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Phononic crystals (PCs) can exhibit phononic band gaps within which sound and vibrations at

certain frequencies do not propagate. In fact, PCs with large band gaps are of great interest for

many applications, such as transducers, elastic/acoustic filters, noise control, and vibration shields.

Previous work in the field concentrated on PCs made of elastic isotropic materials; however, band

gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Because the

main property of PCs is the presence of band gaps, one possible way to design microstructures that

have a desired band gap is through topology optimization. Thus in this work, the main objective is

to maximize the width of absolute elastic wave band gaps in piezocomposite materials designed

by means of topology optimization. For band gap calculation, the finite element analysis is

implemented with Bloch–Floquet theory to solve the dynamic behavior of two-dimensional

piezocomposite unit cells. Higher order frequency branches are investigated. The results demonstrate

that tunable phononic band gaps in piezocomposite materials can be designed by means of the present

methodology. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4887456]

PACS number(s): 43.20.Gp, 43.40.Sk, 43.20.El, 43.40.Fz [ANN] Pages: 494–501

I. INTRODUCTION AND MOTIVATION

Piezoelectric materials are frequently used in engineer-

ing applications, especially in the aeronautical and aerospace

engineering. Many of the piezoelectric components that are

extensively employed in intelligent materials and structures

exhibit periodicity.1 Acoustic or elastic composite materials,

called phononic crystals (PCs), can exhibit ranges of fre-

quencies, known as stopbands or band gaps, over which all

incident waves are effectively attenuated. This attenuation

phenomenon is attributed to a mechanism of destructive

interferences within the scattered wave field.2 Due to its

potential range of applications, several computational meth-

ods have been developed to compute band gaps properties of

PCs.3 The existence of band gaps suggests that it may be

used as filters, as transducers, for creation of vibration-free

environments, and for energy harvesting applications.4 Thus

it is essential to design a microstructure that possesses a

desired band gap configuration. The design of PCs with tuna-

ble band gaps is an interesting and challenging problem.

Substantial research has been done to enlarge the width of

band gaps5,6 that shows that the width of band gaps is deter-

mined by the contrast of elastic constants, the filling volume

fraction, and the lattice of the constructed elements.

Previous studies on dispersive composite materials have

focused on elastic periodic structures,7–12 and not much

work has been done using piezocomposite structures.13–15

Previous investigations of wave propagation in two-

dimensional models have considered the piezoelectric polar-

ization fixed in the z direction (normal to the surface). Wilm

et al.13 implemented a three-dimensional model based on a

plane wave expansion of the generalized acoustic fields for

general piezoelectric-based composite materials. Hou et al.14

investigated the elastic band structure of a two-dimensional

phononic crystal containing piezoelectric material by means

of the plane-wave-expansion method. Numerical results

show that for a large filling fraction, the full band gap of this

kind of system is enlarged by considering the piezoelectric

effect; however, for a small filling fraction, the influence of

the piezoelectric effect is so small that it can be neglected.

Wilm et al.15 investigated not only waves propagating in the

symmetry plane of piezocomposites but also waves propa-

gating with a nonzero angle of incidence with this plane.

The main conclusion is that by locating the thickness mode

in band gaps allows minimization of coupling with parasitic

modes such as lateral modes, or even propagation of Lamb

waves in phased array or excitation of plate modes.

Because the main property of PCs is the presence of

band gaps, it is essential to design microstructures with band

gaps as large as possible. However, each kind of application

requires a distinct frequency band gap, and thus, a possible
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way to design structures with a desired band gap is by means

of the topology optimization method (TOM).16 Such a

method consists of seeking an optimal structural topology

design by determining which points of space should be solid

and which points should be void (i.e., no material) inside a

given domain.17 Sigmund and Jensen5 applied topology opti-

mization to design periodic materials and structures exhibit-

ing phononic band gaps to either minimize the structural

response along boundaries (wave damping) or maximize the

response at certain boundary locations (waveguiding).

Halkjær et al.18 maximized phononic band gaps for infinite,

periodic beam structures modeled by Timoshenko beam

theory, for infinite periodic, thick and moderately thick

plates, and for finite thick plates. Halkjær et al.19 maximized

the band gap size for bending waves in a Mindlin plate, and

they constructed a finite periodic plate using a number of the

optimized base cells in a postprocessed version. Rupp

et al.20 applied the TOM to design two- and three-

dimensional phononic (elastic) materials, focusing on sur-

face wave filters and waveguides.

In this work, the goal is to design two-dimensional pie-

zocomposite materials that maximize the relative band gap

size between frequencies j and jþ 1, i.e., maximize the low-

est value of the upper bound of the band gap and minimize

the maximum value of the lower bound of the band gap, by

using topology optimization. The modeling combines the

finite element method (FEM) and Bloch–Floquet theory.

This paper is organized as follows, in Sec. II, the piezo-

electric constitutive equations are described. In Sec. III, the

theoretical formulation for band gap modeling is given with

emphasis on the aspects related to the periodicity. For the

sake of simplicity, only the two-dimensional mathematical

model is described. In Sec. IV, the TOM applied to phononic

piezocomposite material design is presented. In Sec. V, the

numerical implementation is detailed. In Sec. VI, optimized

material designs are developed aiming at maximizing band

gaps of different orders. Finally, in Sec. VII, some conclu-

sions are inferred.

II. PIEZOELECTRIC CONSTITUTIVE EQUATIONS

The stress-charge form of the constitutive relation for

piezoelectric media are given by21,22

T ¼ cES� eE

D ¼ etSþ eSE;
(1)

where T, S, D, and E are, respectively, the mechanical stress

tensor, the mechanical strain tensor, the electric charge vec-

tor, and the electric field vector. The term cE represents the

elastic stiffness tensor, which is evaluated at a constant elec-

tric field. Terms e and eS are, respectively, the piezoelectric

tensor, and the dielectric tensor evaluated at constant strain.

In this work, a bidimensional model is considered. By

convention, the polarization axis of the piezoelectric mate-

rial is considered in the vertical direction. Moreover, a

plane-strain assumption is considered for modeling two-

dimensional microstructures. Therefore, by assuming that

the model is in the plane 1–3 (x-z) (y is the normal direction)

and that the piezoelectric material employed to build the pie-

zocomposite belongs to the hexagonal 6 mm class, we obtain

the correspondent plane-strain properties by considering

ey ¼ 0 and Ey ¼ 0 in Eq. (1) and rewriting them by using

only the terms ei, Ti, Di, and Ei for i ¼ 1 or 3. A plane-stress

model could also be considered; however, it is less realistic

than the plane-strain model for representing the composite

behavior, which is assumed to have an infinite length in the y
direction (for the two-dimensional case).

III. FORMULATION

As indicated previously, the model adopted in this work

is a two-dimensional infinite periodic medium under plane

strain conditions. Figure 1(a) shows an example of a unit

cell with a cylindrical inclusion in a matrix of different mate-

rial. Due to periodicity of the material, the lines A1 and A2,

parallel to the y axis, and the lines B1 and B2, parallel to the

x axis, limit the unit cell, which is of length 2da wide in the x
direction and 2db in the y direction. In Fig. 1(a), corners are

marked by the letter C. The unit cell is excited by a mono-

chromatic plane wave, which is characterized by a real wave

vector

k ¼ k cos h~i þ k sin h~j: (2)

The magnitude k is the wavenumber (inversely proportional

to the wavelength), and its direction h is ordinarily the

direction of wave propagation. Its modulus is called the

wave number and is denoted by the scalar k. The direction of

incidence is marked by an angle h with respect to the posi-

tive x axis. Because the material is assumed to be periodic

and infinite in the x and y directions, then any space function

F agrees with the classical Bloch relation9

F xþ 2da; yþ 2dbð Þ ¼ ej2dak cos hej2dbk sin hF x; yð Þ
¼ ej/a ej/b F x; yð Þ : (3)

Figure 1(b) shows the first Brillouin zone for an orthotropic

unit cell. In principle, the whole area should be searched;

however, although unproven, researchers have claimed that

if the scope of the analysis is the determination of band gaps,

the information required can be obtained by searching points

only on the boundary lines.5 This approach is followed in the

present work.

FIG. 1. (Color online) (a) Schematic description of a doubly periodic mate-

rial. (b) First Brillouin zone for an orthotropic unit cell.
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A. Finite element modeling of the piezocomposite unit
cell

A generic numerical method, such as the finite element

method (FEM), is necessary for structural analysis because

structures with complex topologies are expected. Therefore

the formulation of the FEM for linear piezoelectricity is uti-

lized. Because this formulation is well developed in the liter-

ature, only a brief description will be given here.23 The

material is considered as an infinitely periodic media, and

thus it is possible to reduce the finite element model to only

one unit cell. This is done by applying Eq. (3) to the degrees

of freedom located at the unit-cell boundaries. In the case of

piezocomposite materials, there are 3 degrees of freedom at

each node, which are displacements U (in x and y direction)

and electrical potential /.

The finite element equations for modeling a linear pie-

zoelectric medium, considering time harmonic excitation,

may be written as23

Kuu Ku/

Kt
u/ K//

� �
� x2 M 0

0 0

� �� �
U

U

� �

¼ K� � x2M�ð ÞU� ¼ 0; (4)

where M, Kuu, Ku/, and K// are the mass, stiffness, piezo-

electric, and dielectric matrices, respectively, and U and U
denote the nodal displacement and nodal electric potential

vectors, respectively.23 Equation (4) represents the FEM

model for piezoelectricity without damping effect. In all the

examples in this paper, four node isoparametric elements are

used with a linear interpolation along element edges.

B. Periodic boundary conditions

The application of the periodic boundary conditions

implies that the phase relation of Eq. (3) between nodal val-

ues belonging to the lines A1 and A2, on the one hand, and

between the lines B1 and B2, on the other hand, has to be

incorporated in the matrix Eq. (4). The unit cell is divided

into nine parts: The four lines A1, A2, B1, and B2, the four

corners C1, C2, C3, and C4, and the inner domain I. The dis-

placement vector U and electrical potential vector U are

then split into the corresponding nine parts. Using Eq. (3),

we have

U�A2
¼ U�A1

ejua ; U�B2
¼ U�B1

ejub U�C2
¼ U�C1

ejua ;

U�C3
¼ U�C1

ejub ; U�C4
¼ U�C1

ej uaþubð Þ: (5)

By defining the reduced vector UR as a vector containing the

nodal values of the displacement on the lines A1 and B1, on

the C1 corner and in the inner domain I, we use Eq. (5) to

obtain a simple matrix relation between U and UR, which

can be written as

U� ¼ PUUR ¼ PU

U�A1

U�B1

U�C1

U�I

2
66664

3
77775; (6)

where PU has the same size of the stiffness matrix K� and is

filled by 1 at the degrees of freedom correlating the periodic

boundaries and 0 at all the other locations. In terms of finite

elements, this operation is the static condensation of degrees

of freedom belonging to A2, B2, C2, C3, and C4. Thus Eq. (4)

can be rewritten as

Pt
U K� � x2M�ð ÞPUUR ¼ KR � x2MR

� 	
UR ¼ 0; (7)

where

KR ¼ Pt
UK�PU e MR ¼ Pt

UM�PU: (8)

The angular frequency x is a periodic function of the wave

vector k. Thus the problem can be reduced to the first

Brillouin zone. The dispersion curves are built by varying

the wave vector k on the first Brillouin zone, for a given

propagation direction, and solving the eigenvalue problem.

IV. TOPOLOGY OPTIMIZATION

The optimization framework considers that each finite

element can assume properties of a collection of pre-

determined materials, and the optimization solver is respon-

sible for defining the material distribution in the design

domain. If two different materials are chosen, aluminum and

epoxy, for instance, the design variables represent these

materials by values equal to either one or zero, where one

represents aluminum and zero, epoxy. In topology optimiza-

tion, this case is known as binary (0–1) design. However, the

abrupt changes of the properties of each finite element

during the optimization iterations make the numerical treat-

ment of the problem difficult, due to the discontinuities in

the solution space. So, the binary (0–1) design is an ill-

posed problem16 and thus, a typical way to seek a solution

consists of relaxing the problem by defining a material

model that allows for intermediate (composite) property

values. In this sense, the relaxation yields a continuous ma-

terial design problem that no longer involves a discernible

connectivity. A feasible topology solution can be obtained

by applying penalization coefficients to the material model

to recover the 0–1 design (and thus, a discernible connectiv-

ity), and some gradient control of material distribution, such

as a filter.16

The design domain, in the case of material design, is the

unit-cell domain. The topology optimization formulation,

implemented in this work, considers a material model based

on the solid isotropic material with penalization (or

SIMP);16 however, other material models could also be

employed.16 The traditional SIMP model states that at each

point of the domain, the local effective property WH of the

mixture is

WH ¼ qWB þ 1� qð ÞWA i ¼ 1;:::;N; (9)

where WA and WB are the constituent material properties,

which correspond either to the specific weight property or to

the elastic (cE), piezoelectric (e), or dielectric (eS) properties.

The variable q is a design variable describing the amount of

material at each point of the domain, which can assume
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values between 0 and 1, and N is the number of nodes in the

finite element mesh.

Essentially, this material model approximates the mate-

rial distribution by defining a function of a continuous

parameter (design variable) that determines the mixture of

basic materials throughout the domain. Regarding the

numerical implementation, we consider the continuous

distribution of the design variable within the finite element,

which is interpolated by using the finite element shape func-

tions.24,25 In this case, the design variables are defined for

each element node instead of each finite element as usual.

However, no design variable penalization is necessary

in this case because the wave reflection is maximized when a

wave encounters a defined interface where the material im-

pedance mismatch is the greatest. As a result, 0–1 solutions

naturally appear. The gray areas obtained in the final solu-

tion occur inside the elements that form the boundary

between materials A and B because the design variables are

defined at the nodes of the finite elements, and thus there is a

continuous distribution of design variables inside these

elements. As the numerical results presented in Sec. VI

show, the optimized designs are rather insensitive with

respect to gray areas. The corresponding design variables

with intermediate values can be set to either 0 or 1 based on

a chosen threshold value without noticeably changing of the

wave performance.16

A. Projection method

A specific projection method is implemented in the unit-

cell domain based on the approach developed by Carbonari

et al.26 that uses projection functions.27 Nodes inside a circu-

lar region Sn
w in the neighborhood of the element of reference

are included in the evaluation of the nodal design variables

(q) used in the finite element analysis. The set of nodes Sn
w to

be projected are defined by

xj 2 Sn
w if rn

j ¼ jxj � xnj � rmin; (10)

where xj are the coordinates of the node j, xn are the coordi-

nates of the node n, and re
j is the distance between the nodes

n and j. The projection consists essentially of a cone of base

rmin and unit height centered at the node n such that

q ¼

X
j2Sn

w

djw xj � xn
� 	

X
j2Sn

w

w xj � xn
� 	 ; (11)

w xj � xn
� 	

¼ max
rgrad � rn

j

rgrad

 !q

; 0

0
@

1
A : (12)

The nodal variables dj are weighted to evaluate the node

volume fraction qn of node n, as shown in Eq. (11), by using

the weight function defined in Eq. (12). The coefficient q
controls the penalization of the nodal values in the region

Xn
w. Thus the problem relaxation is controlled through a con-

stant rgrad, which is the radius of the linear projection func-

tion that covers the adjoining layers; and the penalization

factor q, which controls the weight function in a non-linear

way.28 The optimization starts with q ¼ 1 and its value is

incremented by 1 at each of five iterations, until convergence

of the objective function is achieved.

B. Topology optimization formulation

In this work, the adopted objective function aims to

maximize the width of lower and higher order band gaps.

The objective of the optimization is to maximize the differ-

ence between two adjacent eigenfrequencies xj and xjþ1.

This can be written as follows:29

Maximize:
di; b1; b2

F ¼ b2 � b1

subject to: K� kð Þ � x2M�½ �U� ¼ 0; k 2 C! X1 ! M! X2 ! C½ �
x2

jþ1 kð Þ
h i

m
� b2; m ¼ 1;:::; nm

x2
j kð Þ

h i
m
� b1

0 � di � 1; i ¼ 1;:::;N

gradient control;

(13)

where xj is the jth eigenfrequency in ascending order, m cor-

responds to the mth wavevector in the nm-times discretized

wavevector space, and b1 and b2 are independent design var-

iables that act individually on the lower and upper constraint

bounds, which locate the edges of the band gap. The sensi-

tivities of this objective and set of constraints are presented

in the next section. The value of the objective function can

be negative, indicating that a band gap does not exist for the

current design. The constraints, however, change with the

design and their formulation does not require a pre-existing

band gap, unlike other formulations.30,31

V. NUMERICAL IMPLEMENTATION

The numerical implementation is performed using

MATLAB and verified with ANSYS via modal analysis. The
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unit-cell is divided into 1600 bilinear quadrilateral elements

(80� 80 elements with 3 degrees of freedom at each node,

two displacements, and one electric potential). The design

variables are distributed in a 1/8 region of the unit cell, and

the other parts are symmetric with respect to the design

domain. Therefore the material distribution assumes a 1/8

symmetry, and the piezoelectric polarization is always in the

vertical direction. Figure 2 shows an example of the design

domain and the adopted symmetry condition.

The projection radius adopted is 5% of the unit cell

length. After calculating the stiffness and mass matrices, the

eigenvalues of Eq. (4) are computed for each reduced wave

vector k. During the implementation of this methodology,

different initial material distributions (homogeneous, circu-

lar, circular graded, random) are tested, and a random initial

guess with a volume fraction of 50% of piezoelectric mate-

rial is selected to avoid local minima. Then the dispersion

diagram is generated, and thus the band gap ranges can be

measured. The sensitivity of the eigenvalues is calculated by

differentiating Eq. (7) with respect to the design variables qi,

as follows:32

dx2

ddi
¼
X
j2X

dx2

dqj

dqj

ddi
; (14)

dx2

dqi

¼
Ut

R
dKR

dqi
� x2 dMR

dqi


 �
UR

Ut
RMRUR

: (15)

The maximization problem is solved through an itera-

tive procedure, which is demonstrated in the flowchart of

Fig. 3. After the iteration process converges, a specific post-

processing procedure is performed to obtain a discrete topol-

ogy. This is achieved by considering that all filtered density

values above and below a threshold g are projected to 1 and

0, respectively. Then the dynamic analysis is performed

again considering the post-processed result. The dispersion

diagrams presented in the next section are obtained by using

the post-processed material distribution. The optimization

problem is solved by using the method of moving asymp-

totes (MMA) algorithm.33

VI. RESULTS AND DISCUSSIONS

This section explores the design of band gaps by using

the topology optimization method. The materials adopted in

this work are the PZT-5A piezoceramic and epoxy polymer

the properties of which are listed in Table I.

To verify the influence of the piezoelectric effect in the

dispersion diagram, the performance of a unit cell composed

of PZT-5A cylinders embedded in epoxy is computed. The

volume fraction of PZT-5A in the unit cell is 0.5. Two cases

are performed, one with the piezoelectric properties presented

in Table I and other with piezoelectric properties equal to

zero. In the next figures, dark color indicates epoxy material

and light color indicates PZT material. The dispersion dia-

grams for both cases are shown in Fig. 4, where it is possible

to notice that the band gap width obtained with no piezoelec-

tric properties (Dx ¼ 0:4283) is smaller than that with piezo-

electric properties (Dx ¼ 0:4916), representing an increase in

the band gap width of 15%. This example shows that the pie-

zoelectric effect helps to improve the maximization of band

gap widths. The transverse axis is the normalized frequency

xa0=2pcA, where a0 is the size of the unit cell, and cA is the

wave velocity of the material A, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=qA

p
.

Optimized material designs are developed aiming at

maximizing band gap widths of different orders, and the ten

largest obtained gaps are presented. Not all the frequency

bands could be obtained in this study, due to the symmetry

imposed in the design domain. The first band gap, between

the third and fourth branches, has a normalized band width

equal to 0.5339 [see Fig. 5(a)], and the PZT-5A distribution

FIG. 2. Example of symmetry condition: (a) Design domain occupying 1/8

of the unit cell and (b) complete unit cell with symmetric parts, showing the

polarization direction of piezoelectric material.

FIG. 3. Optimization problem flowchart.

TABLE I. Material properties.

Property PZT-5A Epoxy

cE
11ð1010 N=m2Þ 12.1 0.53

cE
13ð1010 N=m2Þ 7.52 0.31

cE
33ð1010 N=m2Þ 11.1 0.53

cE
44ð1010 N=m2Þ 2.10 0.11

e13ðC=m2Þ �5.4 0

e33ðC=m2Þ 15.8 0

e15ðC=m2Þ 12.3 0

eS
11=e0 1650 4

eS
33=e0 1700 4

e0 ¼ 8:854188 � 10�12F=m
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assumes an octagonal shape. Naturally, the final topology is

formed by piezoelectric inclusions in an epoxy matrix.

The second band gap, between the 12th and 13th

branches, has a normalized band width equal to 0.5548 [see

Fig. 5(b)]. This gap is the biggest of all band gaps obtained

for this combination of materials in this study. The concen-

tration of PZT-5A in the middle of the unit cell, with an

octagonal shape, is similar (however, not identical) to the

unit cell obtained when the band gap between the third and

fourth frequencies [Fig. 5(a)] is maximized. This example

shows that the dispersion diagram is very sensitive to the

scale effect of the topology. Notice that there is a multiscale

effect in the unit cell design in the sense that the unit cell

itself is recovered inside the design domain—see Fig. 5(b).

The third band gap, between the 13th and 14th

branches, has a normalized band width equal to 0.0809 [see

Fig. 6(a)]. In this case, there is another band gap located

between the 17th and 18th frequencies with a normalized

band width equal to 0.1250. However, this additional band

gap is smaller than the one obtained when the objective

function consists of enlarging this specific band gap (see fol-

lowing text).

The fourth band gap, between the 15th and 16th

branches, has a normalized band width equal to 0.3266 [see

Fig. 6(b)]. The topology obtained is formed by a concentra-

tion of PZT-5A in the middle of the unit cell with a “hole”

of epoxy in its interior, and symmetric parts of PZT-5A

around. The fifth band gap, between the 17th and 18th

FIG. 4. (Color online) Influence of piezoelectric effect in a unit cell of PZT-5A cylinders embedded in epoxy: (a) Unit cell and periodic matrix, (b) dispersion

diagram with no piezoelectric properties, and (c) with piezoelectric properties.

FIG. 5. (Color online) Unit cells, periodic matrices composed of four unit cells, and dispersion diagrams of the optimized results when maximizing the band

gap between: (a) 3rd and 4th frequencies and (b) 12th and 13th frequencies.
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branches, has a normalized band width equal to 0.1614 [see

Fig. 7(a)]. In this case, the topology is different from the last

case, where there is a solid region of PZT-5A in the middle

of the unit cell and hollowed shapes of epoxy. The sixth
band gap, between the 24th and 25th branches, has a normal-

ized band width equal to 0.3281 [see Fig. 7(b)], and the to-

pology obtained is formed by solid regions of PZT-5A

distributed in the epoxy.

VII. CONCLUDING REMARKS

In this work, a model for computing the propagation of

plane acoustic waves in periodic materials has been applied

to design piezocomposite materials. The main objective is to

maximize the width of absolute elastic wave band gaps in

piezocomposite materials designed using topology

optimization. To that effect, finite element analysis is

employed by considering the Bloch–Floquet theory to solve

the dynamic behavior of two-dimensional piezocomposite

unit cells. High order modes are investigated. All optimized

topologies can be described as inclusions of PZT-5A in a

soft matrix of epoxy. Due to symmetry imposed in the

design domain, not all the frequency bands could be

obtained in this study. The maximization of the first and sec-

ond band gaps present similar optimized unit cells with dif-

ferent dispersion diagrams, showing that slight differences in

the topology can affect the dispersion behavior of phononic

materials. The maximization of the third band gap presents

an unintentional band gap in the analyzed frequency range,

while all the others presented only one band gap in the ana-

lyzed frequency range. However, this additional band gap is

smaller than if it would be considered as the objective

FIG. 6. (Color online) Unit cells, periodic matrices composed of four unit cells, and dispersion diagrams of the optimized results when maximizing the band

gap between: (a) 13th and 14th frequencies and (b) 15th and 16th frequencies.

FIG. 7. (Color online) Unit cells, periodic matrices composed of four unit cells, and dispersion diagrams of the optimized results when maximizing the band

gap between: (a) 17th and 18th frequencies and (b) 24th and 25th frequencies.
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function target. Although the topologies presented in Fig. 5

are similar, the inclusions of PZT-5A on the second topology

have half of the size of the first one. This difference in the

size of the inclusions changes drastically the dispersion dia-

gram of each case, showing the influence of the scale effect

in the unit cell. The numerical examples presented in this

work show that it is possible to design piezocomposite pho-

nonic materials aiming at maximizing band gaps for specific

bands.
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