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Abstract

Meshing complex engineering domains is a challenging task. Arbitrary polyhedral meshes can provide the much needed
flexibility in automated discretization of such domains. The geometric property of polyhedral meshes such as its unstructured
nature and the connectivity of faces between elements makes them specially attractive for topology optimization applications.
Numerical anomalies in designs such as the single node connections and checkerboard pattern can be naturally circumvented with
polyhedrons. In the current work, we solve the governing three-dimensional elasticity state equation using the Virtual Element
Method (VEM) approach. The main characteristic difference between VEM and standard finite element methods (FEM) is that
in VEM the canonical basis functions are not constructed explicitly. Rather the stiffness matrix is computed directly utilizing a
projection map which extracts the linear component of the deformation. Such a construction guarantees the satisfaction of the
patch test (used by engineers as an indicator of optimal convergence of numerical solutions under mesh refinement). Finally, the
computations reduce to the evaluation of matrices which contain purely geometric surface facet quantities. The present work focuses
on the first-order VEM in which the degrees of freedom are associated with the vertices. The features of the current optimization
approach are demonstrated using numerical examples for compliance minimization and compliant mechanism problems.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Numerical simulation of a typical engineering problem often begins with meshing a complicated domain, which
is a challenging task. In general, unstructured meshes are preferred as they have shown to produce reliable and more
accurate numerical solutions [1]. Thus, the polyhedral elements have become increasingly popular due to the flexibility
they impart in automatic discretization of complicated design domains. Also, physical attributes such as facial
connectivity between neighboring polyhedrons and unstructured nature of the mesh, make them specially attractive
in topology optimization. Due to their characteristic geometry, numerical anomalies such as single node connections
and checkerboarding are naturally alleviated. Orthogonally intersecting tension and compression members, distinctive
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Nomenclature

a, ah Continuous and discrete bilinear form
f Continuous load linear form
t Surface tractions
C Elasticity tensor
Ω Topology optimization working domain
V, Vh Continuous and conforming discrete solution space
J Objective function
ρ, ρe Continuous density function and discrete element density
V f Prescribed volume fraction
|·| Measure (area or volume) of a set. Also, Euclidean norm of vector
W Space of finite dimensional smooth functions over element e
ae, ae

h Restriction of a, ah to W (element contribution)
se Approximation of bilinear form corresponding to higher-order deformation modes
ϕi Generic barycentric coordinates
ϕi Canonical basis function
v Mean of values of v sampled over the vertices of element e
⟨v⟩ Volume average of v
P Space of linear deformation mode
pi Bases spanning space P
πP Projection map to extract P , πP :W → P
PP Matrix representation of πP
WP Matrices containing surface integration quantities
NP Matrices containing rearranged nodal coordinates of vertices
qi Vector of facial surface integration of barycentric coordinates
Ke Element stiffness matrix
D Material matrix which is function of elasticity tensor C
I Identity matrix
αe Positive scaling coefficient for stability term se

S Set of distinct seeds to generate Voronoi cells
E Young’s modulus
ν Poisson’s ratio
K Global stiffness matrix
F Global force vector
U Global displacement vector
rmin Filter radius

features of an optimum structural layout [2,3], are conveniently captured by polyhedral meshes. Thus, the goal of the
current work is to develop a numerically efficient and accurate topology optimization approach for arbitrary polyhedral
elements.

In the past, special interpolants have been proposed for arbitrary shaped elements such as Wachspress [4,5], Sibson
coordinates [6,7], non-Sibson coordinates or Laplace shape functions [8–10,7,11], mean value coordinates [12,13],
metric coordinate method [14], and maximum entropy shape function [15–17]. A detailed overview of the main devel-
opments in the field of conforming polygonal interpolants is provided in [18]. A summary of the polygonal/polyhedral
interpolants is shown in Table 1.

For two-dimensional topology optimization, polygonal shape functions have been explored in the past [23–25].
Utilizing the iso-parametric mapping scheme for numerical integration, polygonal shape functions can be efficiently
implemented [11]. Polygonal shape functions and their derivatives are computed once for different reference n-gons
and stored. Subsequently, these quantities can be retrieved as and when required. In three-dimensions, however, such
a mapping scheme does not exist. Thus, numerical integration for each element are performed in physical coordinates
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Table 1
Summary of the polygonal/polyhedral interpolants.

Interpolants References Concave
elements

Remarks

Wachspress [4,5,19] No Earliest interpolant based on rational polynomials

Sibson [6,7] No Utilizes Voronoi tessellations to construct interpolant which reduces to the ratios of areas of
Voronoi cells

Non-Sibson [8–10,7] No Also based on Voronoi tessellations. The interpolant is a function of Lebesgue measure of
Voronoi edge and L2 distance norm

Mean value
coordinates

[12,13] Yes Interpolant is a function of geometric quantities — L2 distance norm and area

Metric
coordinate
method

[14] Yes Uses measures such as edge length, signed area of triangle, and trigonometric functions of
sine and cosine to construct the shape functions

Maximum
entropy

[15–17] Yes Shape functions and their derivatives are obtained by maximizing the Shannon’s entropy
function under prescribed boundary conditions

Harmonic
coordinates

[20–22] Yes Shape functions and their derivatives are obtained by solving the Laplace equation
hierarchically

a b

Fig. 1. Illustration of the complexity of elements in an unstructured polyhedral mesh. (a) A section of the mesh for spherical domain. (b) Split view
of the mesh.

which is computationally expensive. Moreover, to achieve accurate results, a high order numerical quadrature is
required. This difficulty arises due to the non-polynomial nature of these shape functions. Fig. 1 illustrates the
complexity of elements in a typical polyhedral mesh.

Recently developed Virtual Element Method addresses some of the challenges facing the polyhedral elements for
three-dimensional applications. The VEM originated from Mimetic Finite Difference (MFD) methods which have
been successfully applied to diffusion [26], fluid flow [27] and elasticity problems [28]. The MFDs differ from the
standard finite element approaches in the sense that in MFDs there are no explicitly defined shape functions associated
with the discrete degrees of freedom. Thus, the continuous differential operators such as the div, grad, curl and trace,
are approximated or mimicked by their discrete counterparts which utilize the discrete quantities defined only at the
degrees of freedom. This provides greater flexibility in the geometric shapes of the admissible elements. In fact, high
quality, skewed, degenerate and even non-convex polyhedra are all admissible. The MFD methods have been evolving
from a finite difference/finite volume framework towards a Galerkin finite element-type framework called the Virtual
Element Method [29,30]. The feature which distinguishes VEM from classical finite element methods is that VEM
does not require explicit computation of the approximation space. The construction of the discrete bilinear form
for the elasticity problem begins with the kinematic decomposition of the element deformation space into constant
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Fig. 2. Domain description for the topology optimization problem. The boundary, ∂Ω , of the working domain, Ω , consists of Γu (displacement
boundary), Γt0 (homogeneous traction boundary) and Γt (non-homogeneous traction boundary). The design ω, with boundary ∂ω = γu∪γt0∪γt , is
constrained to satisfy γu ⊆ Γu and γt = Γt . Boundaries γu , γt0, and γt correspond to displacement, homogeneous traction, and non-homogeneous
traction boundary conditions on ∂ω, respectively.

strain and higher-order modes. The linear deformations are captured exactly, thereby passing the engineering patch
test. A projection map is defined which enables such a decomposition. Using the discrete version of the projection
map, the element stiffness matrix is constructed which requires computation of surface integral of the canonical basis
functions over the element boundary faces. In this work, we explore the effectiveness of first-order VEM1 [30] for
three-dimensional topology optimization considering linear elastic material behavior.

The remainder of this paper is organized as follows. In Section 2, we define the governing elasticity problem and
discuss the topology optimization problem formulation. Section 3 provides a brief overview of the Virtual Element
Method for linear elasticity. A centroidal Voronoi tessellation (CVT) based meshing approach used to generated the
polyhedral meshes is discussed in Section 4. In Section 5, we explore several numerical examples to evaluate our
current approach. Finally, we provide some concluding remarks in Section 6.

2. Topology optimization problem formulation

In this work, we concentrate on topology optimization of linearized elastic system under small deformations
subjected to surface tractions t. The elasticity problem, for a smooth bounded domain Ω ⊆ R3, is defined as follows.
Find u:

a(u, v) = f (v), ∀u, v ∈ V (1)

where

a(u, v) =

Ω

Cϵ(u) : ϵ(v) dx, f (v) =

Γt

t · v ds

V =


v ∈ H1 (Ω)3
: v|Γu = 0


.

(2)

Here, ϵ(u) = 1/2(∇u + ∇uT ) is the second-order linearized strain tensor and C is the elasticity tensor. In topology
optimization, the working domain, Ω , contains all the admissible shapes ω, i.e., ω ⊆ Ω . Its boundary ∂Ω consists
of three disjoint segments, ∂Ω = Γu ∪ Γt0 ∪ Γt , where Γu , Γt0, and Γt represent displacement, homogeneous
traction, and non-homogeneous traction boundary conditions (t ≠ 0), respectively. Also, the design ω, with boundary
∂ω = γu ∪ γt0 ∪ γt , is constrained to satisfy γu ⊆ Γu and γt = Γt . Here, γu , γt0, and γt correspond to the boundaries
of ω with displacement, homogeneous traction, and non-homogeneous traction boundary conditions, respectively (c.f.
Fig. 2). Body forces are ignored. The VEM is used to solve the state Eq. (1).

We shall focus on two categories of topology optimization problems, compliance minimization and linear
compliant mechanism. The topology optimization problem of compliance minimization refers to finding the stiffest
configuration under applied loads and boundary conditions. Compliance, the work done by the loads, is defined as:

J1 (ρ) =


Γt

t · u ds =

Ω

C (ρ) ϵ(u) : ϵ(u) dx. (3)

1 Polyhedral elements are considered to be linear with three degrees of freedom associated with each vertex.
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The effective elasticity tensor C for the domain Ω is a function of density ρ(x) and, as per the Solid Isotropic Material
with Penalization (SIMP) model [31–33], is expressed as:

C (ρ) =

ε + (1− ε) ρ p C0. (4)

The solid and void regions are filled with material of elasticity tensor C0 and εC0, respectively, where ε is chosen as
10−4. The penalization parameter, p, is set to 3.

The second category of problems we study are the linear compliant mechanisms, specifically the displacement
inverter and the gripper problem. The objective is to maximize the displacement in a predefined direction, uout, in
response to the force, fin , exerted by the actuator, modeled by a spring of stiffness kin . So, the quantity we aim to
minimize is:

J2 (ρ) = −uout. (5)

Thus, the combined optimization problem, (3), (5), can be expressed as:

inf
ρ

Ji (ρ) for i = 1, 2

subject to: a(u, v) = f (v),

Ω

ρ(x) dx ≤ V f |Ω |
(6)

where V f is the prescribed maximum volume fraction and |·| denotes the measure (area or volume) of a set as well
as the Euclidean norm of vector. In this work, we shall denote the components of vectors, matrices and tensors in
the canonical Euclidean basis with subscripts inside parentheses (e.g. u(i) or ϵ(i j)) in order to make a distinction with
indexed quantities.

For our simulations, we use gradient-based Optimality Criteria (OC) [34] as the optimization algorithm, the
sensitivity analysis for which are shown in Appendix A. Other mathematical programming algorithms such as, Method
of Moving Asymptotes (MMA) [35], Sequential Linear Programming (SLP), Sequential Quadratic Programming
(SQP), and CONvex LINearization approximations (CONLIN) [36] have also been used in density-based methods.

3. Virtual Element Method for linear elasticity

In this section, we present the Virtual Element Method for linear elasticity [30,29] which is the governing state
equation for the current topology optimization implementation. We discuss the mathematical framework of the method
and also provide implementation details.

3.1. Theoretical background

Consider a partition of Ω into disjoint non-overlapping polyhedrons, e, of maximum diameter h. The Galerkin
approximation uh of u, obtained by solving the discrete counterpart of (1), belongs to the conforming discrete space
Vh ⊆ V which consists of continuous displacement fields whose restriction to polyhedron e belongs to the finite-
dimensional space of smooth functions W . Space W contains all the deformation states represented by the element e
— linear deformations and higher-order modes. Due to the conformity of Vh , the continuous (a) and discrete bilinear
form (ah) can be expressed as the corresponding sums of element contributions:

a(u, v) =


e
ae(u, v), ah(u, v) =


e

ae
h(u, v). (7)

In the space W , three degrees of freedom are associated with each vertex of a polyhedron. For this purpose, we
consider the canonical basis ϕ1, . . . ,ϕ3n of the form

ϕ3i−2 = [ϕi , 0, 0]T , ϕ3i−1 = [0, ϕi , 0]T , ϕ3i = [0, 0, ϕi ]T , i = 1, . . . , n (8)

where ϕ1, . . . , ϕn are a set of barycentric coordinates, for instance [4,7,12,15,16], which satisfy all the desired
properties of a conforming interpolants such as partition of unity, Kronecker-delta, linear completeness and piece-
wise linear (C0 function) along the edges of e. We shall see later that VEM concerns only with the behavior of W
along the boundaries of the element e.
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The VEM construction of the stiffness matrix begins with the kinematic decomposition of deformation states of
W . To facilitate the derivations, the mean of the values of a function v sampled at the vertices of e and volume average
of v are represented by v and ⟨v⟩, respectively. We define the bases that span the space of linear deformations, P , over
element e as:

p1(x) = e1, p2(x) = e2, p3(x) = e3,

p4(x) = (e1 ⊗ e1)(x− x), p5(x) = (e1 ⊗ e2)(x− x), p6(x) = (e1 ⊗ e3)(x− x),

p7(x) = (e2 ⊗ e1)(x− x), p8(x) = (e2 ⊗ e2)(x− x), p9(x) = (e2 ⊗ e3)(x− x),

p10(x) = (e3 ⊗ e1)(x− x), p11(x) = (e3 ⊗ e2)(x− x), p12(x) = (e3 ⊗ e3)(x− x).

(9)

Next, we define projection map πP :W → P to extract linear deformations as:

πPv = v+ ⟨∇v⟩(x− x). (10)

We observe that the volumetric integral ⟨∇v⟩ can be converted as:

⟨∇v⟩ =
1
|e|


e
∇v dx =

1
|e|


∂e

v⊗ n ds. (11)

An important property of πP which ensures consistency of the VEM approach is that (v − πPv) is energetically
orthogonal to P , ∀v ∈W , i.e.

ae(p, v− πPv) = 0, ∀p ∈ P, v ∈W . (12)

To verify this identity, we can use the fact that the stress σ (p) is constant and ⟨ϵ(v)⟩ = ϵ(πPv), i.e. the volume average
of the strain of a field v is the same as the strain of its linear deformation component, πPv. It will be useful to express
the linear projection map πP in terms of the bases of P as:

πPv = (v)(1)p1 + (v)(2)p2 + (v)(3)p3 + ⟨∇v⟩(11)p4 + ⟨∇v⟩(12)p5 + ⟨∇v⟩(13)p6

+⟨∇v⟩(21)p7 + ⟨∇v⟩(22)p8 + ⟨∇v⟩(23)p9 + ⟨∇v⟩(31)p10 + ⟨∇v⟩(32)p11 + ⟨∇v⟩(33)p12. (13)

Finally, using πP , any deformation state v ∈W can be kinematically decomposed as:

v = πPv+ (v− πPv). (14)

The higher-order component (v− πPv) belongs to a (3n − 12) dimensional subspace of W .
Based on the kinematic decomposition of deformation state (14) and the energy orthogonality property (12), the

continuous bilinear form can be written as:

ae(u, v) = ae(πPu, πPv)+ ae(u− πPu, v− πPv). (15)

The first term corresponds to the constant strain modes and can be computed exactly by knowing the volume of the
element e (note that the arguments of the bilinear term are linear). Thus, ensuring that the engineering patch test is
passed. The second term, corresponding to higher-order deformation modes, is difficult to compute. As observed
in [37], the exact computation of the second term can be done away with and it can be replaced by a crude
approximation se (which can be easily computed) without affecting the energy associated with linear deformation
modes. Thus, the discrete bilinear form is defined as:

ae(u, v) .
= ae(πPu, πPv)+ se(u− πPu, v− πPv). (16)

Here, se must be symmetric positive definite bilinear form on the space of higher-order deformations and should be
chosen such that strain energy associated with higher-order deformation modes scales with the exact strain energy.
This ensures stability of the method. Provided the aforementioned conditions are satisfied, there is quite a bit of
freedom in the choice of se [37,30]. Here, we make a computationally inexpensive choice as [37]:

se(u, v) =
n

i=1

αeu(xi ) · v(xi ) (17)

where αe is a positive coefficient that ensures correct scaling of the energies of higher-order mode. In the following
section we provide explicit expressions for the element stiffness matrix.
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3.2. Implementation details

Here we show the implementation details of the VEM formulation discussed in the previous section. We provide
the expression for discrete linear projection map which is later used to construct the stiffness matrix terms. Let, PP
be the discrete representation of the projection πP , i.e.,

πPϕ j =

3n
k=1

(PP )(k j) ϕk . (18)

To obtain PP , we use (13) to express πP in terms of its corresponding bases as:

πPϕ j =

12
ℓ=1

(WP )( jℓ) pℓ (19)

where WP is an 3n × 12 matrix whose j th row is given by,

[

ϕ j


(1)

,

ϕ j


(2)

,

ϕ j


(3)

, ⟨∇ϕ j ⟩(11), ⟨∇ϕ j ⟩(12), ⟨∇ϕ j ⟩(13),

⟨∇ϕ j ⟩(21), ⟨∇ϕ j ⟩(22), ⟨∇ϕ j ⟩(23), ⟨∇ϕ j ⟩(31), ⟨∇ϕ j ⟩(32), ⟨∇ϕ j ⟩(33)]. (20)

Using the linear precision property of the canonical basis functions (8), we express pℓ in (19) in terms of its discrete
counterpart (bases sampled at the vertices) and upon simplification, we obtain:

πPϕ j =

3n
k=1


NPWT

P


(k j)

ϕk . (21)

Subsequent comparison with (18), we get PP = NPWT
P , where NP , WP ∈ R3n×12. A block of three rows of NP ,

corresponding to i th vertex, is explicitly expressed as:

(NP )(3i−2:3i,:) =

1 0 0 (xi − x)(1) (xi − x)(2) (xi − x)(3)

0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 0 0 0
(xi − x)(1) (xi − x)(2) (xi − x)(3) 0 0 0

0 0 0 (xi − x)(1) (xi − x)(2) (xi − x)(3)

 (22)

and a block of three rows of WP is simplified as:

(WP )(3i−2:3i,:) =

1/n 0 0 (qi )(1) (qi )(2) (qi )(3)

0 1/n 0 0 0 0
0 0 1/n 0 0 0

0 0 0 0 0 0
(qi )(1) (qi )(2) (qi )(3) 0 0 0

0 0 0 (qi )(1) (qi )(2) (qi )(3)

 (23)

where the surface integral vector qi is given by:

qi =
1
|e|


∂e

ϕi nds. (24)

To compute the surface integral, such as the one encountered in (24), we use first-order accurate nodal quadrature
scheme which does not require the computation of canonical basis functions inside the elements. The approximation
of the surface integration of a generic function g over a face F is defined as:

F
g ds .
=


j∈F

wF
j g(x j ) (25)
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Fig. 3. Nodal quadrature scheme for surface integration. The variables xF and wF
j represent the centroid of the polygon and the nodal weight

associated with the vertex x j on any face F , respectively.

where {x j : j ∈ F} represent the vertices on the face F . The nodal weight wF
j for vertex x j is taken as the area of the

quadrilateral formed by x j , the centroid of the face F , and mid-points of the edges incident on x j (Fig. 3).
The element stiffness matrix Ke can now be obtained using the surface integral matrix WP and discrete projection

PP . From (16) we have,

(Ke)( jk) = ae
h(ϕ j , ϕk) = ae(πPϕ j , πPϕk)+ se(ϕ j − πPϕ j , ϕk − πPϕk). (26)

Using (19), the first term of Ke can be simplified as:

ae(πPϕ j , πPϕk) = |e|


WPDWT
P


( jk)

(27)

where the matrix D is a function of elasticity tensor C and is defined as:

(D)(ℓm) =
1
|e|

ae(pℓ, pm) = Cϵ(pℓ) : ϵ(pm), ℓ, m = 1, . . . , 12. (28)

Now, adopting the inexpensive choice of se (17), the second term in the stiffness matrix is written as:

se(ϕ j − πPϕ j , ϕk − πPϕk) =

(I − PP )T Se (I − PP )


( jk)

(29)

where (Se)( jk) = se(ϕ j , ϕk) and corresponds to Se
= αeI3n . We need to ensure that se(·, ·) is of the same order of

magnitude as ae(·, ·), so an appropriate value of αe is

αe
= ᾱetrace(|e|WPDWT

P ). (30)

Based on the studies conducted in reference [38], ᾱe is chosen as 0.05. Finally, the element stiffness matrix is given
by

Ke = |e|WPDWT
P + αe (I − PP )T (I − PP ) . (31)

To compute the force vectors corresponding to a body force, a first-order accurate scheme, similar to the one
discussed in (25), can be used. Nodal quadrature for body forces involves computing nodal volume weights for volume
integration. The weight for vertex xi is the volumes of the polyhedron formed by xi , the centroid of element e, the
centroid of faces and the centroids of the edges incident on xi . In case of surface traction, (25) can be used. The global
stiffness matrix and global force vector are obtain by standard assembly process. For a detailed study on the accuracy
and convergence of VEM for three-dimensional elasticity refer to [30].

4. On centroidal Voronoi tessellation meshing

The design domain is discretized using centroidal Voronoi tessellation based method [39–41]. The algorithm uses
the concept of signed distance function to define the boundaries, which are later approximated by collection of
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intersecting planes. The boundary approximation is obtained by including a set of reflections of the seeds during
the meshing process. In this section, we explain the meshing in detail.

Given a set of ns distinct seeds S = {si }
ns
i=1, the Voronoi tessellation of the domain Ω ⊆ R3 is defined as:

D(S) = {e ∩ Ω : si ∈ S} (32)

where e is the Voronoi cell corresponding to seed si :

e =


x ∈ R3
: |x− si | < |x− s j |, ∀ j ≠ i


. (33)

The above definition of e represents a domain consisting of all points that are closer to seed si than any other seed
s j ∈ S. Note that the Voronoi cells are necessarily convex polyhedrons since they are formed by the finite intersection
of convex half-planes.

Following the guidelines discussed in [40,41], a polyhedral discretization is obtained from the Voronoi diagram of
a given set of seeds and their reflections about the closest boundary of Ω , i.e. Γ . As indicated earlier, our meshing
algorithm is implemented for general domains using signed distance functions. A signed distance function dΩ (x) is
defined as:

dΩ (x) = z(x) min (|x− y|) , ∀y ∈ Γ (34)

where z(x) is the sign function defined as:

z(x) =


−1, x ∈ Ω ,

+1, x ∈ R3
\Ω .

(35)

Thus, dΩ (x) = 0 if x ∈ Γ and dΩ (x) < 0 if x ∈ Ω\Γ . Using the signed distance function and its gradient, the
reflection, sr

i , of the seed si can be calculated as:

sr
i = sr

i − 2dΩ (si )∇dΩ (si ). (36)

First, to construct a polyhedron discretization of the domain Ω , each point in S is reflected about the closest
boundary Γ . The resulting set of points are denoted by RΩ (S). Subsequently, we construct the Voronoi diagram
of the space using the original point set and its reflection, T (S ∪RΩ (S);R3). Thus, the discretization of Ω is the
collection of the Voronoi cells associated with seeds S. For a given point set S, the discretization of the domain Ω is
uniquely defined and denoted by:

MΩ (S) =


e ∈ T (S ∪RΩ (S);R3) : si ∈ S


. (37)

If the Voronoi cell of a seed si and its reflection have a common edge, then this edge forms an approximation to the
domain boundary and a reasonable discretization of Ω is obtained. In order to mesh complicated geometries, a signed
distance function along with set operations such as union, difference, and intersection are used [42,41]. Note that for
a convex domain Ω , MΩ (S) circumscribes Ω .

In our meshing algorithm, a set of signed distance functions corresponding to basic geometric shapes such as three-
dimensional plane, sphere, cylinder and rectangular box is defined. We also construct a bounding box B, that contains
the domain Ω , to generate the random seeds in R3. A random seed is accepted only if it lies inside the domain Ω ,
determined by evaluating the sign of the resultant distance function, dΩ , associated with Ω . Algorithm 1 shows the
basic steps for obtaining a random point set of size ns .

We handle convex and non-convex features of Ω by carefully choosing a set of seeds to be reflected w.r.t. the
boundary. Reflection of a seed far from the boundary may land inside the domain or interfere with the reflection of
another seed. Since the reflection of most of the seeds in the interior of the domain has no effect on the approximation
of the boundary, we reflect only the seeds that are in a band near the boundary. A seed si ∈ S is reflected about
boundary segment Γ provide that:

|dΩ (si )| < c


|Ω |
ns

1/3

(38)
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Algorithm 1 Initial random seed placement

input: B, ns %% B ⊃ Ω ∈ R3and ns is the number of seeds
set S = ∅
while |S| < ns do

generate random point y ∈ B
if dΩ (y) < 0 then

S ← S ∪ {y}
end if

end while
output: S

where c is the proportionality constant, chosen to be greater than 1 to make the band size near the boundary larger
than the average element volume.

Clearly, Voronoi meshes generated from random/quasi-random seeds may cause inconsistencies at the boundaries
resulting in a poor approximation of the boundaries of the design domain. To introduce some regularity in the Voronoi
meshes, we construct Centroidal Voronoi tessellations (CVT) using a modified Lloyd’s algorithm [43]. For a large
number of iterations, CVT cells tend to be uniform in size [44]. To generate CVT meshes, we replace seeds S
with centroids Sc of the Voronoi cells. We compute the polyhedron centroid by partitioning it into tetrahedrons and
evaluating the weighted mean of the centroids of the resulting tetrahedrons. The weights are the volumes of the
tetrahedrons.

To construct the element stiffness matrix using the approach discussed in Section 3, along with vertices locations
and element connectivity information, we need to know the vertices incident on each face of polyhedrons. The pseudo-
code listed in Algorithm 2 summarizes our approach to obtain facial information in MATLAB. The inputs to the
algorithm are the element connectivity and the coordinates of the vertices and seeds. For each seed of the mesh, the
algorithm computes the convex hull of the set V (vertices in an element). The convex hull of V is a matrix H with as
many rows as the number of triangular subdivision of faces present in the convex hull, and three columns containing
the indexes of the vertices of the corresponding triangular subdivisions. Then, we iterate over all triangles and unite
those that are co-planar to obtain the polygonal faces of the polyhedron. The resulting array, called Elm, contains
the faces and vertices of each polyhedral element. Fig. 4 shows some of the sample meshes and their statistical
information, obtained from the current algorithm.

Algorithm 2 Construction of final mesh consisting of vertices, elements and faces in MATLAB.
input: e, N, S, ns %% Voronoi cells e, vertices coords N , seeds coords S

Elm← 0 %% initialize an array with size of ns
for i = 1 to ns do

let V = N(e(i))
construct convex hull H ←H(V ;R3)

m ← |H| %% number of triangular subdivisions m obtained from convex hull
ElementFaces← 0
for j = 1 to m do

let T = e(H( j)) %% vertices of a triangle
T = Order V ertices(N, T , S(i))
ElementFaces← T %% create/unite faces

end for
Elm(i)← ElementFaces

end for
output: Elm

Note that even with CVT approach, the meshing process generates a few elements with large aspect ratios or
elements with a few small faces/edges in the interior as well as on the boundary. As shown by Gain et al. [30], the
VEM approach for three-dimensional linear elasticity is fairly robust with respect to the random element geometries
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Fig. 4. Sample meshes. (a) Cylinder. (b) Cylinder mesh statistics. On average, elements in the mesh have approximately 23 vertices with a standard
deviation of 2.92. (c) Curved cantilever beam. (d) Curved cantilever mesh statistics. On average, the elements in the mesh also have approximately
23 vertices with a standard deviation of 3.69.

as indicated by the optimal rates of convergence for the relative displacement and stress errors. Hence, we did not
incorporate any special schemes to remove or modify irregular elements or element with undesirable attributes (small
faces/edges) in our meshing algorithm.

5. Numerical examples

In this section, numerical examples are shown to demonstrate the effectiveness of the current approach. We start
with the benchmark cantilever beam problem solved on a box domain using different mesh discretizations, followed
by problems on non-Cartesian design domains. For our simulations, Young’s modulus, E , and Poisson’s ratio, ν, are
taken as 10,000 and 0.3, respectively. As mentioned earlier, Optimality Criteria (OC) is the optimizer of choice. The
optimization is terminated when either the maximum of the change in element densities is less than 0.01 or the number
of iterations exceed 300. Similar to traditional finite elements, polyhedral elements based topology optimization results
too suffer from mesh-dependency (i.e. refinement of mesh results in solution with more intricate design features).
Application of filters is one of the remedies to the problem of non-existence of solutions. Filters on densities and
sensitivities have been used widely in the literature. In this work we use linear density filters (discussed in briefly in
Appendix B).

5.1. Cantilever beam problem on box domain

We begin with the benchmark cantilever beam problem for a design domain of dimension 2× 1× 1. The left face
of the box is fixed and a point load is applied in the middle of the right face (refer Fig. 5). The problem is solved on
both hexahedral and polyhedral element meshes. Taking advantage of symmetry, only half of the domain is optimized,
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Fig. 5. Cantilever beam problem.

a b

Fig. 6. Converged topologies for the cantilever beam problem using the present method. (a) Hexahedral mesh of 54,872 elements, 60,060 nodes
(J = 0.1098). (b) Polyhedral mesh of 10,000 elements, 58,601 nodes. The average number of vertices per polyhedron is, µ = 22.85, with standard
deviation, σ = 3.80, (J = 0.1082).

Fig. 7. Convergence history for the cantilever beam problem.

which is discretized using 54,872 hexahedrons (60,060 nodes) and 10,000 polyhedrons (58,601 nodes). A linear filter
of radius 5% of the maximum domain dimension is used and a volume fraction of 0.1 is prescribed.

With the present approach, both mesh discretizations produce similar optimization results (Fig. 6). Note that the
optimized topologies shown in Fig. 6 (also all subsequent results) show only the elements whose density exceeds
0.5. The final compliance values are 0.1098 and 0.1082 for the topologies on hexahedral and polyhedral meshes,
respectively.

For comparison, the same problem is solved using the finite element method on a hexahedral mesh. Topology
similar to the present method is obtained. The convergence history for all three cases are illustrated in Fig. 7. As
expected, a smooth monotonic convergence is obtained for all three cases and they all converge to similar final
compliance values.
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Fig. 8. Problem description for thin disc. Eight equidistant shear loads are applied along the circumference of the disc and all the nodes along the
central cylindrical hole are fixed.

Fig. 9. Final topology for shear loaded thin disc on a 10,000 element, 55,810 nodes polyhedral mesh. The average number of vertices per element
is, µ = 20.53, with standard deviation of, σ = 3.71, (J = 0.5850).

5.2. Shear loaded thin disc

We next investigate the shear loaded thin disc problem. The thin disc domain has an external radius of 6 units with
an internal cylindrical hole of radius 1 unit and has a thickness of 0.5 units (Fig. 8). Eight equidistant shear loads are
applied along the circumference of the disc and all the nodes along the cylindrical hole are fixed. A polyhedral mesh
of 10,000 elements (55,810 nodes) is used to discretize the design domain. A filter radius of 4% of the outer diameter
is selected and a volume fraction of 0.2 is enforced.

According to Michell layout theory [2,3], an optimum structural layout is one in which the tension and compression
members meet orthogonally. Such a set of orthogonal curves are known as Hencky nets [3]. The tension and
compression members in topology optimization solutions should adhere to this principle. The converged topology for
the shear loaded thin disc problem, obtained from our algorithm, is shown in Fig. 9 (resembles a flower). The members
of the structure intersect nearly at right angles as expected, even for a coarse polyhedral mesh. The compliance of the
final topology is 0.5850.

5.3. Hollow cylinder under torsional load

We now look at the torsionally loaded hollow cylinder. The design domain is in the shape of a hollow cylinder of
thickness 0.1 units, height 4 units and outer diameter of 1 unit (c.f. Fig. 10). Four equidistant nodes along the bottom
face are fixed and four tangential point loads are applied to corresponding nodes on the top face, effectively acting
as a torsional load. A filter radius of 3% of the height of the cylinder and a volume fraction of 0.3 are prescribed.
The problem is solved on three sets of meshes — two tetrahedral meshes of 9977 elements (3349 nodes); 451,584
elements (85,320 nodes) and a polyhedral mesh of 10,000 elements (79,925 nodes).

Using the polyhedral mesh, our optimization algorithm yields an elegant spiraling structure with nearly
orthogonally oriented crossing members (Fig. 10(c)). For a tetrahedral mesh, with a similar number of elements as the
polyhedral mesh (9977), we still obtain a similar spiraling structure (c.f. Fig. 10(b)), but the members orientation is
affected by the mesh geometry and the intersecting members are not fully orthogonal. This might be because although
the tetrahedral mesh has similar number of elements as polyhedral mesh, the degrees of freedom in tetrahedral mesh
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Fig. 10. Hollow cylinder under torsional load. (a) Problem description. Converged topologies for (b) Linear tetrahedral mesh of 9977 elements,
3349 nodes (J = 1.1397); (c) Polyhedral mesh of 10,000 elements, 79,925 nodes. On average, polyhedral elements have, µ = 22.57, vertices with
standard derivation of, σ = 2.88, (J = 1.6005); (d) Linear tetrahedral mesh of 451,584 elements, 85,320 nodes (J = 1.2064).

is far less than the polyhedral mesh. So we solved the hollow cylinder problem on a fine tetrahedral mesh, such that
the number of nodes in the mesh are comparable to that of the polyhedral mesh. Note that, in the fine tetrahedral
mesh, the number of elements has risen to 451,584. Although the fine tetrahedral mesh (Fig. 10(d)) achieves the
desired member orthogonality in the optimization result, the fine mesh considerably increases the computational cost
associated with operations, such as creation and storage of the filter matrix, compared to the coarse tetrahedral and
polyhedral mesh. If other length scale control approaches are adopted, for example enforcing perimeter constraint,
in place of filters, the computational cost associated with fine tetrahedral meshes can be considerably reduced. But
the downside to this approach on tetrahedral meshes is that single node connections may arise in the designs. In
terms of the cost associated with solving the governing elasticity problem, polyhedral meshes are marginally more
expensive than tetrahedral meshes of comparable total degrees of freedom. This is due to that fact that polyhedrons
on an average have higher number of vertices (approximately 23 for our meshes) than tetrahedrons. Finally, note that
the lower compliance for the optimization result on a coarse tetrahedral mesh (Fig. 10(b)) can be attributed to the
fact that tetrahedral meshes experience artificial stiffness due to shear locking phenomenon, which reduces with mesh
refinement.

We would like to point out that the element stiffness matrix obtained using the linear tetrahedral finite element
approach is identical to the one obtained using the current approach. The reason being that, in the present method, for
elements in the shape of a tetrahedron, the contribution of the stability term is zero, because the finite dimensional
space of smooth functions on element, W , is identical to the space of linear deformations, P . So, the only contribution
to the element stiffness matrix comes from the consistency term which is the same as the one obtained from finite
element analysis. Thus, the final topologies obtained from the current approach and the linear tetrahedral finite
element approach should be identical, along with the convergence history. Our results are in agreement with the
above statement.
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Fig. 11. Hook under line load. (a) Problem description. All the nodes along the top half of the upper cylindrical hole are fixed and line load is
applied along the circular arc in the negative x(3)-direction, as indicated in the figure. The domain is discretized using 10,000 polyhedral elements
containing 67,893 nodes. The average number of vertices per polyhedron is, µ = 23.97, with standard deviation, σ = 4.19. (b) Converged topology
(J = 7.0484).

a b

Fig. 12. Study of the influence of filters on polyhedral topology optimization for hook problem of Fig. 11. (a) With filter (front view of Fig. 11(b)).
(b) Without filter.

5.4. Hook domain under line load

For the final compliance minimization problem, we investigate the hook domain subjected to a uniformly
distributed line load along the negative x(3)-direction (Fig. 11(a)). A volume fraction of 0.1 is prescribed and a linear
filter with radius equal to 2% of the maximum domain dimension is used. Using symmetry, we optimize only half the
hook domain. The polyhedral mesh contains 10,000 elements (67,893 nodes). The converged topology, Fig. 11(b),
has a compliance of 7.0484 and resembles the structure of a fan. The two dimensional version of the problem [45] has
similar member orientations as our current three-dimensional result.

Next, we study the effect of filters on the optimization results for polyhedral meshes. Keeping all the parameters
the same as before, we solve the hook problem without using any filter. As expected, without any length-scale control,
more structural members, including some thin ones, appear in the solution (Fig. 12(b)). It is interesting to note that
even without filtering no single node connections were observed in the design. Even though this is a favorable feature
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Fig. 13. Displacement inverter.

Fig. 14. Converged topology for the displacement inverter problem. Due to symmetry, only a quarter of the domain is optimized and is discretized
using 10,000 polyhedral elements containing 58,785 nodes. The average number of vertices per polyhedron is, µ = 22.98, with standard deviation
of, σ = 3.75.

to have, from a practical point of view one needs to incorporate approaches to restrict the variation of the continuous
density function such as perimeter constraint [46], gradient/slope constrained methods [47] to avoid thin members.

5.5. Displacement inverter

Apart from compliance minimization, we also investigate compliant mechanism problems [48]. First, we explore
the displacement inverter problem (Fig. 13). The domain is of dimension 1 × 1 × 1 and is fixed at the bottom four
corners. The objective of optimization is to maximize the output displacement uout on a workpiece modeled by a spring
of stiffness kout. The input and output spring stiffnesses, kin and kout, are taken to be the same as the components of
the global stiffness matrix at the degrees of freedom corresponding to the input and output nodes. Taking advantage of
symmetry, only a quarter of the domain is optimized and is discretized using 10,000 polyhedral elements (58,785
nodes). A volume fraction of 0.05 is prescribed. Our final topology (Fig. 14) is similar to the ones available in
the literature [49]. Visually, the three-dimensional optimization result (Fig. 14) resembles to the two-dimensional
optimization result [34].
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a b

c

d

Fig. 15. Topology optimization design of gripper. A quarter of the problem is solved with a polyhedral mesh of 10,000 elements and 59,194 nodes.
The average number of vertices per polyhedron is, µ = 23.11, with standard deviation, σ = 3.85. Orange region is modeled as voids using passive
element concept. (a) Problem description. (b) Complete design. (c) Front view. (d) Quarter section view.

5.6. Gripper

A gripper, as the name suggests, is a complaint mechanism suitable for gripping objects. The input actuator,
modeled as a spring with stiffness kin , and a force fin , applies a horizontal load as indicated in Fig. 15 and the goal of
optimization is to maximize the vertical output displacement uout on a workpiece modeled by a spring of stiffness kout.
The problem dimensions and boundary conditions are indicated in Fig. 15. Nodes on the top and bottom section on
the right face, indicated by gray color, are fixed. Using the passive element concept the orange box is modeled as void.
Before each optimization cycle, the elements lying inside the orange box are identified and are assigned the minimum
density corresponding to voids. The spring stiffnesses, kin and kout are taken to be the same as the components of
the global stiffness matrix at the degrees of freedom corresponding to the input and output nodes. Due to symmetry,
only a quarter of the domain is optimized and is discretized using 10,000 polyhedral elements (58,785 nodes) with
a prescribed volume fraction of 0.10. The converged topology (Fig. 15) for three-dimensional optimization is a clear
extension of the two-dimensional results available in reference [34]. The combination of gripping jaws and hinge
mimicking narrow necks, along the middle of the design, resemble a pair of scissors. The convergence history for the
gripper problem, shown in Fig. 16, indicates stable convergence.

6. Concluding remarks

This work explores unstructured polyhedral meshes for three-dimensional topology optimization. The governing
elasticity problem in the optimization framework is solved using the Virtual Element Method. VEM addresses
some of the challenges facing finite element approaches, such as prohibitively expensive polyhedral shape functions
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Fig. 16. Convergence history for the gripper problem.

and their derivatives computations, accurate numerical evaluation of the weak form and sensitivity to degenerate
elements. Unlike other Galerkin approaches, VEM does not require explicit computation of the shape functions.
Rather the stiffness matrix is constructed directly using a projection map which is defined to extract the constant
strain deformation modes, thereby guaranteeing the passing of patch test and resulting in optimum convergence
under mesh refinement. Here, we investigate the topology optimization of compliance minimization and compliant
mechanism problems using centroidal Voronoi tessellation (CVT) based polyhedrons. The natural geometry of the
polyhedral elements makes them attractive for topology optimization. We are currently exploring large scale topology
optimization problems for complicated domains which may be conveniently handled using the multiresolution
implementation2 of the current approach [38,50].

Appendix A. Sensitivity analysis

The discretized version of (6) can be expressed as:

inf
ρ

J = PT U

subject to: K(ρ)U = F,


e
|e|ρe ≤ V f |Ω |

(39)

where K, U and F are the global stiffness matrix, global nodal displacement vector and global nodal force vector,
respectively. The vector P represents the global force vector F for compliance minimization problem because the
objective is to minimize external work. For displacement inverter and gripper problem, P is a vector with all zeros
except at locations corresponding to the output degree of freedom, where it is unity.

We use gradient-based optimization algorithm (OC) for solving the discrete problem (39), which requires
computation of the gradient of the objective function J . Using the adjoint method [34], the sensitivity of J with
respect to the design variable (element density, ρe), is given by:

∂ J

∂ρe
= −p(1− ϵ)ρ

p−1
e λT

e Keue. (40)

For the compliance minimization problem (3), the vector λe is the same as the element displacement vector ue. For
the displacement inverter problem (5), λe is the elemental component of λ that solves the adjoint system Kλ = P.
Also, the sensitivity of the volume constraint (shown in (39)) with respect to element density is |e|.

Appendix B. Projection method — Filtering

In topology optimization, filters are used to enforce a length-scale in the problem and to ensure mesh-
independency [51,34]. We use a linear filter which assigns a weighted average of the nearby elemental densities

2 In the multiresolution approach, the elasticity and optimization problem are solved on a coarse and fine mesh, respectively.
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to each element. Thus, the projected element density of an element, ρe, is written as:

ρe =


j∈Ne

wejρ j
j∈Ne

wej
. (41)

Here, Ne is the set of all elements whose centers lie within a distance of rmin from the center of the element e under
consideration. The linear weights wej are:

wej = max


0,
rmin − rej

rmin


(42)

where rmin and rej are the enforced minimum member size and the distance between centroids of elements e and j ,
respectively.

To compute the sensitivity of the objective function J with respect to the independent design variables ρ j , we use
the chain rule:

∂ J

∂ρ j
=

∂ J

∂ρe

∂ρe

∂ρ j
, where

∂ρe

∂ρ j
=

wej
j∈Ne

wej
. (43)

Other filters, such as sensitivity filters may also be used.
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