crack directions.

The polygonal meshes used throughout this work are constructed using the CVT. To investigate
possible bias on the CVT mesh, the geometric studies in the succeeding text were also performed
on meshes whose seeds were randomly close packed [20] to achieve a near maximal Poisson-disk
sampling (near-MPS) [4].

First, the mesh influence on crack length is investigated. The fracture energy, Ef , required to
generate a crack is directly proportional to the crack length, that is, Ef D LcGc , where Lc is the
crack length andGc is the energy release rate. Hence, the length of the crack should not be altered by
the finite element representation such that the fracture energy artificially increases [7]. We perform
studies similar to those of Rimoli and Rojas [12]. The shortest distance measured along the finite
element edges between the start point and the end point is computed using Dijkstra’s algorithm [47]
then compared to the Euclidean distance. Square domains of 2 units by 2 units, where the center
node is at point (0, 0) are used for all studies. The start point is .0; 0/, and the end point is chosen
as the closest node to the point given by (r cos 
 , r sin 
), for 
 D 0ı to 180ı where r D 1. The
domain was selected to be a square in order to fairly compare the 4k and polygonal element meshes.
However, to ensure all paths from 
 D 0ı to 180ı are approximately the same, the shortest path
algorithm is terminated when the path reaches a node nearest to the edge of a circle of radius 1.

We compare an unperturbed 4k mesh with and without edge swapping, a perturbed 4k mesh with
and without edge swapping, and a polygonal mesh with and without element splitting. A value of
30% perturbation was applied to the 4k meshes in accordance with the recommendation in Paulino
et al. [1]. Figure 12 shows the paths of minimum distance for 
 D 71:6ı on a polygonal mesh of
a circular domain with and without element splitting as measured with Dijkstra’s algorithm. The
distance without element splitting is over 23% longer than the Euclidean distance, while the distance
with splitting is less than 4% longer. It should be emphasized that the metric of this study is only
the length of the path and not the distance between the finite element path and a straight line. Later
in this section, we perform a study on Hausdorff distance to address this issue. We also note that the
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Figure 12. The shortest distance between the start point (0, 0) and the end point (cos .71:6ı/, sin .71:6ı/),
measured along the finite element edges versus the Euclidean distance for a polygonal mesh with and without
element splitting. (a) Full domain and (b) zoom in of region inside the dotted, gray box in (a). The circular
domain shown here is for illustrative purposes only; the studies were conducted on rectangular domains with

an inscribed circular boundary, as described in the text.

Figure 13. Comparison of mesh deviation, �, for meshes with � � 1
80

. (a) Deviations of 4k meshes nodal
perturbation factors of 0 and 0.3, with and without edge swap, and (b) deviations of polygonal meshes with

and without element splitting.

example shown in Figure 12 is for illustrative purposes only; the domain used for the studies was
rectangular, and the mesh is finer than that shown in the figure.

The deviation, �, is quantified as the percent difference between the length of the path created
by the finite element edges and the Euclidean distance. The deviations for angles 
 D 0ı to 180ı

are shown in Figure 13. A study of mesh refinement revealed that the deviation did not decrease
significantly as the element size decreases; hence, we chose a refinement level that allowed for
computationally efficient calculations. Meshes of 10,000 elements are used for all studies. We also
report mesh size according to a non-dimensional metric, �, defined as [12]

� D

1
N

NP
iD1

hi

Le
(13)

where Le is the Euclidean distance between the start and end points, N is the total number of
edges in the mesh, and hi is the length of edge i . For the meshes used in these studies, � � 1

80
.
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Table I. Deviations in crack length for meshes with � � 1
80

.

Average Standard deviation

4k, no swap, NP = 0.0 0.0543 0.0250
4k, with swap, NP = 0.0 0.0543 0.0250
4k, no swap, NP = 0.3 0.0372 0.0120
4k, with swap, NP = 0.3 0.0302 0.0100
Near-MPS, no split 0.1602 0.0098
Polygonal, no split 0.1997 0.0125
Polygonal, with split 0.044 0.0078

MPS, maximal Poisson-disk sampling.

Because the polygonal meshes are random, results from four meshes are shown in Figure 13(b). As
illustrated in Figure 13(a), even with the nodal perturbation and edge-swap operators, all of the 4k
meshes suffer from mesh-induced anisotropy [12]. Meshes that do not suffer from mesh anisotropy
have approximately equal deviations for all crack mesh angles. Furthermore, it is desirable for the
deviation to also tend to zero such that the energy is not larger than expected. The near-MPS meshes
do not appear to suffer from mesh anisotropy, as expected, but the deviation is significantly higher
than it is in any of the 4k mesh variations, as illustrated in Figure 13(b) and shown in Table I.
Based on the results shown in Figure 13(b), the CVT polygonal meshes also appear to be isotropic,
but the deviation is higher than that of the near-MPS mesh. While the near-MPS mesh has a lower
deviation than the CVT mesh, the near-MPS mesh is not well suited for element splitting because
the elements may contain very small edges, which we attempt to avoid because of the restrictions
upon the critical time step. Therefore, we employ element splitting on the CVT meshes in an attempt
to reduce the deviation. In this case, isotropy appears to be achieved, and the deviation is reduced to
an average value in the range of that of the 4k mesh with nodal perturbation and edge swap. We have
demonstrated that the near-MPS mesh and the CVT mesh with and without splitting do not exhibit
mesh anisotropy, but we direct our focus to the CVT meshes in the reminder of this work because
they are better suited for element splitting.

The CVT mesh with splitting achieves a mean deviation near that of the k-means mesh studied by
Rimoli and Rojas [12] (see Figure 12 in [12]). The proposed approach is not sufficient to reach the
deviation of the conjugate-directions mesh, whose average deviation is less than 0.02. However, as
stated earlier, because the element splitting is performed adaptively, the computational storage costs
are less than what they would be for the conjugate-directions mesh.

Next, the mesh influence on crack angles is investigated, and results are compared between the
4k and polygonal meshes. We measure the difference between an arbitrary angle 
 and the corre-
sponding geometric angle, 
FE. Again, the studies are performed on square domains of 2 units by 2
units with 10,000 elements, where the starting node is at point (0, 0). The procedure to determine
the geometric angle, 
FE, is as follows: from the starting location, a local search is performed over
the edges adjacent to that node. The angle formed by the start node and the node at the opposite end
of the edge is computed. The edge that results in the angle closest to the target angle is selected, and
the current location is updated to the node at the opposite end of the selected edge. Then the same
procedure is applied until the end point is reached; the end point is the first node whose distance to
the starting point is greater than or equal to the target radius of one. The series of nodes and edges
from the starting point to the boundary represents the path from which the geometric angle is deter-
mined. A least squares linear fit is applied to the path, and the angle is obtained. For illustrative
purposes, Figure 14 shows the paths obtained for the case of 
 D 34ı for a coarse, unperturbed 4k
mesh without edge swapping.

The absolute value in the deviations from target angles 0ı to 359ı is plotted in Figure 15(a)
for the unperturbed 4k mesh without swapping, the perturbed 4k meshes without swapping, and
the polygonal meshes without splitting; and 15(b) for the unperturbed 4k mesh with swapping, the
perturbed 4k meshes with swapping, and the polygonal meshes with splitting. A single mesh was
used to calculate the deviations for the unperturbed 4k mesh, while the absolute values in the angle
differences in the randomly perturbed 4k and polygonal mesh results are averaged over 100 meshes.
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Figure 14. Comparison of an arbitrary angle and geometric angle, 
 D 34ı, for (a) unperturbed 4k mesh
with and without edge swapping and (b) perturbed 4k meshes with and without edge swapping.

Figure 15. Absolute value of difference between geometric angle and target angle for radial paths from 0ı to
359ı at 1ı increments for (a) 4k without swapping, perturbed 4k without swapping and polygonal without
splitting, (b) 4k with swapping, perturbed 4k with swapping and polygonal with splitting. Results for the
4k discretization are obtained from one mesh, while the results from 100 meshes are averaged for each the

perturbed 4k and polygonal discretizations.

All of the 4k meshes display mesh bias, where the lowest deviation is for angles of 0ı, 45ı, 90ı, and
so on, and highest for angles of 0ı˙1ı, 45ı˙1ı, 90ı˙1ı, and so on. The benefit of the edge-swap
operator is clear when comparing Figures 15(a) and 15(b) at 0ı, 90ı, 180ı, and 270ı; however, bias
still exists. Conversely, the polygonal meshes with and without splitting display no mesh bias, and
their average deviations are much lower than those in the 4k meshes. The minimum, maximum, and
average deviations from the target angle are shown in Table II. While the 4k meshes have minimum
deviations as low as or lower than the polygonal meshes, the range of deviations (i.e., difference
between maximum and minimum) for the polygonal meshes is smaller than that of the 4k meshes.
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Table II. Deviations from target angle.

Max Min Mean

4k, no swap, NP = 0.0 0:80ı 0ı 0:18ı

4k, no swap, NP = 0.3 0:78ı 0:07ı 0:23ı

Polygonal, no split 0:14ı 0:09ı 0:11ı

4k, with swap, NP = 0.0 0:58ı 0ı 0:16ı

4k, with swap, NP = 0.3 0:42ı 0:07ı 0:18ı

Polygonal, with split 0:13ı 0:07ı 0:10ı

Figure 16. Histograms of Hausdorff distances for radial paths from 0ı to 359ı at 1ı increments for (a)
unperturbed 4k mesh with and without edge swapping, (b) perturbed 4k meshes with and without edge
swapping, and (c) polygonal mesh with and without element splitting. Results for the 4k discretization are
obtained from one mesh, while the results from 100 meshes are averaged for each the perturbed 4k and

polygonal discretizations.

The paths obtained for the crack angle study are also used to investigate the Hausdorff distance.
Given two curves, P and Q, in the same two-dimensional space, the Hausdorff distance, H , is the
maximum of the minimum distances from all points on curve P , denoted p, to all points on curve
Q, denoted q. It is defined as [48]

H .P; Q/ D max .h .P; Q/ ; h .Q; P // (14)

where

h .P; Q/ D max

�
min
p2P

�
dist
q2Q

.p; q/

��
(15)

The bias in the 4k meshes has already been established, so here, we report the occurrence of
Hausdorff distances in the histograms in Figures 16(a)–16(c). Again, one mesh was used for the
unperturbed 4k mesh case, while 100 were used for the perturbed 4k and polygonal mesh cases.
The occurrences are normalized such that the area of each histogram is one. The distribution of the
Hausdorff distances for the perturbed meshes is smoother than those of the unperturbed 4k mesh;
however, there is some tradeoff when comparing the perturbed and unperturbed 4k meshes. Higher
Hausdorff distances occur in the perturbed case, especially when edge swap is not employed: 95.6%
of the Hausdorff distances for the unperturbed case are below 0.02, but only 42.5% of the distances
for the perturbed case fall below this threshold. There is improvement when edge swap is used:
100% of the Hausdorff distances for the unperturbed case and 98.5% for the perturbed case are
lower than 0.02. The striking difference comes in the comparison of the 4k meshes to the polygo-
nal meshes. As illustrated in Figure 16(c), the Hausdorff distances for the no splitting and splitting
cases are lower, and the distribution is tighter than for the 4k meshes.

The polygonal meshes with element splitting are shown to be superior to 4k meshes with nodal
perturbation and adaptive edge-swap operators in geometric studies. In the next section, numerical
studies are performed to demonstrate the capability of this method for dynamic fracture problems.
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Figure 17. (a) Geometry of compression specimen test and (b) impact velocity with respect to time.

4. NUMERICAL EXAMPLES

In this section, we explore the effectiveness of the proposed scheme over the standard polygonal
element approach through two numerical examples.

4.1. Compact compression specimen

Rittel and Maigre [49, 50] used the compact compression specimen (CCS) test [51, 52] to inves-
tigate mixed-mode dynamic crack propagation in PMMA. The CCS, illustrated in Figure 17(a), is
fractured by applying an impact load using a Hopkinson bar [53] with a diameter of 16:5 mm.
Numerically, the impact is described by an applied velocity [1] that increases linearly over a span
of 40s, and lasts for 350s, as illustrated in Figure 17(b). The present approach is appropriate for
this problem because (1) the curved domain is easily meshed with polygons, and (2) the expected
crack is curved and could not be captured fully by a structured mesh.

Various numerical methods have been applied to model this experiment. Papoulia et al. [7] use the
pinwheel meshes to discretize the domain and linearly softening, extrinsic cohesive elements [54] to
model fracture. While the pinwheel mesh can capture increasingly smooth crack paths as the mesh is
refined, the generation of the mesh is not straightforward. Paulino et al. combine nodal perturbation
and edge-swap operators to study the crack path on a 4k mesh [1]. They use the same extrinsic
cohesive elements as the current study, but display mesh-induced anisotropies as the cracks move
farther from the notch tip. The 4k mesh is first generated on a rectangle, then a curvilinear coordinate
transformation and conformal mapping procedure is applied to discretize the region around the
notch. Menouillard and coworkers use the extended FEM to simulate the CCS experiment [55–57].
They study the effect of mass lumping techniques and explicit time integration schemes, which
prove to have an influence on the resulting crack pattern.

In the present study, element generating seeds are placed throughout the domain. To achieve the
necessary regions of refinement around the notch and impact location, the seed placement was con-
trolled with user defined density functions [23]. The density function at the notch tip is exponential,
with a probability of seeds being placed in this region 108 times greater than in the remainder of
the domain. The rectangular region around the impact location has a 103 times greater probability
of seed placement than in the remainder of the domain. A well-graded polygonal mesh is generated
with this approach. The domain is discretized with 6,000 polygons and 11,403 nodes, as illustrated
in Figure 18. In comparison, Paulino et al. [1] discretize the same domain with a 4k mesh and
quadratic finite elements; resulting in a similar number of nodes (10,908).

The PMMA material is modeled with an elastic modulus of 5:76 GPa, a Poisson’s ratio of 0.42
and a density of 1180 kg/m3. The cohesive input parameters are adopted from the work of Paulino
et al. [1]. The cohesive strength (�max), fracture energy (�n), and shape parameter (˛/ are set as
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Figure 18. (a) Full mesh of compression specimen and (b) refined mesh around notch.

Figure 19. (a) Fracture emanating from notch without element splitting, and (b) fracture emanating from
notch is smoother when element splitting is employed. Notice the branching that develops from the main

crack when there is no element splitting. The dark lines represent the inserted cohesive elements.

129:6 MPa, 352:3 N/m, and 2, respectively. The normal and tangential separation parameters are
set equal to one another.

The simulation is performed for a polygonal mesh without element splitting, then again on the
same polygonal mesh with element splitting enabled. The crack paths for both simulations are illus-
trated in Figure 19. In the case without element splitting, the fracture surface is noticeably biased
by the polygonal element geometry, the crack branches, and some fragmentation is observed as the
crack propagates into the coarse portion of the mesh. These features are not present in numerical
and experimental results in the literature [7, 49]. When element splitting is enabled, 51 elements
are split, alleviating much of the mesh-induced bias and resulting in a smoother fracture surface.
The fracture energy dissipated by the cohesive elements for each case is compared at a time of
100 s. The case without element splitting dissipates 5.001 N/m; whereas the case with element
splitting dissipates 4.628 N/m. The crack trajectory for the splitting case agrees well with reported
experimental results [58] and numerical results published in the literature [7].

4.2. Pressure loaded cylinder

To further explore the applicability of polygonal elements with element splitting for fracture simu-
lation, we examine the fragmentation of a cylinder with an internal impact pressure. This problem
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is particularly suitable for the use of unstructured meshes as structured meshes can induce unde-
sirable fracture patterns; see [59] for a discussion of unsatisfactory results obtained because of
mesh dependency for the pressure loaded cylinder. The thick cylinder has an internal radius of 80
mm and outer radius of 150 mm, as illustrated in Figure 20(a). The applied pressure increases
linearly from 0 to 400 MPa over the course of 1s then decreases exponentially according to
P .t/ D 400e.�.t�1/=100/, as illustrated Figure 20(b). The material has an elastic modulus of 210

Figure 20. (a) Geometry of cylinder and (b) internal impact pressure with respect to time.

Figure 21. Comparison of results at a time of 64 s without element splitting and with element splitting.
(a) 5,000 elements without element splitting, (b) 5,000 elements with element splitting, (c) 10,000 elements

without element splitting, and (d) 10,000 elements with element splitting.
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Figure 22. Progression of energy through fragmentation process, for a mesh size of 10,000 elements with
element splitting enabled, at time (a) 30 s, (b) 40 s, (c) 47.5 s, (d) 55 s, and (e) 60 s. (f) Final

fragmented geometry at 64 s.

GPa, a Poisson’s ratio of 0.3 and a density of 7850 kg/m3. The cohesive strength, fracture energy,
and shape parameter in both modes are 850 MPa, 2000 N/m and 2, respectively.

In a prior numerical investigation, Rabczuk and Belytschko [60] use a mesh free cracking-nodes
method and observe that the number of large and small fragments are consistent, regardless of
the number of particles used to model the geometry. Song and Belytschko [61] use a cracking
node method within the finite element framework. In order to break the mesh-induced symmetry
in their model, they perturb the elastic modulus throughout the model by ˙5%. They also show
that the number of fragments is consistent through mesh refinement and are on the order of 20
fragments. Zhou and Molinari [59] implement the same problem in 3D. They propose a method of
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overcoming mesh dependency by distributing the cohesive strength based on a modified weakest link
Weibull distribution. The larger the finite element is in their mesh, the lower the cohesive strength
associated with that element. Without this methodology, the cracks initiate in the interior of the
cylinder. Paulino et al. [1] use an edge-swap operator (Section 3.2) to increase the number of fracture
paths in their finite element mesh. To overcome the symmetry in their model, they implement nodal
perturbation, but also impose restrictions on the location of crack initiation, so that they do not
initiate in the interior of the cylinder.

In the present study, the domain is discretized at two levels of refinement, 5,000 and 10,000
polygons, and we investigate cases with and without element splitting in each. No external method
(e.g., perturbation) is required to break mesh symmetry because the mesh is inherently random, and
no restrictions are placed on the initiation of fracture. The final crack patterns for all cases are shown
in Figure 21, and the progression of the strain energy as fracture occurs for the 10,000 polygonal
element mesh with element splitting enabled is shown in Figure 22.

In both refinement levels without element splitting, we observe that many cohesive elements
are inserted near the internal boundary. The insertion of cohesive elements demonstrates excessive
material softening in this region, causing the cracks to arrest instead of propagating completely
through the thickness of the cylinder. At a finer mesh discretization, the standard polygonal meshes
are still not able to capture the full fragmentation of the cylinder. Using the same initial polygonal
meshes and boundary conditions, but allowing for element splitting, the resulting behavior and frag-
mentation pattern agree with the expected results from the literature [1, 60, 61]. In comparison, the
mesh with 5,000 polygonal elements contains 9,419 nodes, whereas that presented by Paulino et al.
[1], for the 4k mesh results in similar fracture behavior but contains 12,800 quadratic elements and
25,920 nodes.

The stress and strain are initially concentrated around the inner boundary of the cylinder
(Figure 22(a)), causing fracture to initiate almost uniformly around the inner surface (Figure 22(b)).
The majority of these cracks arrest after a small amount of propagation with several cracks propa-
gating through the entire thickness (Figure 22(c)–22(e)). At the end of the simulation (64 s), we
are interested in the number of fragments, where a fragment is defined as the volume of material
between two cracks, which are continuous and span the thickness of the cylinder. The final geom-
etry consists of 18 fragments for the 5,000 element case and 23 fragments for the 10,000 element
case, which is in good agreement with the results available in the literature.

5. CONCLUDING REMARKS

In this work, we perform dynamic fracture simulations using the FEM and an inter-element cohesive
zone model. To reduce mesh bias, polygonal finite elements constructed with the CVT are employed.
While the polygonal mesh is shown to be isotropic, the resulting crack patterns are not ideal because
each node typically only has three to four edges emanating from it; therefore, there are only two or
three possible directions for a crack to propagate from a crack tip node. To circumvent this problem,
we introduce polygonal element splitting, which essentially doubles the number of edges connected
to a node. We find the that CVT mesh is better suited for element splitting than other types of
polygonal element meshes, namely the near-MPS, because they result in elements that have less
variation in edge length.

We performed geometric studies on deviation in crack length and angle to investigate the quality
of crack paths for various discretizations. The polygonal element meshes were compared to the
popular 4k mesh, which has been widely used in finite element and fracture applications because it
is easy to construct and is well suited for mesh adaptivity. The studies indicate the strength of the
polygonal element meshes with splitting over plain polygonal element meshes and over 4k meshes
with and without the nodal perturbation and edge-swap operators employed.

Numerical dynamic fracture simulations further illustrate the suitability of the polygonal ele-
ment meshes with splitting. To highlight the benefit of polygonal elements in meshing arbitrary
domains, problems with curved boundaries were investigated. We show that the plain polygonal ele-
ment meshes do not provide the expected results in either numerical simulation when compared to
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numerical and experimental results in the literature. However, crack patterns that agree with expec-
tations are obtained with element splitting enabled. In addition, linear polygonal elements are shown
to produce similar or better results to those obtained using quadratic triangular elements with a
similar or fewer number of degrees of freedom.

On-the-fly mesh adaptivity (i.e., insertion of extrinsic cohesive elements and element splitting) is
made computationally tenable by the TopS data structure. In previous studies, TopS has been used to
perform adaptive mesh refinement on 4k meshes in crack tip regions [10]. Thus, a natural extension
of the work presented here is to incorporate adaptive mesh refinement in polygonal element meshes
with element splitting.

This work offers room for further extensions. While the present adaptive splitting of polygonal
elements in two dimensions is not conducive to three-dimensional fracture on polyhedral elements,
we indicate some directions to be pursued to achieve that goal. For instance, recently, the Wachs-
press shape functions, together with their gradients, have been derived in 3D [62] and either those
or other related interpolants [63] could serve as a starting point. The geometrical treatment regard-
ing three-dimensional splitting and element redefinition may incorporate some of the computational
geometry ideas developed at Sandia National Laboratory [64] and in reference [65]. Alternatively,
new interpolants may open avenues for the three-dimensional treatment of fracture surfaces on poly-
topes. In this regard, the virtual element method (VEM) may be explored. Recently, the VEM has
been implemented to treat elastic problems without cracks [66], and thus, one could build upon this
work to incorporate new crack surfaces where and when needed, which could take advantage of the
adaptive features offered by the VEM [67, 68].
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