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SUMMARY

Previous studies have shown that the commonly used quadrature schemes for polygonal and polyhedral
finite elements lead to consistency errors that persist under mesh refinement and subsequently render
the approximations non-convergent. In this work, we consider minimal perturbations to the gradient field at
the element level in order to restore polynomial consistency and recover optimal convergence rates when the
weak form integrals are evaluated using quadrature. For finite elements of arbitrary order, we state the accu-
racy requirements on the underlying volumetric and boundary quadrature rules and discuss the properties
of the resulting corrected gradient operator. We compare the proposed approach with the pseudo-derivative
method developed by Belytschko and co-workers and, for linear elliptic problems, with our previous rem-
edy that involves splitting of polynomial and non-polynomial of elemental energy bilinear form. We present
several numerical results for linear and nonlinear elliptic problems in two and three dimensions that not only
confirm the recovery of optimal convergence rates but also suggest that the global error levels are close to
those of approximations obtained from exact evaluation of the weak form integrals. Copyright © 2015 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper addresses the issue of numerical integration for polygonal and polyhedral finite elements
(see [1-5] and references therein for examples of applications of such schemes). Because of the non-
polynomial nature of underlying basis functions, the use of available quadrature rules for integration
of weak form integrals leads to errors that upset the convergence of resulting approximations. As
discussed in [6], these errors stem from a lack of polynomial consistency of the discrete system and
persist under mesh refinement. We have observed in this previous study that the patch test errors for a
Poisson boundary value problem do not vanish with finer meshes. While it is possible to use higher-
order quadrature rules to reduce this consistency error to acceptable levels, such a strategy is not
computationally viable considering the high cost of computing basis functions and their gradients
and the large number of quadrature points needed. The burden of numerical integration is more
pronounced in three dimensions and for nonlinear boundary value problems.

For linear elliptic problems, a remedy is proposed in [6] (see also [7]) that is based on a decom-
position of the energy bilinear form at the element level. This decomposition is at the heart of the
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GRADIENT CORRECTION METHOD 729

so-called virtual element method [8—10] and is enabled by the use of local projection maps that split
up the trial and test fields into their polynomial and non-polynomial components. Provided that the
energy of the polynomial components are captured exactly, the patch test is satisfied and, more gen-
erally, the consistency errors are guaranteed to vanish at an optimal rate with mesh refinements. In
the approach put forth in [6], quadrature is used to evaluate only the non-polynomial term in the
energy expression thus ensuring polynomial consistency of the resulting discrete system.

Here, we propose an alternative scheme that can be used for discretization of both linear and non-
linear boundary value problems. The key idea is to define a discrete or corrected gradient map that
restores consistency when evaluating the weak form with quadrature. The corrected gradient field
is constructed at the element level through a minimal perturbation to the exact gradient such that
a discrete version of the divergence theorem featuring polynomial trial fields of suitable order and
attendant volumetric and surface quadrature rules is satisfied. In this respect, the proposed scheme
is similar to the so-called pseudo-derivative method of Krongauz and Belytschko [11], which was
explored in [12] and [13] in the context of polygonal and polyhedral finite elements. While the
pseudo-derivative is only defined at the quadrature points, the corrected gradient is a well-defined
field over the domain with distinguishing properties that can be used in the analysis of the result-
ing discretization. For example, as we shall see, the perturbation defining the corrected gradient is
itself a polynomial field that captures the error in the satisfaction of the discrete divergence theorem.
Moreover, the corrected gradient operator coincides with the exact gradient when applied to poly-
nomial fields or when the quadrature rule is compatible with the underlying finite element spaces
(for example, no correction is made for classical iso-parametric quadrilateral and hexahedral finite
elements with the usual Gauss quadrature). Finally, we note that the proposed approach can poten-
tially be cast in the framework of the so-called gradient schemes (cf. [14]) that are described by
independent but compatible reconstructions of a field and its gradient from the same set of degrees
of freedom.

The remainder of this paper is organized as follows: In Section 2, we review generalized
barycentric coordinates and present the construction of first-order and second-order H !-conforming
polygonal and polyhedral finite element spaces. The accuracy requirements on volumetric and sur-
face quadrature rules along with particular examples of such rules are discussed in Section 4. The
definition of corrected gradient and its properties are presented in Section 4, followed by the dis-
cussion of its use for a general elliptic problem in Section 5. In Section 6, we compare the proposed
approach with the pseudo-gradient method and the scheme proposed in [6] for linear problems.
Finally, several numerical studies are presented in Section 7 followed by concluding remarks in
Section 8.

2. FINITE ELEMENT SPACES AND THEIR PROPERTIES

Let us begin with the two-dimensional setting and consider an n-gon E whose vertices, ordered
counterclockwise, are located at x1, ..., x,. The set of functions ¢y, ..., ¢, are called generalized
barycentric coordinates for E if they are non-negative in the interior of E and can interpolate the
linear fields exactly. The latter means that for all p € P;(E) ¥,

px) =) pxei(x), VxeE (0

i=1

As shown in [15], any set of functions satisfying these properties also satisfy the so-called
Kronecker-delta property (that is, ¢; (x;) = §;;), and have linear variation along the boundary of E.

Consequently, if x lies on the edge connecting vertices x; and x; 11, we have®
|x —xi] |x —xi|

(pi(x)zl_ ’ §0i+1(x): ’ (pj(x):()’ .] #l’l—i_l (2)

|xir1 —x;] [xip1 —x;]

*Throughout the paper, Py (E) denotes the set of kth-order polynomial functions over the domain E .

$We are using the convention that X, +1 = x1 and Xg = X,.
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730 C. TALISCHI ET AL.

We use generalized barycentric coordinates as the basis for a first-order finite element space, denoted
by V1 (E), with degrees of freedom associated with the vertices of E. Note that (1) implies V; (E) 2
P1(E). Moreover, thanks to (2), Vi (E) can be used to construct H !-conforming finite element
spaces over polygonal meshes.

A second-order space on E can be constructed using pairwise products of barycentric coordinates.

Following the work of [16], we define quadratic serendipity-type interpolants ¥, ..., %>, on E
as follows
n n .
Yilx) =Yl (0)gr(x) 3)
j=lk=1

The coefficients ci.k are prescribed such that y;’s satisfy the Kronecker-delta property and can
interpolate quadratic functions exactly. Denoting by Xx; the midpoint of edge connecting x; and
X;i+1, the coefficients are thus chosen so that

p(x) = [px)Vi(x) + pR)Vitn(¥)].  Vp € Pa(E) @

i=1

and
Vi(xj) = Yign (X)) =6ij, Vi(X;) = Yitn(x;) =0, Vi,j=1,....n (%)

Observe that v; 1, is the interpolant associated with the midpoint X ;. Moreover, the variation of each
Y¥; on the boundary of the element is continuous and piecewise quadratic. A method for computing
the coefficients cj, &> Which depend on the geometry of E, can be found in [16].

The second-order finite element space, denoted by V,(E), is given by the span of ¥q,..., V2,
and will be used to define an H !-conforming space on a polygonal mesh with degrees of free-
dom associated with the vertices and midpoints of the edges of the mesh. Observe that (4) implies
Vo(E) 2 P2(E).

A number of generalized barycentric coordinates are available in the literature with different
requirements on the geometry of E (see, for example, [15]). For the sake of concreteness, we will
consider Wachspress coordinates [17] here though we emphasize that the main results of this paper
apply to finite element schemes derived from other interpolation functions. Wachspress functions
are valid for polygons that are strictly convex and can be written as [18]

w; (x)
Pi(x) = =——— (6)
’ 2= wj(x)
where the weight functions wy, ..., w, are given by
wi () = iy ] )

[(x; —x)-ni—1][(x; — x) - n;]

In this expression, r; denotes the unit normal vector to edge connecting vertices x; and x; ;. We
refer to [19] for the study of behavior of Wachspress functions and, in particular, bounds on their
gradients in terms of the geometric attributes of E. The numerical studies presented in Section 7 use
element spaces Vi (E), with k = 1 and k = 2, defined using Wachspress coordinates.

We proceed to discuss finite element spaces on polyhedra in R3. Let E be a polyhedron whose
boundary consists of planar polygonal faces, and suppose it has n vertices located at xp,...,X,.
We shall denote by F the set of faces forming the boundary of FE, by F; those faces that include x;,
and by 7 = F\J; the remaining faces.

As in the two-dimensional case, one can define generalized barycentric coordinates @1, ..., @y
on E such that they satisfy the Kronecker-delta property and interpolate linear fields exactly. Addi-
tionally, each ¢; has linear variation along the edges of E and vanishes on fff , that is, the faces not
incident on the associated vertex x;. Furthermore, the behavior of ¢; on each face in JF; is deter-
mined uniquely by the geometry of that face and independent of the shape of the element. These
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GRADIENT CORRECTION METHOD 731

important properties together guarantee inter-element continuity, and subsequently H '-conformity
of finite element space defined on a polyhedral mesh using vertex degrees of freedom.

For the numerical studies presented in this paper, we have utilized Wachspress coordinates, as
defined in [18] and analyzed in [19]. These coordinates are valid for elements that are not only
convex but also simple. This means that, the collection &; for each i = 1,...,n consists of
exactly three faces. For such a polyhedron, Wachspress coordinate ¢; is again defined by (6) with
weight functions

(nFl_l X nFl_z) -nFl_3

[(xi —X) -nFil] [(xi _x)'”F,?] [(xi —X) -nFis]

®)

w; (x) =

In the previous expression, nr denotes the outward unit normal vector to face F, and Fil, Fiz, and
F? are the faces in J;.

As before, we set Vi(E) = span{¢i,...,¢,} that by linear precision of the Wachspress
coordinates includes P;(E). While the construction of serendipity polyhedra, following the two-
dimensional procedure of Rand et al. [16], is possible, we have elected to defer their study to a future
work. We note, however, that the gradient correction approach described in Section 4 is applicable
to quadratic polyhedra as well, though certain aspects of its implementation as well as the numerical
studies of its performance require a separate examination.

3. QUADRATURE RULES AND ACCURACY REQUIREMENTS

On general polygonal and polyhedral elements, barycentric coordinates are usually non-polynomial
functions. This is evident in the case of Wachspress functions from (6). As discussed in [6], the
evaluation of weak form integrals involving barycentric coordinates and their gradients by means
of available quadrature schemes will lead to errors that are persistent under mesh refinement. These
errors motivate the development of gradient correction approach proposed in this work. In order to
control the quadrature errors and restore polynomial consistency, the proposed correction approach
requires the utilized quadrature schemes to respect certain minimal accuracy conditions, expressed
in terms of their polynomial precision. In this section, we will state these requirements for volumet-
ric and surface quadrature rules on a general element E and proceed to give particular instances of
schemes that satisfy them. These specific rules are commonly used in the literature on polygonal
and polyhedral discretization. The numerical studies in Section 7 employ these quadrature schemes.

Given a polyhedral (polygonal) finite element E, we will denote by gﬁE the evaluation of the
volume (area) integral || g using quadrature. Similarly, we will use gﬁa g to denote the numerical
evaluation of surface (line) integral |: og - Throughout, we shall assume that the order k of the finite
element space Vi (F) is fixed.

In the proposed correction scheme, the volumetric quadrature ffi, is assumed to be exact when
the integrand is a polynomial field of order 2k — 2. This means that the quadrature can integrate
constant fields exactly when k = 1 and quadratic fields when k = 2. This requirement is motivated
by the fact that we need integrals of the form

/ p - Vqgdx, / q div pdx )
E E

to be computed exactly when p € [Pr_1(FE )]d and g € Pr(E). We will encounter integrals of this
form in the next section (see, for example, Equation (23)).

There is an additional implicit assumption on the volume quadrature rule that it is sufficiently
rich so as to eliminate the appearance of spurious elemental zero energy modes that can upset the
stability of resulting discretization scheme. For instance, for k = 1, a one-point rule consisting of an
integration point at the centroid of E with the volume | E| as the weight respects the above precision
requirement, but it may lead to spurious zero energy modes.
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732 C. TALISCHI ET AL.

The boundary quadrature Sﬁa g 18 required to integrate polynomial fields of order 2k — 1 on each
face (edge in two-dimensions) of the element. The quadrature is therefore exact on piecewise linear
and cubic fields for k = 1 and k = 2, respectively. With this requirement, we ensure that integrals
of the form

/Mq(p-n)ds (10)

are exact if p € [Pr_1(E )]d and ¢ is piecewise kth order polynomials on 0E with n the unit normal
vector to the boundary. Again, such integrals will appear in the next section when establishing
properties of the corrected gradient (e.g., Equation (23)). For two-dimensional elements, functions
in Vi (E) have kth order polynomial variation on dE, and so we have

y§ v(p-n)ds = / v(p - n)ds, Yv eVi(E), p € [7316_1(E)]2 (11)
oE oE

We next describe the quadrature schemes used for the numerical studies in this paper. The quadra-
ture scheme ﬁE over a polygon is defined by subdividing the element into triangles (by connecting
an interior point to its vertices) and using available polynomially precise quadrature rules on each
triangle. For k = 1 and k = 2, Dunavant rules with one and three integration points are used here.
The computation of boundary integrals are carried out using the Gauss—Lobatto rules with one and
three integration points for k = 1 and k = 2. For k = 2, the integration points at the vertices
and midpoint of the edges simplifies the evaluation of (10) because the degrees of freedom for the
serendipity element correspond to point-wise evaluation at these points.

For volumetric integration in three dimensions, one possibility is to split the element into tetrahe-
dra and use the available quadrature schemes on these subdomains. A more economical alternative
for linear polyhedra that satisfies the polynomial precision requirement is proposed in [20]. The ele-
ment is divided into tributary regions, each associated with a vertex, and the centroids and volumes
of these regions are taken as the quadrature locations and weights. The region associated with a
vertex is composed of pyramids formed by the centroid of the element, the midpoint of the edges
incident on the vertex, and centroids of the incident faces (Figure 1). This scheme can integrate
constant and linear fields exactly.

As for the boundary quadrature, the integration on each face is carried out by means of vertex
quadrature rule that requires only the evaluation of the integrand at the vertices of the face. The
face is split up into quadrilateral regions associated with its vertices by connecting the centroid to
the midpoint of the edges of the faces. The quadrature weights are the areas of these quadrilateral
regions. It can be shown that this scheme is exact for integration of linear fields (see Appendix
of [7]).

4. CORRECTED GRADIENT AND ITS PROPERTIES

Given an element FE, the correction of the gradient of functions in the local space Vi (FE) is obtained
from minimal perturbations that result in satisfaction of a discrete divergence theorem. More specif-
ically, the corrected gradient of v € Vi (E), henceforth denoted by Vg x v, is taken to be the vector
field over E that solves the optimization problem

mingﬁ |Vv — &]? dx (12)
& JE
subject to
515 p-&dx = —95 v div pdx +§£ v(p-n)ds, Vp € [Pk_l(E)]d (13)
E E oE
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:728-747
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(c) (d) (e)

Figure 1. Illustration of volumetric quadrature rule for linear polyhedra. (a) Tributary region associated with
vertex X;; the centroid of this region is a quadrature point; (b) the corresponding quadrature weight is the
volume of the dark gray polyhedron formed by pyramids associated with faces incident on x;; and (¢)—(e)

the pyramid associated with a face F / is formed by the centroid of the element X, centroid of the face
X Fij , and the midpoint of the edges of Fl.j incident on Xx; .
The minimization is carried out over all sufficiently smooth vector fields on E such that the quadra-
ture makes sense. The corrected gradient Vg xv is thus the ‘closest’! field to Vv that satisfies the
discrete divergence theorem against all polynomials of order k.
To better understand the nature of the gradient correction, let us consider a basis {p;, ..., p, } for
[Pr—1(E)]¢ and replace (13) by the equivalent set of constraints:

gﬁ Do - Edx =—¢ vdivpadx—i—yg V(py-n)ds,x=1,...,n (14)
E E IE

Introducing multipliers A1, ..., A,, the Lagrangian for this optimization problem is given by

LE AL Ay = gﬂE | — V> dx

n (15)
+ Z Ao [95 Dy - Edx +¢ vdivp,dx —55 v(p,-n) ds:|
a1 E E IE
The optimality of Vg rv requires that for any variation 7
n
De L(VE kv, A1, ..o dn) [0] = 25& (Vexv—Vv)-pdx + Z Ao ¢ Po-ndx =0
E a1 JE

IThe distance here is with respect to the quadrature form of the L2-metric.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:728-747
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734 C. TALISCHI ET AL.

and therefore

n
1
¢ (VE’kv — Vv + Z E/Xal’a) -pdx =0 (16)
E a=1

This shows that the perturbation Vg xv — Vv coincides with an element of [”Pk_l(E)]d at the
location of the quadrature points. Observe that the optimization problem (12) and (13) can only
prescribe the values of Vg rv at the quadrature points. This motivates us to define the corrected

gradient Vg ;v as the field satisfying the following two conditions:

Cl: Vgxv—Vv e [Pr_1(E)“
C2: Forall p € [Pxk_1(E)]%,

g§p~VE,kvdx=—56 vdivpdx—|—§£ v(p-n)ds 17
E E IE

Note from these two conditions that Vg  is a linear map and so in practice only the action of Vg j
on the basis of Vi (E) must be computed. The appendix contains details on a systematic procedure
for computing the corrected gradient of the basis functions for an arbitrary k.

To better understand the nature of the correction, let us denote by p,, the perturbation to Vv that
gives the corrected gradients, that is,

VExv=Vv+ p, (18)

Inserting in C2, we get for p € [Pk_l(E)]d

%p-pvdx:[—ﬁ vdivpdx—{—}lg v(p'n)ds]—ﬁp.Vvdx (19)
E E IE E

First, observe that the left-hand side integral is computed exactly by the quadrature. On the right-
hand side of the previous expression, the term in the bracket and the last term represent two different
quadrature approximations of || g P - Vvdx. Thus, (19) shows that the perturbations p, captures
the difference between two approximations of Vv when integrated against polynomials of order
k — 1. Returning to the optimization problem (12) and (13), p, is in fact the ‘smallest’ element
in [Pr_1(E )]d, with respect to the L2-norm, that does so. Moreover, the smaller the error in the
satisfaction of the discrete divergence theorem (i.e., right-hand side of (19)), the smaller the pertur-
bation to the gradient. This error depends on the accuracy of quadrature as well as the nature of the
functions in the local space Vi (E).

These observations are perhaps better illustrated by considering linear elements, k = 1, for which
an explicit expression for the correction can be readily obtained. Let p € [Po(FE )]d andv € V1 (E).
Because p,, is constant over E and div p = 0, we have from (19)

|[Elp-p, =g§ p-p,dx =§l§ v(p-n)ds—¢ p-Vudx =p~(y§ vnds—¢ Vvdx) (20)
E 9E E IE E

Using the fact that p is arbitrary, we arrive at the following expression for the corrected gradient:

1
VEajv=Vv+ — (55 vnds —95 Vvdx) (21)
|E| \JoE E

We can see from this expression that the perturbation is a constant field proportional to the error in
satisfying the identity f g Vvudx = f o vnds by the volumetric and surface quadrature schemes. It
is worth noting that the requirement that the volumetric and surface quadratures exactly integrate
constant and linear fields, respectively, implies that no error is incurred in the satisfaction of this

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:728-747
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identity whenever v is a linear field. This also implies that if v € P; (E), then there is no correction
to its gradient, thatis, Vg jv = V.
The latter observation in fact generalizes for any k. In particular,

VeErkq =Vq.  Vq € Pr(E) (22)
which shows that the corrected gradient coincides with the exact gradient when applied to kth order

polynomials. This can be seen by setting p = Vg g — Vg = p, in (19) and using the exactness of
the quadrature rules:

/ }VE’kq — Vg % dx —¢ q div p,dx +§£ q(pg - n)ds —¢ Py Vqdx
E E IE E

=—/qdiqudx+/ q(pq-n)ds—/ Py Vqdx
E E E
=0

(23)

As we shall see in the next section, this property of the correction scheme plays an important role in
ensuring that the resulting discretizations are polynomially consistent and satisfy the patch test.

Let us return to the corrected gradient (21) for linear elements, but now consider the two-
dimensional setting wherein the variation of v on JF is piecewise linear and, as such, the boundary
quadrature is exact. In this case, 553 E vnds = f 9E vnds = f E Vuvdx, and subsequently,

1
VEv=Vv+ — (/ Vvdx —gﬁ Vvdx) 24)
|E| \JE E

The perturbation is simply the difference between the volume average of Vv and its approximations
through the quadrature. A key observation immediate from (24) is that

gﬁ VE 1vdx =/ Vuvdx (25)
E E

This shows that the corrected gradient Vg ;v under the action of the quadrature behaves like Vv
under exact integration. Because we are forced to use inexact integration when dealing with polyg-
onal and polyhedral finite elements, we shall replace the gradient by its correction to offset the
incurred error.

In the general case, it is expected from the definition of the correction that

gﬂ ¥ - Vg rvdx —/ ¥ - Vudx = O(h];;) Vol 2¢gya (26)
E E

for v € Vx(E) and ¢ a sufficiently smooth vector field. Here, i g is the diameter of element E.
This estimate will be used in the next section to show that replacing the gradient by its correction,
when using quadrature, lowers the consistency error in the discretization to the same level as the
approximation error. As such, optimal convergence rates are restored.

We end this section with an observation about the kernel of Vg i, namely that!

VExv=0 = Vuv=0 27

To see this, note that Vg xv = 0 together with C1 imply that Vv € [Pk_l(E)]d and thus v €
Pr(E). From (22), we conclude that Vv = Vg v = 0. This indicates that spurious zero energy
modes do not appear when using corrected gradients and thus can be useful in proving that the
resulting discretization scheme inherits the stability characteristics of its Galerkin counterpart.

IThe converse is also true and follows immediately from (22).
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5. PROPOSED DISCRETIZATION SCHEME

We now discuss the use of gradient correction for the discretization of a general elliptic problem
and illustrate how it can restore polynomial consistency that is otherwise lost in the presence of
quadrature error. Let  be a smooth domain in R¢, and consider the system of equations

—div[a(x,u,Vu)] = f inQ (28)

u=gon dQ (29)

where the source function f and boundary data g are given fields with sufficient regularity. We
recover the Poisson problem with the choice of a(x,u,&) = &, anisotroEc linear diffusion b

setting a(x,u, &) = K(x)&, and Forchheimer flow with a(x,u,&) = 2&/|1 + (1 + 48 |E|)1/2 .

Under suitable regularity assumptions on a, the weak form of (28) and (29) consists of seeking
u € Hy(Q) = {ve H'(Q):vlpe = g} such that

/a(x,u,Vu)-Vvdx =/ fudx, Yv € H (RQ) (30)
Q Q

In order to define the finite element approximation of (30), consider a partition T, of €2 consist-
ing of non-overlapping strictly convex simple polyhedra with maximum diameter /. A conforming
approximation space V ; associated with T7, based on the kth order element spaces defined in
Section 2, is given by

Vik = {v € C%RQ) : vhlg € Vk(E). YE € Ty} (31)

It is assumed that the elements in T}, satisfy suitable shape regularity requirements such that Vj,
yields optimal approximation estimates (refer to [19] for such conditions for two-dimensional and
three-dimensional Wachspress functions). The set of functions in Vj, x whose trace on 02 is equal
to g will be denoted by V.

We next define the quadrature over 2 that is given by the application of element quadrature
rules. With a possible abuse of notation, we shall denote this quadrature by gﬁﬂ and so, we have
i, = X geq, fip- Similarly, we define a global discrete gradient map Vj i @ Vygx — L*(Q)¢
such that over the elements of the mesh, it coincides with the corrected gradient defined in the last
section. Therefore,

Vh,kv|E = VE,kv, VE € ‘Th (32)

The proposed approximation using the space V;, x would replace both instances of V with the
discrete gradient Vj, ;. along with the introduction of the quadrature. The approximate solution u;, €
Vi . therefore satisfies

56 a(x,u, Vyup) - Vpvdx = 56 Sfvdx, Vv eV, (33)
Q Q ’

In practice, this amounts to simply using the corrected gradient of the basis functions when
integrating with the weak form along with the associated quadrature rules.

To assess the consistency of approximation, we consider the so-called patch test that refers to the
case where the exact solution is a polynomial field, that is, u = p € Py (S2). The problem data is
accordingly given by f = —diva(x,u,Vp) and g = plyq.

We begin by showing that the patch test is passed exactly, that is, up = p, for linear diffusion
a(x,u, &) = K& with constant tensor K. By the polynomial precision of the local spaces, Py (2) C
Vlé:,k andsouyp = p € V;‘:’k. Moreover, it follows from (22) that

Viiup =Vpep =Vp (34)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:728-747
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In order to verify (33), we consider an arbitrary test function v € V,? - We have

¢i th,kuh . Vh,kvdx = Z ¢ KVp . VE,kvdx
§ EeT, ' E
h

> [—gﬂ vdiv (KV p) dx +§1§ v(KVp - n) ds] (35)
E oE

EeTy

Eézfvdx

In the second equality, we have used the definition of Vg j and the fact that KV p|g € [Pr—1(E )]d.
Note that the second term in (35) vanishes as the internal edges of the mesh are visited twice (the
normal vector n changes sign each time) and v = 0 on the boundary edges. Our numerical studies
presented in Section 7 confirm that the patch test will be passed up to machine precision errors.

For a general function a, u; = p may not exactly satisfy (33) though the remainder is expected
to be O(h*). Assuming sufficiently regularity of a, we have

95 a(x,p.Vp)-Vpvdx —¢ fvdx = / a(x,p,Vp)- Vvdx+0(hk)||Vv||L2(Q)d—g§ fudx
Q Q Q Q

= / fvdx + O(K¥) Vvl 2(q)e —gﬁ Sfudx
Q Q

= O(h*) [ Vvll 2 (gye
(36)
The first equality is a consequence of estimate (26), and the last one comes from the accuracy of the
volumetric quadrature and smoothness of f. This bound for the consistency error (the error in the
satisfaction of the discrete problem by the exact solution) suggests that the patch test will be passed
asymptotically with mesh refinement at the optimal rate of k.

While a rigorous error analysis™" is beyond the scope of this work, let us briefly discuss the general
case where the exact solution u is a sufficiently smooth field. The consistency error resulting from
the combined effects of using quadrature and replacing V with Vj, ; can be decomposed into two
parts'':

¢ a(x,u,Vygu) - Vy pvdx
Q

—¢ fudx = |:5£ a(x,u,Vu) -V rvdx —# fvdx] (37)
Q Q Q
+ gﬁ [a(x, u, Vi u) —a(x,u, Vu)] - Vi rvdx
Q

We can show that the term in the bracket is O(h¥) ||V L2(@)< in a similar way as (36). That the
second error term is of the same order is, roughly speaking, a consequence of (22) and regularity of
a.

This discussion also suggests that a non-symmetric discretization featuring

¢ a(x,u,Vu) - Vy pvdx (38)
Q

in left hand side of (33) leads to optimally convergent approximations. While our preliminary
numerical results in fact confirm this, we have elected not to further discuss this approach since it is
of less practical use compared with the symmetric scheme.

**This should also include an analysis of the stability of the proposed discretization scheme.

TWhile the corrected gradient VE.k was defined for elements of Vi (E), its definition can be readily extended to
sufficiently smooth functions in H ! (E) for which the quadrature makes sense. The properties of corrected gradient
discussed in the last section will continue to hold.
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6. COMPARISON WITH EXISTING METHODS

We begin this section by comparing the present gradient correction scheme for linear polyhe-
dra with the pseudo-derivative construction of [11]. To describe this approach, we will denote by
{(xq, wq) gq=1,..., Q} the set of quadrature points and weights for gﬁE As discussed in [12] in
the context of polyhedral finite elements, the pseudo-derivative of v € V1 (E) at x4, denoted by & ;,
is determined by solving the following constrained minimization problem:

0
min Z }Vv(xq) &, | subject to Z weé, = &éE vnds (39)

§1,...60 a=1

The explicit solution to this problem is given by

o
w
£, = Vv(xy) + ﬁ 5]5 vnds — Z w;Vou(x;)
D1 Wi IE =1 (40)

w—(yg vnds—%Vvdx), g=1,...,0
Zt L w? \JoE E

The difference between the pseudo-derivative and the corrected gradient defined via (12) and (13)
lies in the choice of the objective function. Observe that the objective function in (12) can be
written as

= Vu(xg) +

0
gﬁE Vo —§Pdx = > wy [Vo(x,) —£(xy)|? (41)
q=1

which compared with (39) features a reasonable scaling by the quadrature weights.

Whereas the pseudo-derivative is only defined at the quadrature points, the corrected gradient
VE.1v is field over all of E. Moreover, the perturbation Vg ;v — Vv is constant over E and, as such,
takes the same value for all x 4. By contrast, it can be seen from (40) that the difference & Z —Vu(xy,)
involves a particular scaling of the same constant by the quadrature weights.

The differences between the pseudo-derivatives and present corrected gradients are more pro-
nounced for higher order elements. The pseudo-derivative construction in such cases (see, for
example, [21]) masks the nature of perturbation needed to restore the consistency of the gradient
field in the presence of quadrature error.

We next compare the present approach with the scheme proposed in [6, 7] for first-order polygons.
Because that approach is only applicable to linear PDEs (at least at the present level of development),
we consider the case a(x, u, &) = K& where K is a constant tensor over each element in the mesh.

Let us recall the definition of local projection map g used in [6] and originally proposed in [8]:
given v € V1 (E), mgv is its projection on P; (E) such that

1
Vrgv = —/ Vvdx (42)
|E| JE

Note that this quantity can be computed exactly using the identity |’ g Vvdx = J: g vnds and
the fact that v is piecewise linear on dE. From this, it follows that the exact energy has the
following decomposition:

/KVu-Vvdxz Z |:/ KVnEu-VnEvdx—i—/ KV(u—nEu)-V(v—nEv)dxi| 43)
Q E E

EeTy
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To remove the consistency error present in gﬁﬂ KVu - Vudx, it is proposed to apply quadrature to the
right-hand-side expansion and use the following approximation to the energy bilinear form

Z |:/ KVnEu-VnEvdx—i—Eﬁ KV (u—nEu)-V(v—JrEv)dx} (44)
E E

EeTy

Observe that the first term is integrated exactly given the precision of the quadrature rule.

In order to connect this approach to the present one, let us define another local projection onto
P1(E), denoted by tg, such that for v € V;(E),

1
Vipy = _56 Vudx 45)
|E| JE

Note that the different between 7 g and tg lies in the use of quadrature in the latter.
We can see from (24) that the corrected gradient can be written as

Ve v =V v+ 750 — 150) (46)

Using this, we expand the approximation to the energy bilinear form in (33):

gﬁ KVp1u - Vi vdx = Z gﬁ KV(u+ngu—tegu)- V(@ +ngv—rtgv)dx
2 EE‘J’h E

= Z [/ KVnEu-VnEvdx—i-glﬁ KV(u—rEu)-V(v—rEv)dx]
E E

EeTy
(47
In the second equality, we have used the fact that the two cross terms vanish:
56 KVrgu -V (v—1tgv)dx =9§ KV (u—tgu)-Vagvdx =0 (48)
E E

This follows from the definition of tg.

Comparing (44) and (47), we can see that the first term, which is responsible for the polynomial
consistency of the local energy, is identical in both expansions. The only difference between them
lies in the appearance of tg in place of ng in the second term. The second term in both cases
vanishes if u is a linear polynomial. Moreover, it is worth noting that the difference between the two
energies is given by

> gﬁ KV (mgu — tgu) -V (v — tgv)de = ) / K(Vgiu—Vu)- (Vgv — Vo) dx
EeT) E EeTy E
(49)
which is the exact energy associated with the perturbations defining the corrected gradient.

As noted before, the main limitation of the proposed scheme in [6] is that it is applicable only
to linear problems for which the energy bilinear form can be decomposed into its polynomial and
non-polynomial parts through the use of projection maps 7w g. The gradient correction approach,
however, treats linear and nonlinear problems in the same manner.

7. NUMERICAL STUDIES

In this section, we present results for several numerical examples assessing the performance of the
proposed correction scheme for the general model problem (28) and (29). The example problems,
posed on the unit square or cube 2 = (0, l)d, have known analytical solutions and are solved using
meshes shown in Figures 2-5. In Tables I and II, the various mesh parameters are presented (% is
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(a) (b) (c)

Figure 2. Representative examples of trapezoidals meshes. Three consecutive meshes are shown, containing
16, 64, and 256 distorted quadrilaterals, respectively.

(a) (b) (c)

Figure 3. Representative examples of distorted hexahedral mesh. Three consecutive meshes are shown,
containing 8, 64, and 512 distorted hexahedrons, respectively.

()

Figure 4. Representative examples of two-dimensional Voronoi mesh. Three consecutive meshes are shown,
containing 16, 64, and 256 polygons, respectively.

the maximum diameter of the elements in the mesh). The boundary data g and source functions f
are prescribed in accordance with the exact solution u. Note that for the trapezoidal and distorted
hexahedral meshes, the Wachspress functions are different from the commonly used iso-parametric
bilinear and trilinear basis functions. Unless otherwise stated, the volumetric and surface quadrature
rules underlying the discretization are those described in Section 3. The accuracy and convergence
of the proposed discretization (33) is determined through two global measures of error, namely
the L2-error ||u — uy, | L2(g) and the H'-semi-norm ||Vu — Vuy | 2(q)e that are computed using
a fifth-order rule on simplicial partition of the mesh. In addition to the proposed scheme, we also
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(b)

()

Figure 5. Representative examples of three-dimensional centroidal Voronoi mesh. A portion of each mesh
has been removed to show the internal structure.

Table I. Statistics for two-dimensional meshes.

Number of nodes Mesh size h

Mesh  Number of elements  Trapezoidal =~ Voronoi  Trapezoidal  Voronoi

a 16 25 34 0.41667 0.35447
b 64 81 130 0.20833 0.18427
c 256 289 512 0.10417 0.09683
d 1024 1089 2047 0.05208 0.04737
e 4096 4225 8172 0.02604 0.02454
f 16,384 16,641 32,721 0.01302 0.01157
g 65,536 66,049 130,822 0.00651 0.00592

Table II. Statistics for three-dimensional meshes.

Number of nodes Mesh size h

Mesh  Number of elements  Distorted hexahedral ~ Voronoi  Distorted hexahedral ~ Voronoi

a 8 27 38 1.10905 0.90198
b 64 125 327 0.55453 0.48074
c 512 729 2798 0.27726 0.24666
d 4096 4913 23,226 0.13863 0.12274
e 32,768 35,937 190,078 0.06932 0.06095

provide the results for the approximation using quadrature but without correction of the gradient
defined by what follows:

Find uy, € V;’:k such that gﬁ a(x,u,Vuy) - Vodx = ¢ fvdx, Vve V,?k (50)
. o o .
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and for the Galerkin approximation with exact integration as follows:
Finduy, € ka such that / a(x,u,Vuy) - Vvdx = / fvdx, Vve V,?k (51
, o o ,

As a surrogate for the latter, we use (33) and the aforementioned fifth-order rule. We have observed
that increasing the order of integration beyond this has little effect on the resulting errors. The results
labeled ‘exact’ in Figures 6-11 represent the Galerkin errors and are obtained using this approach.
The Galerkin error, which is a function of the approximation capability of the finite element spaces,
serves as a reference to determine the extent to which the integration error resulting from ‘minimal’
quadrature rules influences the accuracy.

We begin with a patch test study for the Poisson problem, a(x, u, &) = &, to verify the analysis
of Section 5. The results using the Voronoi meshes are summarized in Table III. For the two-
dimensional case, the exact solution is set to u(x) = x — y for linear and u(x) = x2 — 2xy + 4y
for quadratic discretizations. In the three-dimensional case, the exact solution is chosen as u(x) =
x + 2y + 3z. We can see from the numerical results for the correction scheme that the errors
are at machine precisions levels though they evidently accumulate with mesh refinement.  For
the next set of numerical results, we solve benchmark linear anisotropic diffusion problems, with
a(x,u, &) = K(x)&. Borrowing from [22], we consider the two-dimensional problem with the exact

error
error

&
A uncorrected \‘\\ A uncorrected NN
10° O corrected \\g El 10° O corrected \\‘A -
O “exact” SS~a--=2 O “exact” w A - - A
N ~
A N
1% - Jlu = unll 2o ) i\\ i 0% - Jlu = unll L2 ) i U\\
— [Vu— v“hHL?(s'm R — [Vu-— V“h”u(s’zy‘ S
L n L L 9
10" 10% 10" 10°
1/h 1/h
() (b)

Figure 6. Results of the convergence study for the two-dimensional anisotropic diffusion problem with first-
order finite elements on (a) trapezoidal (b) Voronoi meshes.

i =

g 5

= =

= =,

< 10* 3 10* R
A uncorrected AN A uncorrected Q\ Te-A A
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1/h 1/h
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Figure 7. Results of the convergence study for the two-dimensional anisotropic diffusion problem with
second-order finite elements on (a) trapezoidal (b) Voronoi meshes.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:728-747
DOI: 10.1002/nme



error

()

GRADIENT CORRECTION METHOD

10
& 1[0
T L 10"
N
. g
~ A S
N
A uncorrected A N A uncorrected *ﬂ
O corrected s O corrected S
exct” ‘& 107 Coxact” .
O “exact N O “exact” RN N
~
. n
== |lu—unll L2y ® == Jlu—unllr2) ) So o
— [IVu — Vu|| 20y — IVu = V|l 2y N \g
-3
0 -1 10 0 -1
10 10 10 10
1/h 1/h
(b)

743

Figure 8. Results of the convergence study for the three-dimensional anisotropic diffusion problem with
first-order finite elements on (a) trapezoidal (b) Voronoi meshes.
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Figure 9. Results of the convergence study for the two-dimensional Forchheimer flow problem with first-
order order finite elements on (a) trapezoidal (b) Voronoi meshes.
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Figure 10. Results of the convergence study for the two-dimensional Forchheimer flow problem with
second-order finite elements on (a) trapezoidal (b) Voronoi meshes.
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Figure 11. Results of the convergence study for the three-dimensional Forchheimer flow problem with first-
order finite elements on (a) trapezoidal (b) Voronoi meshes.

Table III. H '-error for the patch test performed on two-dimensional and three-dimensional
Voronoi meshes.

Two-dimensional Three-dimensional

Linear Quadratic Linear

Mesh  Corrected  Uncorrected Corrected  Uncorrected Corrected  Uncorrected

a 3.358E-15 1.292E-01 3.509E-13  5.669E-02  3.136E-12  2.678E-01
b 7.504E-15 1.930E-01 7.663E-13  5.885E-02  8.184E-12  7.122E-01
c 1.287E-14 1.018E-01 2.395E-12  3.359E-02  2.585E-11 8.097E-01
d 2.585E-14 1.310E-01 1.483E-11 3.892E-02 1.751E-11 7.349E-01
e 5.045E-14 1.235E-01 1.203E-10  3.563E-02  8.553E-09  7.206E-01

solution and diffusion tensor given by

3.2 . . (Xl + 1)2 + X% —X1X2
w(x) = x3x2 + x; sinQrx ) sin@rxy), K(x) [ ORIy I CY
For the three-dimensional study, we solve the problem defined by
u(x) = x13x§X3 + x1 sin(2wx1x3) sin(2w x;) sin(2w x3) (53)
x% + x% +1 —X1X3 —X1X3
K(x) = —x1X2  xXi+x3+1  —xpx3 (54)
—X1X3 —XpX3 x12 + x% +1

The results for linear and quadratic discretizations (latter only in two dimensions) and different mesh
types are summarized in Figures 6-8. Consistent with the observations in [6], we can see a degra-
dation of convergence rates and eventually lack of convergence of approximations without the use
of corrected gradient. The source of this behavior must be attributed to integration error because the
Galerkin approximation is optimally convergent. For the results with quadratic finite elements, the
onset of degraded convergence occurs for coarser meshes compared with linear elements because
the approximation error decays more quickly and, as such, the consistency error dominates earlier.
This is more noticeable for Voronoi meshes where we anticipate the integration error and sub-
sequently, in the absence of correction, the consistency error to be larger. With the correction of
gradient, not only are the optimal convergence rates restored, but also the errors levels are nearly
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identical to the Galerkin errors. Viewed another way, increasing the order of integration has neg-

ligible effect on the errors levels once the polynomial consistency errors are controlled. This is

promising from the point of view of computational cost because the quadrature rules of Section 3

respecting the minimal accuracy requirements demand only a modest number of integration points.
We conclude this section with results for the nonlinear Forchheimer flow defined by

28
a(x u,§f) = ————— (55)
14+ /1 +4B§|
The value of B = 40 is selected along with exact solutions u(x) = sinxje® and u(x) =

X3 sin x1e*2 for two-dimensional and three-dimensional problems, respectively. The resulting non-
linear algebraic system of equations are solved using the Newton—Rhapson method with line search.
Figures 9—11 show the results for different approximation orders and mesh types.

We observe the same trends as the linear diffusion problem. The loss of accuracy without the
correction of the gradient is even more severe for the nonlinear problem, which is particularly evi-
dent for Voronoi meshes. The correction scheme again delivers optimally convergent solutions with
accuracy on par with the Galerkin approximations. This is noteworthy as it illustrates that accurate
modeling of three-dimensional nonlinear problems with polyhedral finite elements is computation-
ally feasible. For such problems, the overhead associated with computing shape function gradients
and their corrections, compared with classical finite elements, is less significant because such com-
putations need to be carried out only once. The correction scheme brings the computational cost of
polygonal and polyhedral finite elements closer to that of the classical finite elements.

8. FUTURE WORK

As mentioned before, the development of second-order polyhedral finite elements, following the
construction of [16], and the application of the correction scheme merits a separate study. Of par-
ticular interest is the construction of efficient volumetric and boundary quadrature rules, similar to
vertex-based rules described here for the linear polyhedra, that respect the accuracy requirements for
the gradient correction. Future work also includes the application of the gradient correction scheme
for finite element approximation of other boundary values problems such as finite elasticity and
Navier—Stokes equations.
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APPENDIX

We provide details on the computation of the corrected gradient Vg x of the basis functions with a
unified treatment for both linear and quadratic elements. Let {¢1, ..., ¢y, } be the canonical basis
for Vi (E) and {pl, ey pnP} a basis for [Pr—1 (E)]d. By condition C1 (Section 4), there exists an
ny X np coefficients matrix C such that

np
Verpi =Voi+ Y Ciapy. i=1....ny (A.1)
a=1
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We compute an 7y, X np matrix R and np X np matrix K with the following entries:

Rip = —95 Voi - ppdx —¢ @i div pgdx —|—y§ %i(pg -n)ds (A.2)
E E IE

Kop = 5@3 Po - Ppdx (A.3)

Note again that the integral in definition of K is computed exact because of the required preci-
sion of the volumetric quadrature. As such, one can readily see that K is a symmetric positive
definite matrix.

Setting v = ¢; and p = pg in (17) yields the following linear system of equations:

np
Y CiaKup=Rip, B=1..np (A4)
=1

Hence, the coefficient matrix is simply given by C = RK .

In practice, a non-intrusive implementation would involve calculation of the coefficient matrix
C at the same routine where the basis functions are computed. Using (A.1), the corrected gradient
would be computed (and, in the case of nonlinear problems, stored) at the location of the quadrature
points and passed to the analysis code in place of the original basis function gradients.
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