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There are four primary factors which influence the macroscopic constitutive response of particle
reinforced composites: component properties, component concentrations, interphases, and interfacial
debonding. Interphases are often a byproduct of surface treatments applied to the particles to control
agglomeration. Alternatively, in polymer based materials such as carbon-black reinforced rubber, an
interphase or ‘‘bound rubber’’ phase often occurs at the particle–matrix interface. This interphasial region
has been known to exist for many decades, but is often omitted in computational investigations of such
composites. In this paper, we present an investigation into the influence of interphases on the large
deformation response of particle reinforced composites. In addition, since particles tend to debond
from the matrix at large deformations, we investigate the influence of interfacial debonding on the
macroscopic constitutive response. The investigation considers two different microstructures; both a
simplified single particle model, and a more complex polydisperse representative unit cell. Cohesive
elements, which follow the Park–Paulino–Roesler traction–separation relation, are inserted between
each particle and its corresponding interphase to account for debonding. To account for friction, we
present a new, coupled cohesive–friction model and detail its formulation and implementation. For
each microstructure, we discuss the influence of the interphase thickness and stiffness on the global
constitutive response in both uniaxial tension and simple shear. To validate the computational
framework, comparisons are made with experimental results available in the literature.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The macroscopic response of particle reinforced composites is
influenced by not only the component properties and component
concentrations, but also the interfacial interaction between the
particles and the matrix. In particular, the inclusion of stiff parti-
cles to a soft matrix can lead to an increase in composite stiffness,
strength, impact resistance, and abrasion resistance [1,2].
Additionally, at large deformations particles tend to debond from
the matrix, influencing both the ductility and fracture toughness
of the composite [3–5]. To enhance or control these properties,
the particles themselves can be tailored through surface treat-
ments [6–8]. Often, surface treatments are applied to the particles
of a composite material to meet various desired specifications. For
instance, these treatments are often employed to reduce residual
tensile stresses between the particles and the matrix or to reduce
particle agglomeration [7,9]. On the other hand, as a result of
chemical interactions, an interphase may form between the parti-
cle and the matrix during manufacturing and processing. Even
though these interphases are typically microscopic, they can
greatly influence the macroscopic behavior of composite materials.
The extent and composition of this interphase depends on a num-
ber of factors, including the surface area and surface treatment of
the particles, as well as the level of mixing and age of the compos-
ite [1].

Recent experiments by Qu et al. [10,11], used atomic force
microscopy to conduct in situ imaging of particle–elastomer inter-
actions. They demonstrated that the macroscopic properties (in
particular, the stiffness and scratch resistance) of the composite
can be tailored, by selectively designing the surface chemistry of
the particles. Ramier et al. [6,8] investigated the influence of differ-
ent surface treatments on the large deformation response of silica
particle reinforced styrene butadiene rubber. They conducted a
series of experiments on consistently prepared specimens, but
applied a different surface treatment to the particles in each
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sample. Their investigation focused on the influence of the
cross-linking that occurs in the matrix as a result of the different
surface treatments, and concluded that the applied surface treat-
ment on the particles is often the primary factor controlling the
macroscopic constitutive response of the composite. Moreover, at
large deformations, they observed the particles debonding from
the matrix. Debonding is characterized by a localized region of fail-
ure (or interfacial debonding) that accumulates around the particle
inclusions. There have been numerous experimental investigations
demonstrating the interfacial debonding behavior of particles
under large deformations; some examples of which are illustrated
in Fig. 1.

In contrast to the numerous experimental investigations, there
have been few theoretical investigations which consider the effect
of either interphases or interfacial debonding in the finite deforma-
tion regime. One of the few formulations for debonding under
finite strains was presented by Brassart et al. [16]. They extend
the Mori–Tanaka homogenization scheme [17] to account for the
debonding of composite materials under finite strains; however,
they only consider hydrostatic loading in three-dimensions and
do not account for the presence of interphases. More recently,
Goudarzi et al. [18] presented a theoretical framework capable of
describing the influence of interphases on the macroscopic consti-
tutive response of particle reinforced elastomers. They compare
their formulation to both numerical and experimental results [6],
and found excellent correlation with both. However, their investi-
gation focuses on the influence of perfectly bonded interphases,
excluding the consideration of interfacial debonding. To the best
of the author’s knowledge, there has been no theoretical formula-
tion presented which accounts for both interphases and interfacial
debonding under finite deformations.

There are four primary factors which influence the macroscopic
constitutive response of particle reinforced composites: compo-
nent properties, component concentrations, interphases, and inter-
facial debonding. This paper presents a computational framework
capable of capturing the influence of interphases and interfacial
debonding on the finite deformation response of particle rein-
forced composites. The influence of the thickness and modulus of
the interphase is considered, and debonding is accounted for
Fig. 1. Experimentally observed debonding behavior of particle reinforced composites u
resin (extracted from Wetzel et al. [12]). (b) Multiple locations of silane treated alum
surrounded by the void created due to deformation of the polypropylene/glass compos
treated using heptadecafluorodecyl trichlorosilane. (d) Glass beads, treated with ethylsi
void creation around glass particles in a high-density polyethylene matrix (extracted fro
through the use of cohesive elements. The remainder of the paper
is organized as follows. In Section 2, we discuss some related
numerical investigations using the cohesive element method for
interfacial debonding. Section 3 discusses the computational
framework for this investigation. Section 4 presents a new, coupled
cohesive–friction relation and details its formulation and imple-
mentation. Both single particle and multi-particle periodic
microstructures are considered in this paper. The results for the
single particle microstructure are presented in Section 5.1, and
those for the multi-particle microstructure are presented in
Section 5.2. We validate the computational framework by chal-
lenging it with experimental data in Section 6. Finally, some con-
clusions, and potential extensions are discussed in Section 7.

2. Related work

The numerical investigation of interfacial debonding using the
cohesive element method was pioneered by Needleman in 1987
[19]. In his investigation, intrinsic cohesive elements were used
to capture the full range of particle debonding behavior, from void
nucleation to full decohesion. Intrinsic cohesive elements are
inserted along the boundary of a particle, with zero initial thick-
ness, and transmit normal and shear tractions to the surrounding
bulk elements. The magnitude of the tractions depends on the sep-
aration of the elements and the selected traction–separation rela-
tion. There have been many traction–separation relations which
have seen widespread use; including linear, bilinear, trapezoidal,
polynomial, and exponential softening relations. A discussion of
many of the prevalent traction–separation relations may be found
in the review paper by Park and Paulino [20].

To date, most investigations of interfacial debonding have
been conducted using two-dimensional and simplified three-
dimensional models. In two dimensions, the plain strain assump-
tion is often employed to model fiber inclusions. Zhong and
Knauss [21,22] used linear softening cohesive elements to investi-
gate debonding in fiber-reinforced composites with structured
microstructures. They focused on the tensile response of the
composites, and studied the influence of various factors; including
particle size, shape and distribution. Moraleda et al. [23] used a
nder large deformations. (a) Debonding of aluminum oxide particles from an epoxy
ina particles debonding from an epoxy matrix (mse.rpi.edu). (c) A glass particle
ite (extracted from Thio et al. [13]). The glass particles in this investigation were

lane, debonding from natural rubber (extracted from Gent and Park [14]). (e) Large
m Zhuk et al. [15]).
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linear softening cohesive relation to study the influence of interfa-
cial debonding on the tensile response of fiber-reinforced elas-
tomers. They considered both a single particle microstructure
and a microstructure with a random distribution of monodisperse
particles. Inglis et al. [24] used two-dimensional models to investi-
gate debonding in polydisperse microstructures containing a high
concentration of particulates. Brassart et al. [16] used the same
numerical framework as Inglis et al. to capture the debonding of
rigid inclusions under axisymmetric tension. They considered peri-
odic unit cells with a random distribution of up to ten monodis-
perse particles.

To accurately capture the effect of spherical particle inclusions,
fully three-dimensional modeling is necessary. Matouš and
Geubelle [25,26] used an effective displacement, exponential soft-
ening, cohesive relation to study the debonding of spherical parti-
cles. In their fully three-dimensional investigation, they considered
both a single particle microstructure and a four-particle
microstructure. In their investigation of the four-particle
microstructure, they used a slight perturbation in the position of
the particles. Through these simplified microstructures they were
able to demonstrate the significant influence of interfacial debond-
ing on the macroscopic constitutive response of these composites.

One common feature among all of the investigations mentioned
above is that none of them consider the influence of interphases.
While it has been shown experimentally that interphases signifi-
cantly alter the macroscopic response of particle reinforced com-
posites, their inclusion in computational models is widely
omitted. This publication aims to take a first look at the combina-
tion of interphases and interfacial debonding in particle reinforced
composites undergoing finite deformations, and to motivate the
inclusion of interphases in future investigations.
3. Computational framework

In this paper, we develop a fully three-dimensional computa-
tional framework capable of capturing the influence of interphases
and interfacial debonding on the finite deformation response of
particle reinforced composites. We consider both a single particle
microstructure, and a multi-particle microstructure; and, for the
most generality, in the multi-particle microstructure we consider
a random distribution of polydisperse particles. The single particle
microstructure is presented to illustrate the local behavior during
progressive debonding. While this model is simplified, it can pro-
vide insight into the important characteristics, and provide guid-
ance into tailoring the design of particle-reinforced composite
materials. The multi-particle microstructure, however, is more rep-
resentative of a real material.

3.1. Single particle microstructure

The single particle model replicates the case of a perfectly
repeating, structured microstructure. The model considers a single
particle placed at the centroid of a cube. The particle is assumed to
be numerically rigid [27], and we assume that a compliant inter-
phase forms around the surface of the particle. The particle is
assumed to be spherical, and the interphase thickness is assumed
to be uniform, as illustrated in Fig. 2(a). The geometry is discretized
with quadratic tetrahedral elements using the automatic mesh
generator Netgen [28]. A sample mesh for the particle and inter-
phase is illustrated in Fig. 2(b).

3.2. Multi-particle microstructure

In the multi-particle model, we consider a random distribution
of particles. These models, often referred to as representative unit
cells (RUCs), are commonly used to represent realistic microstruc-
tures [29,30]. In our investigation, the RUC is selected to be a cube
of unit side L = 1. For the most generality, we consider the particles
to be polydisperse, represented through three families of particle
sizes [27]. The particle locations are generated using a constrained
adsorption algorithm [31,27,18]. The procedure we use to generate
the polydisperse microstructures is as follows:

� Families of particles with three different radii, rðiÞp ði ¼ 1;2;3Þ,
are selected with concentrations cðiÞ, surrounded by interphases
with thickness tðiÞ, such that:
rð1Þp ; rð2Þp ; rð3Þp
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where Np denotes the number of particles with the largest radius
and thickest interphase, and c is a constant multiplier.
� The particles are added sequentially, from the family with the

largest particle size to that with the smallest particle size. To
ensure an adequate spatial discretization, each placement of a
particle is constrained such that the following conditions are
met:
– The center-to-center distance between a newly placed parti-

cle and any previously accepted one must exceed the mini-

mum value s1 ¼ 2 1þ d1ð Þ rðiÞp þ tðiÞ
� 	

, where the offset

distance is fixed as d1 P 0:05. In compact notation, and to
ensure the generation of a periodic microstructure (dis-
cussed further in Section 3.3), this constraint takes the form:
X j � Xk � h



 


P s1; ð4Þ

where j; k ¼ 1;2; . . . N; X j ðXkÞ denotes the location of the
centroid of particle j (k), N is the total number of particles
in the microstructure, and h is a vector composed of 0; L,
and �L entries for each Cartesian component.

– The distance between the boundary of the RUC and the sur-
face of any interphase should exceed a minimum value

s2 ¼ d2 rðiÞp þ tðiÞ
� 	

where the offset distance is fixed as

d2 ¼ 0:05. In compact notation, this constraint is represented
by the inequalities:

X j
l � rðiÞp � tðiÞ

��� ��� P s2; X j
l þ rðiÞp þ tðiÞ � L

��� ���P s2; l ¼ 1;2;3ð Þ:

ð5Þ

In this investigation, we set Np ¼ 10 such that the RUC contains
a total of 80 particles [18]. Figs. 3 and 4 illustrate sample RUCs,
generated using the above procedure, for particle concentrations
of c ¼ 0:1 and c ¼ 0:2, respectively.

A mesh refinement study was conducted using randomly gener-
ated meshes with approximately 100,000, 200,000 and 300,000
quadratic tetrahedral elements, as illustrated in Fig. 5. Meshes with
approximately 200,000 elements displayed a sufficient level of
accuracy, and is the target mesh size for the results presented in
the remainder of the paper.



Fig. 2. The single particle model: (a) geometry and (b) sample mesh used for the particle and interphase. Note that the mesh for the bulk matrix is excluded from the figure
for illustrative purposes only. Additionally, an octant of the geometry is removed to illustrate the particle and interphase.

Fig. 3. Representative polydisperse microstructures, containing a random distribution of 80 particles of three different radii. The particles constitute a concentration of
c ¼ 0:1 and are surrounded by (a) no interphase, (b) interphases with a thickness of t ¼ 0:1rðiÞp , and (c) interphases with a thickness of t ¼ 0:2rðiÞp .

Fig. 4. Representative polydisperse microstructures, containing a random distribution of 80 particles of three different radii. The particles constitute a concentration of
c ¼ 0:2 and are surrounded by (a) no interphase, (b) interphases with a thickness of t ¼ 0:1rðiÞp , and (c) interphases with a thickness of t ¼ 0:2rðiÞp .
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3.3. Periodic boundary conditions

To capture the behavior of a truly periodic microstructure, the
model considers both a periodic geometry (see Fig. 6) and periodic
boundary conditions. The periodic boundary conditions are
expressed as:

uk 0;X2;X3ð Þ � uk L;X2;X3ð Þ ¼ Fk1 � dk1
� 


L;

uk X1;0;X3ð Þ � uk X1; L;X3ð Þ ¼ Fk2 � dk2
� 


L;

uk X1;X2;0ð Þ � uk X1;X2; Lð Þ ¼ Fk3 � dk3
� 


L;

ð6Þ
where X1; X2 and X3 correspond to a Cartesian frame of reference,
where the origin is placed at a corner of the cell and the axes are
aligned with the edges of the cell. Moreover, k is a constant (=1,
2, 3), dki denotes the Kronecker delta, and Fki are the components
of the prescribed average deformation gradient. To impose these
periodic boundary conditions, the surface mesh on opposite faces
of the cell need to be mirrors of one another. The pairing of the
nodes on opposite faces is conducted automatically by Netgen
[28], and incorporated into the Abaqus analysis using multi-point
constraints [32].



(a) (b) (c)

Y
X

Z

Fig. 5. Three representative meshes in the undeformed configuration for a distribution of polydisperse particles with a concentration of c ¼ 0:2, and an interphase thickness
of t ¼ 0:2rðiÞp : (a) a coarse mesh with approximately 100,000 elements, (b) a fine mesh with approximately 200,000 elements, and (c) a very fine mesh with approximately
300,000 elements.

Fig. 6. Depiction of a periodic geometry. Periodicity ensures that the particles are placed in such a manner that if the cell were to be replicated and placed adjacent, in any of
the three (±) Cartesian directions, it would result in a continuous microstructure.
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3.4. Assessment of isotropy

In all models containing a finite number of randomly placed
particles, the isotropy of the microstructure is only approximate
[27]. There are multiple approaches for determining whether the
random placement of particles results in an approximately isotro-
pic microstructure. Many authors take a geometric approach, com-
puting the centroid or moment of inertia of the particles [31,33,34].
Alternatively, one could take a constitutive approach, by examin-
ing the co-axiality between the stress and strain tensors [27,18].
In an isotropic material, the average Cauchy stress tensor,
r ¼ SFT and average left Green-Cauchy strain tensor B ¼ FFT are
co-axial, and the angle between their principal axes (the angle of
co-axiality) is zero. Since the constitutive approach is sufficient,
it is the method we choose to assess the isotropy of our microstruc-
tures. Each microstructure is tested, and those which result in an
angle of co-axiality greater than 0.05 radians are discarded
[27,18]. We use this approach for all loading conditions, particle
concentrations and interphase thicknesses considered in this
investigation.
4. Accounting for interfacial debonding

To account for interfacial debonding, cohesive elements are
inserted between each particle and its surrounding interphase, as
illustrated in Fig. 7. The cohesive elements initially have zero thick-
ness, and, as the elements separate, they transfer normal and shear
tractions to the surrounding bulk elements. There have been
numerous traction–separation relations proposed in the literature,
see for example the relations proposed by Xu and Needleman [35]
and Ortiz and Pandolfi [36]. The traction–separation relation used
in this investigation follows the Park–Paulino–Roesler (PPR) cohe-
sive model [37]. The PPR model is potential-based, is consistent,
contains physically based input parameters, and satisfies all
boundary conditions associated with fracture [37]. Typically,
potential-based models do not account for either unload-
ing/reloading, contact, or frictional relations within the model.
Here, we will briefly detail the PPR softening model and the
unloading/reloading relation chosen in this work. In addition, we
will present a new frictional relation which is compatible with,
and coupled to, the PPR formulation.

4.1. Cohesive traction–separation relation

The cohesive elements are inserted into the model prior to the
start of the simulation, thus, the traction–separation relation fol-
lows the intrinsic PPR cohesive model. The details of PPR model
have been extensively documented, so only the pertinent details
are included here; extended details may be found in the principal
publication [37]. The intrinsic model is implemented into the com-
mercial software Abaqus through a user supplied subroutine
[32,38]. The softening relations of the PPR model are derived from
the following potential function:

WðDn;DtÞ ¼ minð/n;/tÞ

þ Cn 1� Dn

dn

� �a m
a
þ Dn

dn

� �m

þ /n � /th i
� �

� Ct 1� Dtj j
dt

� �b n
b
þ Dtj j

dt

� �n

þ /t � /nh i
" #

; ð7Þ



Fig. 7. Cohesive elements with zero initial thickness are inserted between each particle and its corresponding interphase.
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where Dn and Dt are the normal and tangential crack opening
widths, respectively. Moreover, /n and /t correspond to the normal
and tangential fracture energies. The parameters a and b control the
shape of the softening relation. The softening relation is approxi-
mately linear if the shape parameters are equal to 2. If they are less
than 2, or greater than 2, the shape of the softening relation will be
concave or convex, respectively. The potential function is defined
over a domain of dependence; which is bounded by the normal final
crack opening (dn) and the tangential final crack opening (dt):

dn ¼
/n

rmax
akn 1� knð Þa�1 a

m
þ 1

� 	 a
m

kn þ 1
� 	m�1

;

dt ¼
/t

smax
bkt 1� ktð Þb�1 b

n
þ 1

� �
b
n

kt þ 1
� �n�1

: ð8Þ

where rmax and smax correspond to the normal and tangential cohe-
sive strengths, respectively.

The normal and tangential cohesive tractions are computed by
taking the derivative of the potential with respect to the normal
and tangential crack opening widths:

TnðDn;DtÞ¼
@W
@Dn

¼Cn
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m 1�Dn
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þDn
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The energy constants Cn and Ct are related to the normal and tan-
gential fracture energies. When the normal and tangential fracture
energies are different ð/n – /tÞ, the energy constants become:

Cn ¼ �/nð Þh/n�/ti= /n�/tð Þ a
m

� 	m

; Ct ¼ �/tð Þh/t�/ni= /t�/nð Þ b
n

� �n

:

ð11Þ

When the normal and tangential fracture energies are equal
ð/n ¼ /tÞ, the energy constants simplify to:

Cn ¼ �/
a
m

� 	m

; Ct ¼
b
n

� �n

; ð12Þ
where the non-dimensional exponents, m and n, are evaluated from
the shape parameters ða;bÞ and initial slope indicators ðkn; ktÞ:

m ¼ a a� 1ð Þk2
n

1� ak2
n

� 
 ; n ¼ b b� 1ð Þk2
t

1� bk2
t

� 
 : ð13Þ

Sample traction–separation relations are illustrated in Fig. 8.

4.2. Unloading/reloading relation

The unloading/reloading relation used in this model is uncou-
pled, in the sense that unloading in the normal direction is viewed
as independent of that in the tangential direction. The unloading
relation is activated when the normal or tangential separation is
past the peak cohesive strength of the element, and effects both
the traction vector and the tangent matrix. The unloading/reload-
ing relation in the model is linear to the origin [39,40], as illus-
trated in Fig. 9. The details of the implementation are not listed
here, however, they are published elsewhere [38].

4.3. Frictional relation

When a particle is in contact with its surrounding interphase,
compressive and frictional forces (Tf ) are generated. Since the
potential-based cohesive formulation does not explicitly account
for a contact relation, we have chosen to use a simplified penalty
approach to contact. As an element is distorted into an adjacent
element the resisting force increases linearly in accordance with
a corresponding stiffness. The modulus of this stiffness is chosen
to correspond to a multiple of the slope of the cohesive hardening
curve as it approaches zero opening displacement. Alternatively,
other contact formulations could be used, such as the ones found
in references [41,42].

There have been multiple techniques proposed for coupling a
friction relation to a cohesive model. One of the first approaches
can be attributed to Tvergaard [43]. In this approach, the onset of
friction is assumed to occur only after the cohesive model has com-
pletely softened. Later authors revised this assumption, setting the
onset of friction to occur at the onset of irreversible damage
[42,44–46]. The main feature of this revised approach is that no
frictional energy is dissipated prior to the onset of decohesion.
Here, we outline a new mixed-mode frictional relation that, when
coupled with the PPR cohesive model, presents a smooth transition
from a cohesive zone to a pure frictional contact zone. In particular,
the coupled frictional force is computed as:

Tf ¼ lf j Dtð Þ Tnj j when Tn < 0 and Dt > ktdt; ð14Þ

where lf is the coefficient of friction, and j Dtð Þ may be thought of
as a damage-type parameter, varying monotonically between 0 and
1 (when Dt > ktdt). The relation chosen for j is expressed as:
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Fig. 8. Depiction of the traction–separation relation for the PPR model in the (a) normal direction and (b) tangential direction. Cohesive parameters:
/n ¼ /t ¼ 1:0 N=m; rmax ¼ 1:0 MPa; smax ¼ 0:5 MPa; a ¼ 3; b ¼ 2; kn ¼ kt ¼ 0:2.
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Fig. 9. Depiction of the uncoupled linear unloading/reloading relations for loading in the (a) normal direction and (b) tangential direction.
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j Dtð Þ ¼ 1� Tt 0;Dtð Þ
D0Dt

� �s

; ð15Þ

where s is an input parameter which controls the rate of transition
between cohesive and frictional forces. The influence of s on j is
illustrated in Fig. 10(a). Moreover, Tt 0;Dtð Þ is the tangential cohe-
sive traction computed at zero normal opening displacement, and
D0 is the stiffness at the onset of damage (see Fig. 10(b)) calculated
as:

D0 ¼
Ct

dt
n 1� ktð Þb n

b
þ kt

� �n�1

� b 1� ktð Þb�1 n
b
þ kt

� �n
" #

� Cn
m
a

� 	m
þ /n � /th i

� �
1

ktdt
; ð16Þ

where the input parameters Ct; Cn; dt; dn; n; m; a; b, and kt are
the same as those in the PPR cohesive model.
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Fig. 10. (a) Influence of the value of s on the damage variable, j Dtð Þ, as per Eq. (15).
energies at a given state are depicted: dark gray is the energy dissipated during the pro
dissipated by friction.
The frictional force vector is coupled to the cohesive force vec-
tor through the following relation:

T ¼

Tn

Tt
D2
Dt
þ Tf

D2j j
Dt

� 	
_D2
_D2j j

Tt
D3
Dt
þ Tf

D3j j
Dt

� 	
_D3
_D3j j

8>>><
>>>:
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>>>;
; ð17Þ

where D2 and D3 correspond to crack opening widths in the tangen-
tial plane of fracture, and the ð _ Þ operator represents the change in
the crack opening width. The tangential crack opening width, Dt , is

coupled through the relation Dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

2 þ D2
3

q
. The material tangent

matrix for this constitutive model is included in Appendix A. A sam-
ple cohesive–friction relation is plotted versus the coupled tangen-
tial crack opening width in Fig. 10(b). From the figure it is clear that
frictional forces initiate at the onset of cohesive softening (irre-
versible damage), and that the transition from softening behavior
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to frictional behavior is monotonic and smooth. To illustrate the
fully coupled, three-dimensional friction relation, the tangential
components of the force vector (Eq. (17)) are decoupled then super-
imposed in Fig. 11.

The hysteretic response of the coupled cohesive–friction rela-
tion is illustrated in Fig. 12. Initially, the loading follows the cohe-
sive relation; however, beyond the peak stress, frictional forces are
generated and energy dissipation due to friction accumulates. As
unloading occurs, the direction dependent frictional force gener-
ates a jump in the traction. When the cohesive element has fully
separated (i.e the cohesive force goes to zero), only frictional forces
are generated.
−5 0 5
x 10−3

Tangential Opening (mm)

Fig. 12. Tangential traction versus tangential opening during cyclic loading
ðDn < 0; s ¼ 3 and l ¼ 0:5Þ.
5. Results and discussion

We now apply the above computational framework to several
examples with various microstructural configurations. First, we
investigate the single particle model, then present results for full
field simulations on representative unit cells. In each configuration,
we examine the influence of interphase thickness and stiffness on
the macroscopic constitutive response in both uniaxial and shear
loading. There are various stored-energy functions available for
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Fig. 11. Visual decomposition of the three-dimensional, coupled cohesive–friction mode
(c) friction traction in the D2 direction; (d) friction traction in the D3 direction; (e) coup
traction in the D3 direction. The cohesive and friction parameters are: a ¼ b
Tn ¼ �0:4 MPa; and it is assumed that _D2 and _D3 > 0.
representing the behavior of hyperelastic materials [47], however
the most commonly applied may be the neo-Hookean model. In
this section, the matrix material is assumed to be an incompress-
ible neo-Hookean rubber, with stored-energy function:
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l: (a) cohesive traction in the D2 direction; (b) cohesive traction in the D3 direction;
led cohesive–friction traction in the D2 direction; and (f) coupled cohesive–friction
¼ 3; kn ¼ kt ¼ 0:2; /n ¼ /t ¼ 1:0 N=m; rmax ¼ smax ¼ 0:5 MPa; s ¼ 3; l ¼ 0:5, and
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W ¼ l
2

I1 � 3½ �; ð18Þ

where l is the initial shear modulus, I1 ¼ F � F is the first principal
invariant of the right Cauchy-Green tensor, and F is the deformation
gradient. The matrix is assumed to have an initial shear modulus,
lm, of 1.0 MPa, and the interphase surrounding each particle is
assumed to have a modulus, li, which is a multiple of that in the
bulk. The particles are assumed to have a modulus that is four
orders of magnitude greater than that in the matrix (lp ¼ 104lm),
to numerically approximate the case of rigid particle inclusions
[48,34]. In each case, the cohesive parameters are set as
rmax ¼ 0:5 MPa; / ¼ 1:0 N=m; a ¼ 3, and k ¼ 0:2. For contact
between the interphases and the rigid particles, the coefficient of
friction is set at lf ¼ 1:0 and the rate of transition between cohesive
and friction forces is set at s ¼ 3, in Eq. (15). The macroscopic strain
is defined as � ¼ h=H � 1, where h is the deformed length in the
direction of loading, and H is the undeformed length of the edge
of the cell. The macroscopic stress corresponds to the first Piola–
Kirchoff stress, measured as the force calculated in the deformed
configuration applied over the undeformed surface of the model.

5.1. Single particle results

First, we consider the single particle model, and investigate the
influence of the interphase thickness and stiffness on the macro-
scopic constitutive response in both uniaxial tension and simple
shear. We consider the case of microparticle inclusions, with an
assumed particle diameter of 10 lm, and size the model based
on the particle diameter and volume fraction. Thus, the cell dimen-
sions for a particle concentration of c ¼ 0:1 and c ¼ 0:2 are
17:4� 17:4� 17:4 lm and 13:8� 13:8� 13:8 lm, respectively.
The objective of this investigation is to demonstrate the ability of
the computational framework to capture the complex decohesion
process along the particle-interphase interface.

5.1.1. Uniaxial tension
In uniaxial tension, progressive debonding occurs. Decohesion

initiates at the poles of the particle, in the direction of loading,
and propagates towards the equator. Upon decohesion, compres-
sive regions are formed in the plane perpendicular to the axis of
loading; due to the volume preserving nature of the matrix mate-
rial. The void and compressive regions can be seen in the contour
plots of principal stress, as illustrated in the deformed configura-
tion in Fig. 13. In the matrix, a band of stress is concentrated at
the location of the particle. The stress distribution in the interphase
is illustrated in Fig. 13(b). The shape of the interphase coincides
with the shape of the void. Contact between the interphase and
the particle can be seen by the outward bulge in the deformed
shape of the interphase. At the poles of the interphase, zero stress
is observed, indicating a complete loss of load bearing capacity, or
complete debonding of the particle. At the equator of the inter-
phase, high contact stresses are distributed through a thick band
in the interphase. The resulting stress distribution in the particle
is illustrated in Fig. 13(c). As expected, the stress in the particle
is concentrated in the band that remains in contact with the inter-
phase, and the particle carries zero stress in the fully debonded
regions.

The macroscopic constitutive response in uniaxial tension is
plotted in Fig. 14. We illustrate cases for particle concentrations
of c ¼ 0:1 and c ¼ 0:2, and interphase thickness to particle radius
ratios of t=rp ¼ 0:1 and t=rp ¼ 0:2. The thicker and stiffer the inter-
phase, the greater the influence on the constitutive response. For
the case with a small particle concentration (c ¼ 0:1) and inter-
phase thickness (t=rp ¼ 0:1), the influence is the smallest, but is
still significant. For example, when we consider the case with an
interphase stiffness of li ¼ 10lm ¼ 10 MPa (a similar modulus to
that observed experimentally [10]), at a strain of 0.4 the global
response is approximately 25% greater than in the case when no
interphase is considered, as illustrated in Fig. 14(a). For the larger
particle concentration, c ¼ 0:2, the global response is approxi-
mately 115% greater than that without considering interphases,
as illustrated in Fig. 14(c).

5.1.2. Simple shear
The second loading condition we consider is simple shear. In

this case, we observe a higher area of contact between the particle
and the surrounding interphase in the deformed configuration.
Thus, we expect the frictional forces in this scenario to be more sig-
nificant; we will discuss and quantify this further in Section 5.2.1.
The contour plots of principal stress for the matrix, interphase and
particle are illustrated in Fig. 15. In the direction perpendicular to
the plane of shear, the stress in the interphase is lower than that in
the plane of shear. Additionally, the void region is concentrated
into a smaller zone than in the uniaxial tension case, as demon-
strated by the deformed shape of the interphase in Fig. 15(b).
Because of the small void region, there remains a significant sur-
face area of contact between the particle and the interphase, as
demonstrated by the distribution of stress in the particle in
Fig. 15(c).

The macroscopic constitutive response in simple shear is illus-
trated in Fig. 16. Similar to the case in uniaxial tension, we illus-
trate cases for particle concentrations of c ¼ 0:1 and c ¼ 0:2, and
interphase thickness to particle radius ratios of t=rp ¼ 0:1 and
t=rp ¼ 0:2. In simple shear, the influence of the interphase is
noticeably less than in the case of uniaxial tension; however, the
interphase continues to significantly alter the macroscopic consti-
tutive response. For example, when we consider the case with a
small particle concentration in Fig. 16(a), and an interphase stiff-
ness of li ¼ 10lm, at a strain of 0.4 the global response is approx-
imately 18% greater than in the case when no interphase is
considered. The influence of the interphase is magnified as the par-
ticle concentration, and thus the effective concentration of the
interphase, increases, as illustrated in Fig. 16(b) and (c).

5.2. Full representative unit cell results

Here we consider the case of more realistic microstructures,
based on the full field simulations of polydisperse representative
unit cells. The particle diameter is assumed to be 10 lm for the lar-
gest family of particles, and the RUCs are sized based on the parti-
cle diameter and concentration. Thus, the cell dimensions for a
particle concentration of c ¼ 0:1 and c ¼ 0:2 are
47:1� 47:1� 47:1 lm and 37:4� 37:4� 37:4 lm, respectively.
First, we investigate the influence of frictional forces on the consti-
tutive response of various microstructures, then demonstrate the
influence of the interphase thickness and modulus in both uniaxial
tension and simple shear loading.

5.2.1. Influence of friction
To investigate the influence of frictional forces, we compare the

full field results with and without friction, as illustrated in Fig. 17.
As in the case with a single particle, we consider both uniaxial ten-
sion and simple shear loading, with various particle concentra-
tions, c, and interphase thickness to particle radius ratios, t=rp. In
the case of uniaxial tension, the frictional forces are shown to
impart little effect on the macroscopic constitutive response of
the composite, as illustrated in Fig. 17(a). The inclusion of a fric-
tional relation in the cohesive element formulation causes a slight
increase in the effective stiffness of the composite, but, for the con-
centration and number of particles we have considered, it is
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Fig. 13. Contour plot of principal stress in uniaxial tension in the (a) matrix, (b) interphase, and (c) particle, for the single particle model.
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Fig. 14. Macroscopic constitutive response in uniaxial tension for microstructures with: (a) c ¼ 0:1 and t=rp ¼ 0:1; (b) c ¼ 0:1 and t=rp ¼ 0:2; and (c) c ¼ 0:2 and t=rp ¼ 0:2.
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Fig. 15. Contour plot of principal stress in simple shear in the (a) matrix, (b) interphase, and (c) particle, for the single particle model.
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negligible. It is valuable to note that the magnitude of frictional
forces is dependent on the number of particles used to capture
the respective concentration, thus, if a greater number of particles
were used, the magnitude would increase. However, the underly-
ing cause of the low influence will not change, as will be discussed
in the next section. In the case of simple shear, the frictional forces
are shown to have a greater influence on the composite’s constitu-
tive response, as illustrated in Fig. 17(b). This is expected behavior,
since, in the previous investigation in the single particle model, we
demonstrated that a large area of contact exists between the par-
ticle and the interphase in simple shear. This large area of contact
generates large frictional forces.

We have demonstrated that the particle reinforced composite
materials under investigation in this paper demonstrate a small
influence of friction, however, there are alternate applications
wherein frictional forces are significant. In order to further verify
and validate the newly proposed coupled cohesive–friction model
presented in Section 4.3, we have included a supplementary exam-
ple in Appendix B which demonstrates a significant dependence on
friction.

5.2.2. Uniaxial tension
In uniaxial tension, a representative deformed microstructure is

illustrated in Fig. 18(a). Each particle debonds from the surround-
ing matrix, as seen both in the deformed shape and in the contour
plots in Fig. 18(b) and (c). Similar to the study on the single particle
model, each particle is compressed by the surrounding matrix in a
plane perpendicular to the direction of loading. The fully debonded
regions alleviate the stress at the poles of the particles. The width
of the small band of compression in the particles is indicative of the
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Fig. 16. Macroscopic constitutive response in simple shear for microstructures with: (a) c ¼ 0:1 and t=rp ¼ 0:2; (b) c ¼ 0:2 and t=rp ¼ 0:1; and (c) c ¼ 0:2 and t=rp ¼ 0:2.
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Fig. 17. Influence of friction on the global constitutive response of RUCs in (a) uniaxial tension, and (b) simple shear.
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Fig. 18. (a) Deformed geometry of a representative unit cell with a particle concentration of c ¼ 0:1 and an interphase to particle radius ratio of t=rp ¼ 0:2, loaded in uniaxial
tension. Contour plot of principal stress in uniaxial tension in the (b) entire model, and (c) particles.
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small area of contact wherein frictional forces can be generated,
explaining the small influence of friction on the global response
seen in Fig. 17(a).

The macroscopic constitutive response in uniaxial tension is
plotted in Fig. 19. We consider particle concentrations of c ¼ 0:1
and c ¼ 0:2, and interphase thickness to particle radius ratios of
t=rp ¼ 0:1 and t=rp ¼ 0:2, and compare them to the response when
no interphase is present. Because each microstructure is generated
randomly, the response illustrated is an average of three simula-
tions. As expected, the thicker and stiffer the interphase, the
greater the influence on the constitutive response. Additionally,
as is commonly noted in the literature [25], the large particles tend
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Fig. 19. Macroscopic constitutive response in uniaxial tension for microstructures with: (a) c ¼ 0:1 and t=rp ¼ 0:1; (b) c ¼ 0:1 and t=rp ¼ 0:2; and (c) c ¼ 0:2 and t=rp ¼ 0:2.
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to debond from the matrix prior to the smaller particles fully
debonding.

Even in the case with a small particle concentration (c ¼ 0:1)
and interphase thickness (t=rp ¼ 0:1), the interphase has a signifi-
cant influence on the global response at relatively low strains.
For example, at a strain of 0.4, microstructures with an interphase
stiffness of li ¼ 10lm produce a global response which is approx-
imately 25% greater than in the case when no interphase is consid-
ered, as illustrated in Fig. 19(a). For the larger particle
concentration, c ¼ 0:2, the global response is approximately 80%
greater than that without considering interphases, as illustrated
in Fig. 19(c).

5.2.3. Simple shear
In simple shear, a representative deformed microstructure is

illustrated in Fig. 20(a). The zone of debonding around each parti-
cle is much smaller than that in uniaxial tension. Similar to the pre-
vious example, we also illustrate the stress contours in the
particles in Fig. 20(b). As with the single particle model, the stress
in the particles remains high at large strains; which explains the
higher contribution of friction to the global response, as discussed
in Section 5.2.1.

The macroscopic constitutive response in simple shear, for var-
ious microstructural configurations, is illustrated in Fig. 21. Similar
to the study on the single particle model, in simple shear, the influ-
ence of the interphase is noticeably less than in the case of uniaxial
tension; however, the interphase continues to significantly alter
the macroscopic response. For the case with a small particle con-
centration in Fig. 21(a), and an interphase stiffness of li ¼ 10lm,
at a strain of 0.4 the global response is approximately 20% greater
Y
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Z

(a)

Fig. 20. (a) Deformed geometry of a representative unit cell with a particle concentratio
shear. (b) Contour plot of principal stress in the particles.
than in the case when no interphase is considered. For the case
with a larger particle concentration and interphase thickness in
Fig. 21(c), at a strain of 0.4, the global response is approximately
45% greater than in the case when no interphase is considered.

In summary, this series of numerical investigations clearly
demonstrates that the inclusion of physically significant, micro-
scopic interphases can dramatically alter the macroscopic consti-
tutive response of particle reinforced composites. We are also
able to demonstrate that frictional effects are negligible in tension
induced debonding. By demonstrating that the presence of inter-
phases and interfacial debonding significantly alters the macro-
scopic constitutive response of these composite materials, we
hope to motivate the inclusion of such interphases in future inves-
tigations which model such composites.
6. Experimental validation

In this section, we verify that the proposed computational
framework is capable of capturing representative experimental
results from the literature. There are few experimental investiga-
tions which report all the necessary microscale and macroscale
properties of the composite material, thus we make reasonable
assumptions, and discuss them, where necessary. The experimen-
tal results selected for this comparison were reported in a series
of papers by Yatsuyanagi et al. [9] and Suzuki et al. [7]. Their
results correspond to a well-dispersed distribution of roughly
spherical aggregates of silica particles in a styrene-butadiene rub-
ber matrix. In their investigation, they study the influence of rub-
ber/filler interaction, due to variations in coupling agents used in
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n of c ¼ 0:1 and an interphase to particle radius ratio of t=rp ¼ 0:2, loaded in simple
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Fig. 21. Macroscopic constitutive response in simple shear for microstructures with: (a) c ¼ 0:1 and t=rp ¼ 0:2; (b) c ¼ 0:2 and t=rp ¼ 0:1; and (c) c ¼ 0:2 and t=rp ¼ 0:2.
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Fig. 22. Comparison of the proposed computational framework with experimental
data.

Table 1
Summary of material properties used in the numerical comparison with experiments.
The rate of transition between cohesive and friction forces is set at s ¼ 3, in Eq. (15).

Treatment Matrix
modulus
(MPa)

Interphase
modulus
(MPa)

Fracture
energy
(N/m)

Cohesive
strength
(MPa)

Coefficient
of friction

A-50 0.54 1.62 1.0 0.5 1.0
UM-2 2.10 4.20 1.0 0.5 1.0
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the surface modification process of the silica particles. Two differ-
ent surface treatments are considered, labeled as A-50 and UM-2.

The authors used a tensile tester, at room temperature, to deter-
mine the stress–strain curves, and used transmission electron
microscopy (TEM) observations to determine the global effect of
the different surface treatments. The authors report, through the
use of swelling experiments, that the elastic properties of the rub-
ber matrix were essentially unmodified for the A-50 treatment, but
the crosslink density in the rubber increased with surface treat-
ment UM-2. However, they provide no comments on the amount
or type of bound rubber present in the composite. They concluded
that the constitutive relation of the composite is significantly influ-
enced by the interactions between the filler particles and the
matrix. In some cases, they demonstrate that the surface treatment
caused strong interfacial bonding between the inclusions and the
rubber, however, in other cases the surface treatment resulted in
weak bonding; which lead to interfacial debonding (or dewetting)
of the particles at large strains. In the following, we will only con-
sider the reported cases which involved interfacial debonding.

Additionally, the authors report the response of the unfilled
rubber. Based on fitting the response of the rubber, we find an
appropriate response of the rubber matrix, at least in uniaxial ten-
sion, follows the stored-energy function [49]:

W ¼ 31�a

2a
l Ia1 � 3a� �

: ð19Þ

with material parameters l ¼ 0:54 and a ¼ 0:2, as illustrated in
Fig. 22. As mentioned, for the surface treatment labeled as UM-2,
the authors report that the amount of sulfur used in this treatment
increased the crosslink density in the rubber. To account for this, we
assume that this increases the effective modulus of the rubber,
resulting in an increase in the shear modulus in the stored-energy
function (l ¼ 2:1). The rubber is reinforced with a particle concen-
tration of cp ¼ 0:26. Further, through a numerical investigation, we
assume an interphase-thickness-to-particle-radius ratio of
t=r ¼ 0:2. Since the authors do not report the interphase stiffness,
we select it here by fitting the numerical results to the experimental
results. As illustrated in Fig. 22, for the A-50 treatment, an inter-
phase modulus 3 times stiffer than that for the matrix,
li ¼ 3� lm ¼ 3� 0:54 MPa ¼ 1:62 MPa leads to good agreement
with the experimental results. Additionally, for the UM-2 treat-
ment, an interphase modulus 2 times stiffer than that for the
matrix, li ¼ 2� lm ¼ 2� 2:1 MPa ¼ 4:2 MPa leads to good agree-
ment with the experimental results. As seen in Fig. 22, simulations
of the same microstructures without the inclusion of interfacial
debonding significantly overestimate the macroscopic constitutive
response. The material properties used in the simulations are sum-
marized in Table 1.
In summary, the above comparisons with experiments demon-
strate that the proposed computational framework is able to pro-
vide an explanation for the varied macroscopic response of
particle reinforced composites at finite deformations.
Additionally, it confirms the significant influence of not only parti-
cle reinforcements, but also interfacial interactions on the consti-
tutive response. Thus, in order to design these composites from
the bottom up, it is not enough to only consider the influence of
the particles, but one must also consider the influence of the inter-
actions between the particles and the matrix. Finally, we note that,
due to the necessity to make assumptions on the specific con-
stituent properties not provided in the experiments, there are
other potential combinations of constituent properties which
may also be suitable at capturing the above described behavior.
For example, the properties of the matrix may change in a different
manner than we assumed, due to the use of the applied treatments,
however, this does not negate the presence of interphases. And the
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influence of the interphases compounds the influence of the
changes in the matrix.
7. Concluding remarks

In this paper, we develop a computational framework to explore
the influence of microscale features on the macroscale constitutive
response of particle reinforced composites. While it has been
shown experimentally that interphases significantly alter the
macroscopic constitutive response of these composite materials,
their inclusion in computational models of such composites is
widely omitted. Through the use of representative unit cells, we
demonstrate the influence of interphases and interfacial debonding
on the global response of particle reinforced composites. We model
interphases explicitly, and capture the interfacial debonding
behavior of the particles, at large strains, using cohesive elements.
To account for the frictional forces generated between each parti-
cle and its corresponding interphase, we developed a new, fully
three-dimensional, coupled cohesive–friction constitutive relation.
The use of this relation revealed that the consideration of friction in
uniaxial tension can often be neglected, due to the small area of
contact between the particles and the surrounding matrix.
However, this is not the case when the microstructure experiences
simple shear loading conditions; where we demonstrate that fric-
tional forces can be significant, and should not be neglected. We
validated the computational framework with experimental results
from the literature which displayed both the presence of inter-
phases and interfacial debonding. The comparison with experi-
ments indicates that the proposed computational framework is
able to provide an explanation for the varied macroscopic response
of particle reinforced composites at finite deformations. Because of
the challenges associated with experimentally obtaining the neces-
sary measurements of material properties, a computational frame-
work, such as the one presented in this paper, could prove helpful
in shedding some light on the key parameters influencing the glo-
bal response of this important class of materials.

In summary, this paper has been able to clearly demonstrate the
significance of interphases and interfacial debonding on the
macroscopic constitutive response of particle reinforced compos-
ites under large strains. However, there are many areas of this topic
which lend themselves to being explored further. For example, the
use of 80 particles to represent the polydisperse nature of the com-
posite fixes the particle surface area, and thus, the frictional area of
contact. If fewer particles or more particles were to be used to gen-
erate the same particle concentration, the surface area of the par-
ticles in contact with the matrix, and the resulting frictional forces,
would change accordingly. Additionally, in this paper, we restrict
our attention to spherical particles. The shape of the particles will
likely influence the local stress field around the inclusion, so a
potential extension of this work would be to consider alternative
particle shapes. Ultimately, the goal would be to use experimental
realizations of the microstructure to capture the precise locations
and geometries of the particles and interphases. This could be done
using the techniques of X-ray tomography or serial sectioning
[50,51]. Finally, one could consider the influence of hysteretic load-
ing on the global constitutive response.
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Appendix A. Coupled material tangent stiffness matrix with
friction

To incorporate the coupled cohesive and friction relations,
many finite element codes require the implementation of a mate-
rial tangent stiffness matrix, D:

D ¼
D11 D12 D13

D21 D22 D23

D31 D32 D33

2
64

3
75;

where the components of the stiffness matrix depend on the consti-
tutive relation. Here, we list the components for any general cou-
pled cohesive and any friction model:

D11 ¼
@Tn

@Dn
; D12 ¼

@Tn

@Dt

D2

Dt
; D13 ¼

@Tn

@Dt

D3

Dt
;

D21 ¼
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D23 ¼
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D31 ¼
@Tt

@Dn

D3

Dt
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@Dn

D3j j
Dt

_D3

_D3

��� ��� ;

D32 ¼
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D33 ¼
@Tt

@Dt
D3 þ

@Tf

@Dt
D3j j

_D3
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For the specific friction model presented in this paper:

@Tf

@Dn
¼ 1� Tt 0;Dtð Þ

D0Dt

� �s

l Tn

Tnj j
@Tn

@Dn
; and

@Tf

@Dt
¼ s 1� Tt 0;Dtð Þ

D0Dt

� �s�1

l Tnj j
Tt 0;Dtð Þ

D0D
2
t

� @Tt 0;Dtð Þ
@Dt

1
D0Dt

 !
:

The partial derivatives @Tn
@Dn

; @Tn
@Dt
; @Tt
@Dn

; and @Tt
@Dt

� 	
for the PPR cohesive

model are not listed here, but are published elsewhere [52,38].

Appendix B. Example: activation of friction in a masonry
wallette

Since the coupled cohesive–friction model presented in this
paper is new, and the particular application under investigation
in this paper shows little influence due to friction (see
Section 5.2.1), a supplementary example is selected to provide fur-
ther support to the model. This supplementary example considers
the shear loading of a masonry wallette. This example
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Fig. B.23. Model of a masonry wallette: (a) full model, based on experimental setup and (b) numerical model used in simulations.

Table B.2
Summary of cohesive properties used for the interface elements.

Fracture
energy (/t)

Cohesive
strength (s)

Softening
parameter (b)

Penalty
stiffness (kt)

Coefficient of
friction (l)

750 N/m 0.45 MPa 5 0.04 0.77
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Fig. B.24. Shear stress plotted as a function of applied displacement for the
masonry wallette example. The experimental data is extracted from Beyer et al.
[53], and the numerical results from Snozzi and Molinari [42] are included for
comparison.
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demonstrates the influence of the coupled cohesive–friction model
when a significant frictional effect is activated. The masonry wal-
lette consists of three bricks, linked with two mortar joints, as
illustrated in Fig. B.23(a). During the experimental testing [53],
the middle brick is supported at its top edge by two rigid blocks,
and a shear load is introduced through an applied displacement
on the lower edge of the outer two bricks. The vertical edges of
the wallette are loaded by two load cells which control the hori-
zontally applied pressure. The experimental investigation of this
wallette was conducted by Beyer et al. [54,53].

This problem has also been investigated numerically by Snozzi
and Molinari [42]. They modeled this problem with a dynamic frac-
ture code and adaptively inserted cohesive elements at the inter-
face. In their simulations they used material damping to reduce
the oscillations they observed in their results. Numerically, the
model uses symmetric boundary conditions and only considers
half the full model, as illustrated in Fig. B.23(b). The domain is dis-
cretized using a uniform mesh of linear brick elements of dimen-
sion 5� 5� 5 mm. The resulting discretization contains 68,400
elements and 75,579 nodes. Moreover, 3500 cohesive elements
are used to capture the failure/friction response of the interface.
The bricks have an elastic modulus of 14.0 GPa, and a Poisson’s
ratio of 0.15. The properties of the cohesive interface are listed in
Table B.2. The lower boundary of the outer brick is displaced verti-
cally, and, as in the testing machine, the specimen is loaded with
an imposed horizontal displacement with a constant normal pres-
sure level of 0.4 MPa.

To determine the influence of frictional forces on the global
response, we consider cases with and without friction included
in the model. The results from our investigation are illustrated in
Fig. B.24. The shear force is calculated as the applied force on the
lower surface of the outer brick divided by the area of the interface
between the two bricks. The experimental data from Beyer et al.
[53] is included for comparison. The numerical results including
the presence of friction demonstrate good agreement with the
response observed experimentally. Initially, the stiffness of the
composite increases in accordance with the response of the bricks.
After cohesive softening initiates, the response transitions
smoothly to a purely frictional regime; which the model is able
to accurately capture. When friction effects are not included in
the model, the shear stress follows the cohesive model and transi-
tions to zero stress at a finite displacement; which is inconsistent
with the response obtained experimentally.
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