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Polygonal finite elements generally do not pass the patch test as a result of quadrature
error in the evaluation of weak form integrals. In this work, we examine the conse-
quences of lack of polynomial consistency and show that it can lead to a deterioration
of convergence of the finite element solutions. We propose a general remedy, inspired by
techniques in the recent literature of mimetic finite differences, for restoring consistency
and thereby ensuring the satisfaction of the patch test and recovering optimal rates
of convergence. The proposed approach, based on polynomial projections of the basis
functions, allows for the use of moderate number of integration points and brings the
computational cost of polygonal finite elements closer to that of the commonly used lin-
ear triangles and bilinear quadrilaterals. Numerical studies of a two-dimensional scalar
diffusion problem accompany the theoretical considerations.
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1. Introduction

Polygonal finite elements, whose development dates back to the seminal work of
Wachspress,47 have gained in popularity as evidenced by the growing literature on
the topic.39,38,35,20,45 Among the attractive features of polygonal elements is the
greater flexibility they offer in mesh generation. For example, recently developed
algorithms utilize Voronoi diagrams to generate polygonal and polyhedral grids with
desired regularity and size distribution for complex geometries.44,17,10 Owing to the
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low degree of induced anisotropy, these Voronoi meshes have been recently used in
dynamic fracture simulations to reduce mesh bias in computed crack patterns.9,23

In these analyses, cracks propagate along element boundaries and commonly used
simplicial meshes possess preferential crack path directions.30,34 The availability
of polygonal finite elements also simplifies mesh adaption procedures such as local
refinement (through element-splitting) and coarsening (through aggregation) since
hanging nodes are naturally accommodated.41,33,8,4 In several applications, dis-
cretization methods on polygonal and polyhedral grids exhibit improved stability
and accuracy when compared to their simplicial and cubical counterparts. For exam-
ple, a low-order finite element scheme defined for a large class of polygonal meshes
has been shown to be stable for incompressible flow problems.6,46 Similarly, polygo-
nal elements can exclude checkerboard layouts and other numerical instabilities that
plague finite element solutions of topology optimization problems.42,43 In terms of
accuracy, mixed polygonal finite elements can be more effective than some com-
monly used elements for analysis of incompressible media.46 Further development
of the field can also contribute to the advancement of compatible or structure-
preserving methods that require computations on dual grids made up of polygonal
and polyhedral cells.21,16,19,22

The present work deals with the issue of numerical integration for polygonal
finite elements, a necessary ingredient for the evaluation of weak form integrals, and
its implications for accuracy of the resulting approximations. Numerical integration
for polygonal elements is different from classical triangular and quadrilateral finite
elements in two respects. First, few tailored quadrature schemes are available in the
literature owing to the arbitrary geometry of the element domain (see Refs. 26, 27
and references therein). In practice, a simple but perhaps sub-optimal procedure
is often adopted wherein each polygon is divided into triangular subdomains and
the usual quadrature rules are used in each subdomain. Second, all the available
quadrature schemes are generally inexact, even on regular n-gons, due to the non-
polynomial nature of the basis functions. One consequence is that the patch test is
not passed unless, of course, a very high-order quadrature rule is used to lower the
errors to machine precision levels. Such a quadrature scheme may require hundreds
of integration points and thus is not feasible.38

We will show that the error in the satisfaction of the patch test, insofar as it
measures a lack of polynomial consistency of the discrete system, places a limit
on the convergence of finite element solutions. More specifically, the solution error
cannot be made smaller with mesh refinement beyond a certain level, thus rendering
the method non-convergent. A similar issue also plagues meshless methods as they
feature non-polynomial functions and remedies for revival of polynomial consistency
have been explored for quite some time now.14,31,24 In a recent series of studies,
Babuska, Banerjee and coworkers2,3,48 have shown that, under a zero-sum condition
or satisfaction of a discrete Green’s identity, the order of quadrature rule has to
be increased with refinement in order to retain optimal rates of convergence for
meshless discretizations.
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In this work, we consider an alternative approach that ensures the satisfaction
of the patch test and optimal convergence rates with a fixed but sufficiently rich
quadrature rule. In practice, the number of integration points for such a scheme is on
the order of the number of nodes and therefore the overall computational cost of the
method is on par with the linear triangles and quadrilaterals. As we will see, we do
not need to completely eliminate the integration error in the evaluation of the energy
bilinear form. Instead, what is needed is the consistency of the discrete bilinear form
when one of its arguments is a piecewise polynomial field. This is accomplished by
splitting the local (elemental) forms according to a polynomial projection of its
arguments and performing numerical integration only on the “non-polynomial”
part. The subsequent restoration of polynomial consistency is sufficient for the
satisfaction of the patch test and recovery of optimal convergence rates. We remark
that the present context is somewhat simpler compared to meshless methods since
the support of basis functions coincides with element domains and their behavior
on element interfaces is known. As a result, the proposed remedy is carried out at
the element level and directly extended for higher-order discretizations.

The proposed approach borrows heavily from the techniques in the mimetic
finite difference (MFD) literature (e.g. Refs. 12 and 7) and in particular the recently
developed variational scheme called the Virtual Element Method or VEM.5,1 The
polynomial projection and the splitting of the bilinear form used in the present work
is in fact at the heart of this method. Since an explicit form of trial and test functions
is not available (or required) in VEM, the remaining non-polynomial term in the
bilinear form is only estimated. What VEM elucidates is a constructive approach for
satisfaction of the patch test, which is sufficient for guaranteeing the convergence of
conforming Galerkin-type approximations. As we shall see, the linear polygon with
the proposed splitting can be in fact viewed as a particular realization of a first-order
virtual element. The same cannot be said for higher-order elements, including the
quadratic serendipity elements considered here, as the choice of degrees of freedom
will, in general, be different. Similarly, access to the basis functions greatly simplifies
the treatment of non-constant coefficients. While a thorough comparison between
VEM and comparablea finite elements in terms of cost and accuracy merits its own
study, we emphasize that the goal of the present work is to reduce the burden
of numerical integration for polygonal and polyhedral finite elements. We hope
that the proposed approach will also be beneficial for a broader class of problems
(e.g. nonlinear problems such as the Navier–Stokes equations46), including those for
which either an MFD or VEM formulation presently does not exist. Finally, we note
that Manzini and coworkers have presented the same approach for constructing first-
order polygonal and polyhedral elements by combining VEM and finite elements
based on generalized barycentric coordinates.25

aA remarkable feature of VEM and related MFD formulations is the systematic construction of
elements with arbitrary order of polynomial accuracy and continuity on general shapes. Developing
comparable finite elements would be a formidable task.
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The remainder of the paper is organized as follows: the model diffusion problem
and its finite element approximation are discussed in the next section. We consider
the relationship between the quadrature errors and the patch test in Sec. 3. Next,
in Sec. 4, we explore the consequences of the integration error in the convergence of
finite element approximations and discuss sufficient conditions on the discrete bilin-
ear form to recover optimal convergence rates. We present the proposed splitting
of the bilinear form as well as its constructions for linear and quadratic elements in
Sec. 5. Finally, in Sec. 6, we will address the case of non-constant diffusion tensor.
The paper is concluded with some remarks in Sec. 7 and supplementary material
on construction of polygonal finite elements and implementation of the proposed
approach in the Appendix.

We briefly and partially introduce the notation adopted in this paper. We denote
by Hk(Ω) the standard Sobolev space consisting of functions whose weak deriva-
tives, up to the kth-order, are square-integrable over the domain Ω and write ∥ · ∥k,Ω

and | · |k,Ω for its norm and seminorm. We write L2(Ω) = H0(Ω) and denote by
H1

g (Ω) functions in H1(Ω) whose trace on ∂Ω is equal to g. Thus, H1
0 (Ω) consists

of functions that vanish on the boundary of Ω. For any subset E ⊆ Ω, we denote
by |E| its (Lebesgue) measure and the space of polynomials of degree m over E is
denoted by Pm(E). We shall also use | · | to denote the Euclidean norm of a vector.
Finally, an integral evaluated numerically using a quadrature rule is indicated by
, assuming that the location of integration points and weights are clear from the

context.

2. Model Problem and Finite Element Approximation

For the sake of concreteness, we focus on a scalar diffusion problem in two dimen-
sions and limit the discussion to first- and second-order polygonal finite elements.
Let Ω ⊆ R2 be a bounded open domain with polygonal boundary and consider the
steady state diffusion problem given by

−div(K∇u) = f in Ω, (2.1)

u = g on ∂Ω, (2.2)

where the source f ∈ L2(Ω) and boundary data g ∈ H1/2(∂Ω) are prescribed. For
the moment, we assume that K is a symmetric, positive-definite diffusion tensor
that is constant over Ω, and postpone the treatment of the general case of variable
coefficients to Sec. 6.

The weak form of the system of Eqs. (2.1)–(2.2) consists of finding u ∈ H1
g (Ω)

such that

a(u, v) = ℓ(v), ∀ v ∈ H1
0 (Ω), (2.3)

where the bilinear and linear forms are defined, respectively, by

a(u, v) =
Ω
∇u · K∇vdx, ℓ(v) =

Ω
fvdx. (2.4)
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Note that the coercivity of the bilinear form follows from positive-definiteness of K
and the fact that | · |1,Ω defines a norm on H1

0 (Ω). Together with continuity of the
linear form, a consequence of the regularity assumption on f , one can show that
the above system has a unique and stable solution.

2.1. Finite element spaces

To define the finite element approximation of (2.3), we consider a mesh Th of Ω
consisting of non-overlapping convex polygons, with maximum diameter h. An H1-
conforming finite element space associated with the mesh Th is given by

Vh = {vh ∈ C0(Ω) : vh|E ∈ Vm(E), ∀E ∈ Th}, (2.5)

where Vm(E) is a finite-dimensional space of functions over element E such that

Vm(E) ⊇ Pm(E), ∀E ∈ Th. (2.6)

This means that any polynomial of order m can be represented by the element. We
will consider linear and quadratic elements that satisfy (2.6) with m = 1 and m = 2,
respectively. For an n-gon E, the space V1(E) has dimension n with degrees of
freedom associated with the vertices of E. Similarly, the space V2(E) is of dimension
2n with additional degrees of freedom associated with midpoints of each edge.

For the first-order element, the space V1(E) can be defined as the span of a set of
so-called generalized barycentric coordinates associated with E. A number of such
coordinates are available in Ref. 38, all of which by definition, are linearly complete
and non-negative. The desirable Kronecker-delta property and linear variation on
∂E follow directly from these two properties.18

In the numerical studies presented in this work,b we will use Wachspress coor-
dinates which, under certain shape-regularity assumptions, yield optimal interpo-
lation estimates. More specifically, assuming existence of uniform bounds for the
aspect ratio, vertex count, and interior angles, we have:

∥u − πhu∥1,Ω = O(h), (2.7)

for a sufficiently smooth function u.20 In the above expression, πhu denotes the
usual nodal interpolation of u.11

For the second-order element, we will use the construction of the serendipity-
like element presented in Ref. 32. The basis functions are obtained from appropriate
linear combinations of pairwise products of generalized barycentric coordinates. The
resulting element is constructed to satisfy (2.6), the Kronecker-delta property, and
exhibits quadratic variation on the boundary. If Wachspress coordinates are used

bThe main results, however, apply to finite elements derived from other barycentric coordinates
(e.g. mean value, Sibson, Laplace, and maximum entropy coordinates).
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for the construction, under the same shape-regularity assumptions as before, the
estimate

∥u − πhu∥1,Ω = O(h2), (2.8)

holds provided that u is sufficiently smooth. Additional details on the construction
of Vm(E) and the polygonal basis functions can be found in the Appendix. If E is
a triangle, the bases reduce to the usual ones and Vm(E) = Pm(E).

2.2. Approximate problem

Let Vh,g = Vh ∩ H1
g (Ω) and Vh,0 = Vh ∩ H1

0 (Ω) be the discrete test and trial
spaces.c We consider a finite element approximation of (2.3) that consists of finding
uh ∈ Vh,g such that

ah(uh, vh) = ℓ(vh) ∀ vh ∈ Vh,0. (2.9)

Here ah : Vh × Vh → R is a discrete bilinear form defined in terms of symmetric
local bilinear forms aE

h : Vm(E) × Vm(E) → R as follows:

ah(u, v) =
∑

E∈Th

aE
h (u, v). (2.10)

These local bilinear forms correspond to the element stiffness matrices and the
summation is related to the assembly process in practice. For instance, when a
quadrature rule is used to compute the stiffness matrix, we have

aE
h (u, v) =

E
∇u · K∇vdx. (2.11)

If the quadrature in (2.11) is exact, ah(u, v) = a(u, v), and we recover the classi-
cal Galerkin approximation. We will consider alternative constructions of the local
bilinear form aE

h in Sec. 5. Note that we are assuming in (2.9) that the exact linear
form ℓ is available. In practice, numerical integration is usually used to compute
this integral, which amounts to replacing ℓ(v) by

ℓh(v) =
∑

E∈Th
E

fvdx. (2.12)

However, since the main difficulty with numerical integration lies in the resulting
lack of consistency in the bilinear form, we will ignore this approximation to keep
the theoretical discussion simple. In the motivating examples presented in the next
two sections, f ≡ 0 and numerical integration (2.12) is in fact exact. Nevertheless
comments will be made throughout regarding the effect of this approximation.

cWe are tacitly assuming that g and Th are defined such that the boundary data can be represented
by the trace of functions in Vh and so Vh,g is non-trivial. In general, g must be replaced by its
nodal interpolation gh and the test space is set to Vh ∩ H1

gh
(Ω). However, we shall ignore this

approximation.
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In general, we expect that ah inherits the continuity and coercivity properties
of a. These conditions will be satisfied, for example, if aE

h scales as aE , that is,d

c1a
E(v, v) ≤ aE

h (v, v) ≤ c2a
E(v, v) ∀ v ∈ Vm(E), ∀E ∈ Th, (2.13)

for some positive constants c1 and c2, independent of h and E.5 Together with
continuity of ℓ, we can show that (2.9) admits a unique solution uh. Additional
consistency requirements on ah are naturally needed to ensure convergence of uh

to u. The well-known and celebrated patch test provides a means to assess the
consistency of the approximation.

3. Quadrature Error and the Patch Test

The engineering patch test is performed by applying boundary conditions g = p|∂Ω,
with p ∈ Pm(Ω), to a patch of finite elements. This corresponds to the problem
where the exact solution u = p. In this section, we consider the approximate bilinear
form defined by numerical integration, cf. (2.11).

Since Vh ⊇ Pm(Ω), then p ∈ Vh,g and we will have uh = p if the quadrature
rule in (2.11) is exact. It can be readily shown that the patch test is also passed if

aE
h (p, v) = aE(p, v), ∀ v ∈ Vm(E), ∀E ∈ Th. (3.1)

To see this, note that (3.1) implies

ah(p, vh) =
∑

E∈Th

aE
h (p, vh) =

∑

E∈Th

aE(p, vh) = a(p, vh) = ℓ(vh), (3.2)

for each vh ∈ Vh,0, and so uh = p is the unique solution to the discrete problem.
Essentially, (3.1) is a polynomial consistency condition requiring the local bilinear
forms to be exact when one of the arguments is a polynomial function.

For m = 1 and the first-order patch test, the above condition can be further
simplified. If ϕ1, . . . ,ϕn denote the basis for V1(E), for (3.1) to hold for an arbitrary
linear function p, we must have

E
∇ϕidx =

E
∇ϕidx, i = 1, . . . , n. (3.3)

Therefore, a sufficient condition for passing the first-order patch test is that the
quadrature rule integrates the gradient of the basis functions exactly. This fact has
been noted and used in the literature of meshless methods (e.g. Ref. 24).

Few remarks regarding this observation are in order. First, the classical isopara-
metric bilinear quadrilateral with 2×2 Gauss quadrature passes the patch test even
though there is error in the integration of discrete bilinear form (i.e. the stiffness
matrix) when the elements are angularly distorted. The patch test is passed pre-
cisely because (3.3) holds in such a case, a fact seldom discussed in finite element
textbooks. More specifically, if E is the image of the reference element Ê = [−1, 1]2

dHere aE denotes the restriction of a to element E, i.e. aE(u, v) = E ∇u · K∇vdx.
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under the bilinear map F , then the basis functions are defined through the relation
ϕi = ϕ̂i ◦ F−1 with ϕ̂i the bilinear function on Ê associated with ith-vertex. The
relation

E
∇ϕidx =

Ê
(DF )−1∇̂ϕ̂i det(DF )dx̂ =

Ê
adj(DF )∇̂ϕ̂idx̂, (3.4)

indicates the integrand of the right-hand side is a bilinear function of x̂ and so 2×2
Gauss quadrature on Ê is exact. In the above expression, DF denotes the Jacobian
matrix for F and adj(DF ) is the transpose of the cofactor of DF . Note, however,
that the bilinear form (2.11) will not be exact with this quadrature if det(DF ) is
not constant.

For a general polygon, including distorted quadrilaterals, the Wachspress basis
consisting of rational functions,e the relation (3.3) will not hold with the avail-
able quadrature schemes since they are constructed for integration of polynomials.
However, (3.3) suggests that a quadrature rule that does a better job of the inte-
grating the gradients of the basis functions would have a smaller error in the patch
test. As mentioned in Sec. 1, a simple quadrature scheme for polygonal domains is
obtained by triangulation. We will consider an alternative “quadrangulation” pro-
cedure, which as shown in Fig. 1(a), consists of splitting the n-gon into n quadri-
laterals by connecting the centroid of the polygon to the midpoint of each edge and
using Gauss quadrature (after a bilinear mapping) in each quad. It is evident from
the figure that this approach leads to a denser distribution of integrations points
along the edges of the element where the basis function gradients are large. By
contrast, the triangulation approach has a denser distribution in the interior of the
element.

(a) (b)

Fig. 1. (a) Distribution of integration points for second-order triangulation (left) and quadrangu-
lation (right) integration schemes on a sample hexagon, (b) second-level mesh used for the patch
test and convergence studies. It consists of 2× 2 patches of two quadrilaterals and two pentagons.

eThe basis functions for the isoparametric quads are also rational in the physical coordinates but
they are images of a polynomial function under a polynomial transformation. In fact, the gradient
of the Wachspress basis functions for a general quadrilateral will not be integrated exactly with
Gauss quadrature.
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Table 1. Quadrature error for integration of basis function gradients using different schemes.

Quadrature
order 1 2 4 8 16 32

Triangulation 6.193E−02 1.362E−02 7.165E−04 2.558E−06 4.619E−11 1.223E−15
Quadrangulation 1.766E−02 1.074E−03 5.945E−05 2.206E−07 3.437E−12 1.860E−15

In Table 1, we compare the error in the integration of basis function gradients
according to

max
i

∣∣∣∣
E
∇ϕidx −

E
∇ϕidx

∣∣∣∣ , (3.5)

for the polygon with geometry shown in Fig. 1(a). We first note that the error
is finite for all the quadrature orders considered and many integration points are
needed to drive the error close to machine precision level. Also, the “quadrangu-
lation” scheme leads to smaller errors compared to the triangulation approach, in
agreement with the discussion above. We next test to see if the patch test errors
follow the same trend.

We perform the first-order patch test on the unit square Ω = ]0, 1[2 with u(x) =
2x1 − x2 + 4 and, K taken to be the identity matrix, on a sequence of polygonal
meshes. As shown in Fig. 1(b), the kth-level mesh consists of 2k−1×2k−1 patches of
two quadrilaterals and two pentagons. Observe that the source function associated
with u vanishes, i.e. f ≡ −∇ · (K∇u) = 0. The reported errors in Fig. 2(a) are with
respect to the L2-norm and H1-seminorm, given by

ϵ0(h) =
∥u − uh∥0,Ω

∥u∥0,Ω
, ϵ1(h) =

|u − uh|1,Ω

|u|1,Ω
, (3.6)

respectively. Note that ϵ1(h) is the same as the error in the energy norm for this
problem. The results show smaller errors with the quadrangulation scheme, in agree-
ment with the discussion above and results of Table 1. We also note that, while
the L2-error evidently goes to zero with h, the error in the energy norm does not
vanish, indicating that the patch test is not passed even in a “weak” sense. Though
not presented, we have observed the same behavior for higher-order quadrature
rules.

The above study can be extended to quadratic elements for which condition
(3.1) reduces to a set of conditions on the integration of basis function gradients,
similar to (3.3), and their moments. We can verify that the errors in the patch
test also correlate with the accuracy of the quadrature scheme for evaluation of the
gradients.

We will only present the results for a quadratic patch on the same sequence
of meshes as in the previous example. The exact solution is u(x) = x2

1 − 3x1x2 −
x2

2 + 5x1 with diffusion tensor taken as the identity and f ≡ 0. Second- and third-
order quadrature rules are used for the triangular and quadrilateral subdomains.
We observe, from the results shown in Fig. 2(b), that the quadrangulation scheme
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(a) (b)

Fig. 2. Results of (a) the linear patch test, (b) the quadratic patch test using indicated quadrature
schemes (the legend shows the type of subdivision and order of quadrature in each subdomain).

again leads to smaller errors that the triangulation approach. Also, the energy norm
errors do not decrease with mesh refinement, while the L2-errors decrease with a
linear rate in the range of mesh sizes considered.

4. Effects of Quadrature Error on Convergence

The persistent errors in the patch test under mesh refinement, revealed in the
numerical study of previous section, also indicate that the finite element approxi-
mations obtained from (2.11) using a fixed quadrature rule are not convergent in
the energy norm: if the solutions do not converge when the exact solution is a poly-
nomial, the method cannot be deemed convergent in general. This is an alarming
observation for polygonal finite elements and, to the best of our knowledge, not
discussed explicitly in the literature on the topic.

To further explore the influence of integration error on the convergence of the
approximations, we consider the problem with exact solution

u(x) = sin(x1) exp(x2), (4.1)

K taken as the identity matrix, and f(x) ≡ 0 on the unit square. The boundary data
g is specified in accordance with (4.1). The results for the same regular sequence
of meshes using the quadrangulation scheme is summarized in Fig. 3. While we see
optimal rates of convergence with “exact” integration,f quadrature error leads to a

fThese results are obtained using very high-order quadrature such that error in the calculation of
the bilinear form is close to machine precision levels.
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(a) (b)

Fig. 3. Results of the convergence study with (a) linear elements, (b) quadratic elements. In both
cases, the quadrangulation scheme with indicated integration order is used.

severe degradation of convergence in the L2-norm and a lack of convergence in the
energy norm. The onset of this poor behavior in fact correlates with the observed
error in the patch test. These results confirm that the patch test error places a limit
on the accuracy that can be achieved by the finite element solution. We remark that
this convergence behavior is reminiscent of error trends for meshless discretizations
presented in Ref. 48.

We proceed next to discuss a variation of Strang’s first lemma,37,15 that, on the
one hand, is in agreement with the above observation, and, on the other, proves
that the satisfaction of the local consistency condition (3.1), along with (2.13), is
sufficient to ensure optimal convergence.

As before, let πh be the nodal interpolant on Vh. We define τhu to be a piecewise
polynomial field on Th that best approximates u with respect to the following
discrete seminorm

| · |2h :=
∑

E∈Th

| · |21,E . (4.2)

This means that for each E ∈ Th, the restriction of τhu to E belongs to Pm(E) and

τhu|E = argmin
p∈Pm(E)

|u − p|1,E . (4.3)

Viewed another way, ∇τhu|E is the L2-projection of ∇u onto [Pm−1(E)]2. Note that
τhu is not necessarily continuous across element boundaries and need not belong to
H1(Ω). For sufficiently smooth u and under the shape-regularity assumptions on
the elements in Th, one can show that |u − τhu|h = O(hm) (cf. Ref. 11).
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Provided that the discrete bilinear form satisfies (2.13), we have the following
a priori estimate for the approximation error:

|u − uh|1,Ω ≤ C

(
|u − πhu|1,Ω + |u − τhu|h

+ sup
vh∈Vh,0

∑

E∈Th

|aE
h (τhu, vh) − aE(τhu, vh)|

|vh|1,Ω

)
, (4.4)

where C is a constant independent of h. The ingredients for its proof can be found
in the proof of Theorem 3.1 in Ref. 5 and will not be repeated here. In fact, (4.4)
is at the core of convergence of VEM.

The first two terms are interpolation errors of order O(hm). Noting that
τhu|E ∈ Pm(E), the remaining term, involving the approximation of the bilinear
form, is closely related to the errors in respecting the consistency condition (3.1).
If the discrete bilinear form satisfies (3.1), this term vanishes and one obtains an
overall error bound of |u − uh|1,Ω = O(hm), which is optimal. One retains optimal
convergence rates even if consistency error in the approximation of bilinear form is
O(hm), that is, if

|aE
h (p, v) − aE(p, v)| ≤ Chm|v|1,E ∀ v ∈ Vm(E), ∀E ∈ Th, (4.5)

where C is a constant independent of h and E, and p is an mth-order polynomial.
We note that the estimate (4.4) sheds light on convergence behavior observed

in the numerical examples presented in the beginning of this section. For coarser
meshes, the interpolation errors, represented by the first two terms in (4.4), domi-
nate while for sufficiently small h, the consistency error in approximation of the
bilinear form controls the overall error. Thus, the degradation in convergence is
“delayed” if the consistency error is lowered. However, the finite consistency error
that accompanies any fixed inexact quadrature rule will ultimately dominate.

Let us also remark that if the linear form ℓ(v) is approximated through quadra-
ture by (2.12), an additional term of the form

sup
vh∈Vh,0

|ℓh(vh) − ℓ(v)|
|vh|1,Ω

, (4.6)

will appear in the estimate (4.4). However, provided that the quadrature integrates
constant functions exactly on each element of the mesh and f is sufficiently smooth,
the error introduced is O(h2) (cf. (5.15) in Sec. 5.2) and thus will not affect the
rate of convergence of both linear and quadratic discretizations.

5. Restoring Polynomial Consistency

We now discuss an approach to ensure polynomial consistency even when using
a fixed but inexact quadrature rule. The proposed approach uses a particular
representation of the bilinear form aE that is central to VEM5 and nodal MFD
schemes.12,7
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Keeping (2.6) in mind, we consider a projection operator ΠE
m : Vm(E) → Pm(E)

for each element E ∈ Th such that
{

aE(p, ΠE
mv) = aE(p, v)

ΠE
mp = p

∀ p ∈ Pm(E). (5.1)

Thus, ΠE
mv can be thought of as a polynomial approximation to v, as seen by

the local bilinear form, minimizing aE(v − p, v − p) in Pm(E). While the above
definition is applicable to other elliptic problems such as elasticity, in the present
context with K a constant tensor, ∇ΠE

mv is the least-squares approximation to ∇v
in [Pm−1(E)]2:

∇ΠE
mv = argmin

q∈[Pm−1(E)]2 E
(q −∇v) · K(q −∇v)dx

= argmin
q∈[Pm−1(E)]2 E

|q −∇v|2dx. (5.2)

Also, we observe that for a triangular element E, ΠE
m reduces to the identity map

since Vm(E) = Pm(E).
We can use (5.1), along with the symmetry and linearity of the bilinear form,

to show that for u, v ∈ Vm(E), aE(u, v) can be split up as,

aE(u, v) = aE(ΠE
mu, v) + aE(u − ΠE

mu, v)

= aE(ΠE
mu, v) + aE(u − ΠE

mu, v) − aE(u − ΠE
mu, ΠE

mv)

= aE(ΠE
mu, v) + aE(u − ΠE

mu, v − ΠE
mv)

= aE(ΠE
mu, ΠE

mv) + aE(u − ΠE
mu, v − ΠE

mv). (5.3)

Observe that the arguments of the first term are polynomial functions.
Inspired by this identity, we define a discrete bilinear form where numerical

integration is used to evaluate the second “non-polynomial” term. That is, we set

aE
h (u, v) := aE(ΠE

mu, ΠE
mv) +

E
∇(u − ΠE

mu) · K∇(v − ΠE
mv)dx. (5.4)

First, we note that once an explicit expression for ΠE
m is derived, the first term can

be evaluated exactly because its arguments are polynomials. Second, this choice
of aE

h respects the consistency condition (3.1) since for u = p ∈ Pm(E), we have
ΠE

mp = p and so

aE
h (p, v) = aE(p, ΠE

mv) +
E
∇(p − p) · K∇(v − ΠE

mv)dx

= aE(p, ΠE
mv) = aE(p, v). (5.5)

The other requirement on the bilinear form, namely condition (2.13), will be
satisfied if a sufficiently rich quadrature scheme is used for the second term in aE

h .
For example, our numerical studies confirm that even the lowest-order quadrature
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schemes (triangulation and quadrangulation) with n integration points are sufficient
for this purpose for the linear elements. In the remainder of this section, we will
discuss how the projection map and the discrete bilinear form can be computed.

5.1. Linear elements

Another key observation made in Ref. 5 is that the right-hand side of (5.1) can be
computed exactly, given our knowledge of behavior of functions in V1(E). Indeed,
a simple use of integration by parts shows that for p ∈ P1(E) and v ∈ V1(E)

aE(p, v) =
E
∇v · K∇pdx

= −
E

v div(K∇p)dx +
∂E

vK∇p · nds

=
∂E

vK∇p · nds, (5.6)

where we have used div(K∇p) = 0 for the second equality. Observe that the last
integral can be computed exactly since v varies linearly on the boundary of E.

To get an explicit expression for ΠE
1 , let us set q = K∇p in (5.6) to get

E
∇ΠE

1 v · qdx = aE(p, ΠE
1 v) = aE(p, v) =

∂E
vq · nds. (5.7)

Because (5.1) must hold for all p ∈ P1(E), we can choose p to recover any arbitrary
constant vector q ∈ [P0(E)]2 and therefore, (5.7) implies,

E
∇ΠE

1 vdx =
∂E

vnds. (5.8)

Again observe that the value of the right-hand side integral depends only on the
nodal values of v and the geometry of E. Moreover, as ∇ΠE

1 v is a constant vector
over E, it can be pulled outside of the integral

∇ΠE
1 v =

1
|E| ∂E

vnds. (5.9)

This relation could also be seen directly from (5.2) since the best constant approx-
imation to ∇v over E is |E|−1

E ∇vdx = |E|−1
∂E vnds.

To complete the construction of ΠE
1 , we assign an appropriate constant in order

to respect the condition ΠE
1 p = p. We can choose the constant, for example, for

equating ∂E vds = ∂E ΠE
1 vds or the nodal averages. With the latter choice, we

have

(ΠE
1 v)(x) := v +

(
1
|E| ∂E

vnds

)
· (x − x), (5.10)

where the constant v is the mean of the nodal values of v and x is the center of E
(mean of the location of vertices of E). Clearly the gradient of (5.10) satisfies (5.9),
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and for p(x) = α+ β · x,

(ΠE
1 p)(x) = p +

(
1
|E| E

∇pdx

)
· (x − x)

= (α+ β · x) + β · (x − x)

= p(x), (5.11)

verifying that projection map fixes P1(E).
As a consequence of the form of ΠE

1 , and the choice of degrees of freedom for
the linear element, the first term in discrete bilinear form (5.4) does not depend
on the form of the basis functions inside the element and is only a function of the
geometry of E and diffusion tensor K. This means that elements based on other
barycentric coordinates, as well as the first-order VEM formulation, all lead to the
same “consistency” term.

We also note that if the quadrature scheme satisfies the gradient condition (3.3),
then the discrete bilinear form defined by quadrature (i.e. Eq. (2.11) in Sec. 3) is
identical to the discrete bilinear form (5.4). Indeed,

aE
h (u, v) = aE(ΠE

1 u, ΠE
1 v) +

E
∇(u − ΠE

1 u) · K∇(v − ΠE
1 v)dx

= 2aE(ΠE
1 u, ΠE

1 v) −
E
∇u · K∇ΠE

1 vdx

−
E
∇ΠE

1 u · K∇vdx +
E
∇u · K∇vdx

= 2aE(ΠE
1 u, ΠE

1 v) − aE(u, ΠE
1 v) − aE(ΠE

1 u, v) +
E
∇u · K∇vdx

=
E
∇u · K∇vdx. (5.12)

This implies that, for isoparametric bilinear quads, applying quadrature to either
representation of the local bilinear form yields the same result.

5.2. Quadratic elements

For the serendipity element considered here, aE(p, v) with p ∈ P2(E) cannot be
reduced to an integral over the boundary of the element. Therefore, numerical
quadrature will be needed for the evaluation of an area integral. This can be seen
from (5.6) and the fact that for p ∈ P2(E), the quantity div(K∇p) does not neces-
sarily vanish. However, the quadrature error for computing this term is O(h2) since
the integrand contains the basis functions and not their gradients. This error is suf-
ficient for ensuring the consistency condition (4.5) and subsequently maintaining
optimal convergence rates.
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In this case, we define the discrete bilinear to be again given by (5.4), but change
the definition of the projection map to
⎧
⎨

⎩
aE(p, ΠE

2 v) = −
E

v div(K∇p)dx +
∂E

vK∇p · nds

ΠE
2 p = p

∀ p ∈ P2(E), (5.13)

which is a slight deviation from (5.1) with a revisited right-hand side for the first
expression.

As before, the boundary integral in (5.13) can be computed exactly since the
integrand is a polynomial. For the two conditions to be consistent, that is, for the
first equality to hold when v = q ∈ P2(E), we must require that the quadrature rule
is exact for second-order polynomials:

E
qdx =

E
qdx, ∀ q ∈ P2(E). (5.14)

This, in particular, indicates that the first-order triangulation and quadrangulation
schemes consisting of n-points will not be sufficient for the quadratic elements and
a second-order accurate quadrature must be used in the subdomains. These rules
have proven in our numerical studies to also be sufficient for ensuring that stability
condition (2.13) is met. A possible alternative is to use the quadrature rules in
Ref. 26 which are constructed for exact integration of polynomials on polygonal
domains. Compared to subdivision schemes considered here, they require fewer
evaluation points to achieve quadratic precision.

To verify the satisfaction of the weaker consistency condition (4.5), let p ∈ P2(E)
and set c ≡ div(K∇p). Then, for v ∈ V2(E), we have

|aE
h (p, v) − aE(p, v)| = |aE(p, ΠE

2 v) − aE(p, v)|

=
∣∣∣∣

E
v div(K∇p)dx −

E
v div(K∇p)dx

∣∣∣∣

= |c|
∣∣∣∣

E
vdx −

E
vdx

∣∣∣∣. (5.15)

The last expression is bounded by Ch2|v|1,E provided that the quadrature integrates
constant functions exactly (see Exercise 4.1.4 of Ref. 15).

The fact that the stronger consistency condition (3.1) is not satisfied for the
quadratic element suggests that the patch test will only be passed asymptoti-
cally with mesh refinement. However, we can directly show that the patch test
will be passed exactly on any mesh if we use the approximate linear form ℓh defined
by (2.12) and the same quadrature rule as that of the discrete bilinear form. As
mentioned before, this is usually the case in practice. Indeed for p ∈ P2(Ω) and
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vh ∈ Vh,0, we have

ah(p, vh) =
∑

E∈Th

aE
h (p, vh)

=
∑

E∈Th

aE(p, ΠE
2 vh)

=
∑

E∈Th

−
E

vh div(K∇p)dx +
∑

E∈Th
∂E

vhK∇p · nds

=
∑

E∈Th
E

vhfdx

= ℓh(vh). (5.16)

Note that the second term in (5.16) cancels out as the internal edges of the mesh
are visited twice (the normal vector n changes sign each time) and vh = 0 on the
boundary edges. Also, we set f = −div(K∇p) in the second to last equality. Our
numerical studies in fact confirm that the quadratic patch test will be passed up to
machine precision errors.

We have provided the details on an explicit construction of the projection map
for quadratic elements in the Appendix. As for the linear element, it is completely
characterized by the two conditions in (5.13).

5.3. Numerical verification

We proceed to verify that the proposed approach for both linear and quadratic
elements does in fact restore optimal convergence. We do this by solving the example
problem (4.1) using the proposed discrete bilinear form instead of (2.11).

As shown in Fig. 4(a), we recover optimal convergence rates for linear elements
even with the first-order quadrature rule. Moreover, the solution errors are nearly
identical to those obtained from exact integration, even with the low-order quadra-
ture. In fact, the largest difference in the energy norm errors between the proposed
scheme with the first-order rule and exact integration is 2.7%. The L2-error is
slightly smaller with the proposed approach with a difference of 4.0%. This shows
that the first-order rule, with n integration points for an n-gon, can be used in
practice without sacrificing accuracy. The use of the more accurate second-order
quadrature lowers this difference (to 0.027% and 0.43% for the energy and L2-norm
errors, respectively) but requires four times as many integration points.

Figure 4(b) summarize the results for the quadratic elements. The same con-
clusions can be drawn in this case: optimal convergences rate are restored and the
solution errors are almost identical to those with the Galerkin approximation with
the exact bilinear form. The largest numerical difference between the energy and
L2-norm errors, with the second-order rule, are 0.08% and 0.80%, respectively.
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(a) (b)

Fig. 4. Results of the convergence study with proposed splitting approach with (a) linear ele-
ments, (b) quadratic elements. In both cases, the quadrangulation scheme with indicated integra-
tion order is used.

We remark that the overhead associated with the splitting of the bilinear form
is small and the overall cost of construction of aE

h is still determined by the number
of integration points. For example, observe that (5.10) requires visiting each edge
once, the cost of which is small compared to the geometric construction of gradients
of the Wachspress basis functions at each integration point. In our implementation,
the overhead associated with splitting of the bilinear form (including the calcula-
tion of the projection map) accounts for about 10% of the total cost of computing
the stiffness matrix for both linear and quadratic elements. The major difference
between (2.11) and (5.4) is that the effort associated with basis function construc-
tion and integration is used only on the non-polynomial part of Vm(E) where it is
needed.

6. Treatment of Non-Constant Coefficients

We now briefly discuss a possible strategy to handle diffusion tensors with variable
coefficients. Such a treatment of position-dependent material properties is rele-
vant for a wide range of problems such as heat transfer in systems with variable
thermal conductivity, flow in porous media with variable permeability, electric con-
duction with variable resistivity, and magnetostatics with variable magnetic per-
meability.40,28,29

In this general case, we are given a symmetric tensor K ∈ L∞(Ω)2×2 satisfying

α−1|ξ|2 ≤ ξ · K(x)ξ ≤ α|ξ|2, ∀ ξ ∈ R2, ∀x ∈ Ω, (6.1)



April 21, 2014 13:27 WSPC/103-M3AS 1440007

Addressing integration error for polygonal finite elements 1719

for some positive constant α. In order for use of quadrature to make sense, we
assume that K is defined everywhere in the domain.

For each element E ∈ Th, we construct a first-order approximation to K over
E, which we denote by KE . For example, we can do so by setting

KE =
1
|E| E

Kdx, (6.2)

or, if K is a smooth function, we can take KE to be simply the value of K the center of
E. For linear elements, we can proceed as before but with KE in place of K without
sacrificing first-order convergence rate. For quadratic elements, however, this will
lead to loss of an order of convergence. Therefore, we consider the construction of
bilinear form that includes a correction term:

aE
h (u, v) =

E
∇ΠE

mu · KE∇ΠE
mvdx +

E
∇(u − ΠE

mu) · KE∇(v − ΠE
mv)dx

+
E
∇u · (K − KE)∇vdx. (6.3)

Here ΠE
m is defined as in the previous section with K replaced by KE . With the

correction term, we capture the variation of K inside the element through sampling
K−KE at the integration points. At the same time, we retain the simplicity offered
by a constant tensor in constructing the projection map.

Analysis of the convergence of the resulting approximation can be based on the
estimate (4.4). Here we content ourselves with numerical verification of optimal
performance. Borrowing from Ref. 13, we consider the problem posed on Ω = ]0, 1[2

Fig. 5. Results of the convergence study for problem (6.4)–(6.5) using the quadratic elements
and second-order quadrangulation scheme.
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with exact solution

u(x) = x3
1x

2
2 + x1 sin(2πx1x2) sin(2πx2), (6.4)

and diffusion tensor given by

K(x) =

[
(x1 + 1)2 + x2

2 −x1x2

−x1x2 (x1 + 1)2

]
. (6.5)

The source function f and boundary data g are prescribed in accordance with
(6.4) and (6.5). We use the same sequence of regular meshes as before and set
KE = E Kdx/|E|. The discrete linear form uses the same quadrature that is used
for the bilinear form. We omit the results for linear elements because the solution
errors, even without the correction term, are very close to the errors obtained with
exact integration. Figure 5 summarizes the results for the quadratic elements. It is
evident that without the correction term, the rates of convergence are reduced by
exactly one order as a result of inadequate approximation of K. However, the use
of (6.3) not only recovers optimal convergence rates, but also leads to nearly the
same solution errors as for the exact integration (difference of <1%).

7. Conclusions

We conclude by noting that the issue of quadrature error and its adverse effect
on convergence is in fact more pronounced in three dimensions. This is because
the construction of basis functions for general polyhedral finite elements is more
costly, quadrature rules are more difficult to obtain and the patch test errors are
typically larger. The present approach and use of polynomial projections can thus
help overcome the challenges associated with polyhedral finite elements (see Ref. 25
for studies on first-order elements). Moreover, the proposed approach can be poten-
tially beneficial for reducing the burden of integration for nonlinear problems where
integration of constitutive relations is usually performed at the quadrature points.
Finally, the formalism of the polynomial projections is promising in furnishing an
alternative way of addressing the challenges of numerical integration in meshless
methods.

Appendix A. Construction of Polygonal Elements

We discuss the construction of element spaces Vm(E) by means of generalized
barycentric coordinates associated with polygon E. We will describe the Wachs-
press coordinates but note that any other set of barycentric coordinates (e.g. mean
value, harmonic, Sibson, etc.) can be also used. A possibly more economical alter-
native in the two-dimensional setting makes use of the usual isoparametric map-
ping.39 As discussed in Ref. 46, the isoparametric construction in fact defines a new
set of barycentric coordinates for polygons. We emphasize that the result of this
paper applies to all resulting elements regardless of the choice of the barycentric
coordinates.
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Suppose E is a strictly convex n-gon with vertices located at x1, . . . , xn ori-
ented counterclockwise. The Wachspress coordinate associated with the ith-vertex
is defined in the interior of E by

ϕi(x) =
wi(x)∑n

j=1 wj(x)
, (A.1)

with weight functions given by

wi(x) =
A(xi−1, xi, xi+1)

A(xi−1, xi, x)A(xi, xi+1, x)
. (A.2)

Here A(a, b, c) denotes the area of the triangle with vertices located at points a,
b and c. We are using the convention that xn+1 = x1 and x0 = xn. It is evident
that ϕi’s are positive functions that form a partition of unity in E◦. Moreover, one
can show

n∑

i=1

xiϕi(x) = x, ∀x ∈ E◦. (A.3)

From these properties, it follows that Wachspress functions can be extended
continuously to ∂E such that18

ϕi(x) = 1 − |x − xi|
|xi+1 − xi|

, ϕi+1(x) =
|x − xi|

|xi+1 − xi|
, ϕj(x) = 0, ∀ j ̸= i, i + 1,

(A.4)

if x lies on the edge connecting xi and xi+1. Note that (A.4) implies that Wach-
spress coordinates satisfy the Kronecker-delta property, i.e. ϕi(xj) = δij and vary
linearly on ∂E.g Subsequently, we have the linear precision property of

p(x) =
n∑

i=1

p(xi)ϕi(x), ∀ p ∈ P1(E), (A.5)

for any point x in the closure of E. We set the linear element space for E as
V1(E) = span{ϕ1, . . . ,ϕn}. Observe how (A.5) implies (2.6) with m = 1.

To construct the quadratic serendipity element on E, we first define mid-side
nodes x̂i = (xi + xi+1)/2. The basis functions for V2(E) are given by

ψi(x) =
n∑

a=1

n∑

b=1

cab
i ϕa(x)ϕb(x), i = 1, . . . , 2n, (A.6)

where ϕa are barycentric coordinates for E and coefficients cab
i are chosen such that

p(x) =
n∑

i=1

[p(xi)ψi(x) + p(x̂i)ψi+n(x)], ∀ p ∈ P2(E), (A.7)

and the Kronecker-delta property is satisfied.h In Ref. 32, it is shown that a stable
choice of coefficients cab

i exists and a procedure for computing them is presented.

gThese properties are essential ingredients in constructing the conforming finite element space
(2.5) with degrees of freedom associated with the vertices of the mesh.
hThat is, ψi(xj) = ψi+n(x̂j) = δij and ψi(x̂j) = ψi+n(xj) = 0.



April 21, 2014 13:27 WSPC/103-M3AS 1440007

1722 C. Talischi & G. H. Paulino

As a result of this construction, the basis functions exhibit quadratic variation on
the boundary and (2.6) is satisfied for m = 2.

Appendix B. Implementation Aspects

We will provide details on the algebraic construction of the projection map and the
discrete bilinear forms for both linear and quadratic elements. The presentation
proceeds along similar lines as Ref. 36 where implementation of a first-order VEM
formulation for Poisson’s problem is discussed.

We unify the presentation by noting that the right-hand side of (5.13) reduces
to ∂E vK∇p · nds = aE(v, p) whenever p ∈ P1(E). Therefore, the first condition
in the definition of the projection maps is taken to bei

aE(p, ΠE
mv) = −

E
v div(K∇p)dx +

∂E
vK∇p · nds, ∀ p ∈ Pm(E), (B.1)

for both linear and quadratic elements. We can also replace the second condition
in (5.1) with an equivalent condition given by:

ΠE
mv = v, ∀ v ∈ Vm(E). (B.2)

The equivalence follows from the fact that (B.1) implies that ∇ΠE
mp = ∇p for p ∈

Pm(E). Thus, (B.1) together with (B.2) ensures that the projection fixes polynomial
functions.

Let nv = dimVm(E) and np = dimPm(E) − 1, and consider a basis for Pm(E)
of the form {1, p1, . . . , pnp} such that pα = 0 for α = 1, . . . , np. For example,

p0(x) = 1, p1(x) = x1 − x1, p2(x) = x2 − x2 (B.3)

is such a basis for P1(E). As before, let {ϕ1, . . . ,ϕnv} be the canonical basis for
Vm(E).

We define two matrices R and N of size nv × np by

Riα = −
E
ϕi div(K∇pα)dx +

∂E
ϕiK∇pα · nds, (B.4)

Niα = pα(xi), (B.5)

where xi is the location of the ith-node of E (associated with ϕi). Observe that
Riα is the right-hand side of (B.1) for v = ϕi and p = pα. Also the Kronecker-delta
property of the basis functions and their polynomial precision implies

pα(x) =
nv∑

i=1

Niαϕi(x). (B.6)

iFor the linear element, the first term vanishes. For the quadratic element, as in Sec. 5.2, we
assume that the quadrature used for the first term is exact when v ∈ P2(E).
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Using (B.4)–(B.6) and the exactness of the quadrature rule on polynomials, we have

aE(pα, pβ) = −
E

pα div(K∇pβ)dx +
∂E

pαK∇pβ · nds

= −
E

pα div(K∇pβ)dx +
∂E

pαK∇pβ · nds

=
nv∑

i=1

Niα

[
−

E
ϕi div(K∇pβ)dx +

∂E
ϕiK∇pβ · nds

]

= [NTR]αβ . (B.7)

This shows that NTR is an np × np symmetric positive definite matrix.
Since ΠE

mϕi is an element of Pm(E), there exists an nv ×np matrix S such that:

ΠE
mϕi =

1
nv

+
np∑

β=1

Siβpβ , (B.8)

for i = 1, . . . , nv. Note that ΠE
mϕi = 1/nv = ϕi and so (B.2) is satisfied. To derive

an expression for S, we appeal to (B.1), and set p = pα and v = ϕi to get
np∑

β=1

SiβaE(pα, pβ) = Riα. (B.9)

Here we have used the linearity of the bilinear form and expansion (B.8).
From (B.7) and the fact that (B.9) must hold for α = 1, . . . , np, we obtain the

following expression for S

S = R(NTR)−1, (B.10)

which in turn, through (B.8), gives the expression for the projection map. One can
verify that for m = 1, (B.8) and (B.10) recover the expression (5.10) derived in
Sec. 5.1.

We proceed to derive explicit algebraic expressions for the stiffness matrix asso-
ciated with bilinear aE

h . Recall that the (i, j)th-entry of the stiffness matrix asso-
ciated with E is given by

aE
h (ϕi,ϕj) = aE(ΠE

mϕi, ΠE
mϕj) +

E
∇(ϕi − ΠE

mϕi) · K∇(ϕj − ΠE
mϕj)dx.

(B.11)

We can compute the first term of the stiffness matrix as follows:

aE(ΠE
mϕi, ΠE

mϕj) =
np∑

α=1

np∑

β=1

SiαSjβaE(pα, pβ)

= [S(NTR)ST ]ij

= [R(NTR)−1RT ]ij . (B.12)
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To get an expression for the second term, we note that

ϕi − ΠE
mϕi = ϕi −

1
nv

−
np∑

β=1

Siβ

nv∑

j=1

Njβϕj

= ϕi −
1
nv

−
nv∑

j=1

(SNT )ijϕj

=
nv∑

j=1

(
I ij −

1
nv

Uij − [R(NTR)−1NT ]ij
)
ϕj , (B.13)

where I denotes the nv ×nv identity matrix and U is the nv ×nv matrix with unit
entries. Defining

P := I − 1
nv

U − R(NTR)−1NT , (B.14)

we have ϕi − ΠE
mϕi =

∑nv

j=1 Pijϕj . In turn, the second term of (B.11) can be
written as

E
∇(ϕi − ΠE

mϕi) · K∇(ϕj − ΠE
mϕj)dx =

nv∑

k=1

nv∑

ℓ=1

PikPjℓ

(

E
∇ϕk · K∇ϕℓdx

)
.

(B.15)

Observe that the term in the parenthesis is (k, ℓ)th-entry of the usual stiffness
matrix obtained using quadrature (i.e. the stiffness matrix corresponding to bilinear
form (2.11)). Defining Kkℓ := E ∇ϕk · K∇ϕℓdx, the expression for the stiffness
matrix reduces to

aE
h (ϕi,ϕj) = [R(NTR)−1RT + PKP T ]ij . (B.16)

For case of non-constant coefficients, the matrix R is defined as (B.4) but with
K replaced by KE . Setting K̃ij = E ∇ϕi ·K∇ϕjdx and Kij = E ∇ϕi ·KE∇ϕjdx,
the stiffness matrix associated with the corrected bilinear (6.3) is

aE
h (ϕi,ϕj) = [R(NTR)−1RT + PKP T + (K̃ − K)]ij , (B.17)

where P is again defined by (B.14).
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3. I. Babuška, U. Banerjee, J. E. Osborn and Q. Zhang, Effect of numerical integra-
tion on meshless methods, Comput. Methods Appl. Mech. Engrg. 198 (2009) 2886–
2897.

4. F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro and P. Tesini, On the flexibility of
agglomeration-based physical space discontinuous Galerkin discretizations, J. Com-
put. Phys. 231 (2012) 45–65.

5. L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo,
Basic principles of virtual element methods, Math. Models Methods Appl. Sci.
23 (2013) 199–214.

6. L. Beirão Da Veiga and K. Lipnikov, A mimetic discretization of the Stokes problem
with selected edge bubbles, SIAM J. Sci. Comput. 32 (2010) 875–893.

7. L. Beirão Da Veiga, K. Lipnikov and G. Manzini, Arbitrary-order nodal mimetic
discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal.
49 (2011) 1737–1760.

8. L. Beirão da Veiga and G. Manzini, An a posteriori error estimator for the mimetic
finite difference approximation of elliptic problems, Int. J. Numer. Methods Engrg.
76 (2008) 1696–1723.

9. J. E. Bishop, Simulating the pervasive fracture of materials and structures using
randomly close packed Voronoi tessellations, Comput. Mech. 44 (2009) 455–471.

10. L. V. Branets, S. S. Ghai, S. L. Lyons and X.-H. Wu, Challenges and technologies in
reservoir modeling, Commun. Comput. Phys. 6 (2009) 1–23.

11. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
2nd edn. (Springer, 2002).

12. F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems,
Math. Model. Numer. Anal. 43 (2009) 277–295.

13. F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods
on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci. 15 (2005)
1533–1551.

14. J.-S. Chen, C.-T. Wu, S. Yoon and Y. You, A stabilized conforming nodal inte-
gration for Galerkin mesh-free methods, Int. J. Numer. Methods Engrg. 50 (2001)
435–466.

15. P. G. Ciarlet, Finite Element Method for Elliptic Problems (SIAM, 2002).
16. L. Codecasa, R. Specogna and F. Trevisan, A new set of basis functions for the discrete

geometric approach, J. Comput. Phys. 229 (2010) 7401–7410.
17. M. S. Ebeida and S. A. Mitchell, Uniform random Voronoi meshes, in Proc. 20th Int.

Meshing Roundtable (Springer, 2012), pp. 273–290.
18. M. Floater, K. Hormann and G. Kos, A general construction of barycentric coordi-

nates over convex polygons, Adv. Comput. Math. 24 (2006) 311–331.
19. A. Gillette and C. Bajaj, Dual formulations of mixed finite element methods with

applications, Comput. Aided Des. 43 (2011) 1213–1221.
20. A. Gillette, A. Rand and C. Bajaj, Error estimates for generalized barycentric inter-

polation, Adv Comput. Math. 37 (2012) 417–439.
21. A. N. Hirani, K. B. Nakshatrala and J. H. Chaudhry, Numerical method for Darcy

flow derived using discrete exterior calculus, preprint (2011), arXiv:0810.3434.



April 21, 2014 13:27 WSPC/103-M3AS 1440007

1726 C. Talischi & G. H. Paulino

22. J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for ellip-
tic problems on polyhedral meshes, ESAIM, Math. Model. Numer. Anal. 48 (2014)
553–581.

23. S. E. Leon, D. W. Spring and G. H. Paulino, Reduction in mesh bias for dynamic
fracture using adaptive splitting of polygonal finite elements, Int. J. Numer. Methods
Engrg., in press.

24. Y. Liu and T. Belytschko, A new support integration scheme for the weak form in
mesh-free methods, Int. J. Numer. Methods Engrg. 82 (2010) 699–715.

25. G. Manzini, A. Russo and N. Sukumar, New perspectives on polygonal and polyhedral
finite element methods, Math. Models Methods Appl. Sci. 24 (2014) 1665–1699.

26. S. E. Mousavi, H. Xiao and N. Sukumar, Generalized Gaussian quadrature rules on
arbitrary polygons, Int. J. Numer. Methods Engrg. 82 (2010) 99–113.

27. S. Natarajan, S. Bordas and D. R. Mahapatra, Numerical integration over arbitrary
polygonal domains based on Schwarz–Christoffel conformal mapping, Int. J. Numer.
Methods Engrg. 80 (2009) 103–134.

28. G. H. Paulino, Fracture of functionally graded materials, Engrg. Fract. Mech. 69
(2002) 1519–1520.

29. G. H. Paulino, Modeling of functionally graded materials, Int. J. Comput. Engrg. Sci.
5 (2004) iii.

30. G. H. Paulino, K. Park, W. Celes and R. Espinha, Adaptive dynamic cohesive fracture
simulation using nodal perturbation and edge-swap operators, Int. J. Numer. Methods
Engrg. 84 (2010) 1303–1343.

31. M. Puso, J. Chen, E. Zywicz and W. Elmer, Meshfree and finite element nodal inte-
gration methods, Int. J. Numer. Methods Engrg. 74 (2008) 416–446.

32. A. Rand, A. Gillette and C. Bajaj, Quadratic serendipity finite elements on polygons
using generalized barycentric coordinates, to appear in Math. Comput., DOI: S0025-
5718(2014)02807-X.

33. M. M. Rashid and M. Selimotic, A three-dimensional finite element method with
arbitrary polyhedral elements, Int. J. Numer. Methods Engrg. 67 (2006) 226–252.

34. J. J. Rimoli, J. J. Rojas and F. N. Khemani, On the mesh dependency of cohesive
zone models for crack propagation analysis, in Structural Dynamics and Materials
Conference, 2012 (AIAA, 2012).

35. S. Rjasanow and S. Weißer, Higher-order BEM-based FEM on polygonal meshes,
SIAM J. Numer. Anal. 50 (2012) 2357–2378.

36. A. Russo, Virtual element methods II, in Conf. Discretization Methods for Polygo-
nal and Polyhedral Meshes, Milan, Italy (2012), http://k.matapp.unimib.it/WSVEM-
2012.

37. G. Strang and G. Fix, An Analysis of the Finite Element Method, 2nd edn.
(Wellesley-Cambridge Press, 2008).

38. N. Sukumar and E. A. Malsch, Recent advances in the construction of polygonal finite
element interpolants, Arch. Comput. Method E 13 (2006) 129–163.

39. N. Sukumar and A. Tabarraei, Conforming polygonal finite elements, Int. J. Numer.
Methods Engrg. 61 (2004) 2045–2066.

40. A. Sutradhar and G. H. Paulino, A simple boundary element method for problems
of potential in non-homogeneous media, Int. J. Numer. Methods Engrg. 60 (2004)
2203–2230.

41. A. Tabarraei and N. Sukumar, Adaptive computations on conforming quadtree
meshes, Finite Element. Anal. Des. 41 (2005) 686–702.

42. C. Talischi, G. H. Paulino and C. H. Le, Honeycomb Wachspress finite elements for
structural topology optimization, Struct. Multidisc. Optim. 37 (2009) 569–583.



April 21, 2014 13:27 WSPC/103-M3AS 1440007

Addressing integration error for polygonal finite elements 1727

43. C. Talischi, G. H. Paulino, A. Pereira and I. F. M. Menezes, Polygonal finite elements
for topology optimization: A unifying paradigm, Int. J. Numer. Methods Engrg. 82
(2010) 671–698.

44. C. Talischi, G. H. Paulino, A. Pereira and I. F. M. Menezes, PolyMesher: A general-
purpose mesh generator for polygonal elements written in Matlab, Struct. Multidisc.
Optim. 45 (2012) 309–328.

45. C. Talischi, G. H. Paulino, A. Pereira and I. F. M. Menezes, PolyTop: A Matlab
implementation of a general topology optimization framework using unstructured
polygonal finite element meshes, Struct. Multidisc. Optim. 45 (2012) 329–357.

46. C. Talischi, A. Pereira, G. H. Paulino, I. F. M. Menezes and M. S. Carvalho, Polygonal
finite elements for incompressible flow, Int. J. Numer. Methods Fluids 74 (2014) 134–
151.

47. E. L. Wachspress, A Rational Finite Element Basis (Academic Press, 1975).
48. Q. Zhang and U. Banerjee, Numerical integration in Galerkin meshless methods,

applied to elliptic Neumann problem with non-constant coefficients, Adv. Comput.
Math. 37 (2012) 453–492.


