
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2015; 103:859–893
Published online 21 July 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.4842

Mapping Cohesive Fracture and Fragmentation Simulations to
Graphics Processor Units

A. Alhadeff1, W. Celes1 and G. H. Paulino2,*,†

1Tecgraf/PUC-Rio Computer Science Department, Pontifical Catholic University of Rio de Janeiro, Marquês de São
Vicente 225, Rio de Janeiro, Brazil

2Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews
Avenue, Urbana, IL, USA

SUMMARY

A graphics processor units(GPU)-based computational framework is presented to deal with dynamic failure
events simulated by means of cohesive zone elements. The work is divided into two parts. In the first part,
we deal with pre-processing of the information and verify the effectiveness of dynamic insertion of cohe-
sive elements in large meshes in parallel. To this effect, we employ a novel and simplified topological data
structure specialized for meshes with triangles, designed to run efficiently and minimize memory occupancy
on the GPU. In the second part, we present a parallel explicit dynamics code that implements an extrinsic
cohesive zone formulation where the elements are inserted ‘on-the-fly’, when needed and where needed.
The main challenge for implementing a GPU-based computational framework using an extrinsic cohesive
zone formulation resides on being able to dynamically adapt the mesh, in a consistent way, by inserting
cohesive elements on fractured facets. In order to handle that, we extend the conventional data structure
used in the finite element method (based on element incidence) and store, for each element, references to the
adjacent elements. This additional information suffices to consistently insert cohesive elements by duplicat-
ing nodes when needed. Currently, our data structure is specialized for triangular meshes, but an extension
to tetrahedral meshes is feasible. The data structure is effective when used in conjunction with algorithms
to traverse nodes and elements. Results from parallel simulations show an increase in performance when
adopting strategies such as distributing different jobs among threads for the same element and launching
many threads per element. To avoid concurrency on accessing shared entities, we employ graph coloring. In
a pre-processing phase, each node of the dual graph (bulk elements of the mesh as graph nodes) is assigned
a color different from the colors assigned to adjacent nodes. In that fashion, elements of the same color
can be processed in parallel without concurrency. All the procedures needed for the insertion of cohesive
elements along fracture facets and for computing nodal properties are performed by threads assigned to tri-
angles, invoking one kernel per color. Computations on existing cohesive elements are also performed based
on adjacent bulk elements. Experiments show that GPU speedup increases with the number of nodes and
bulk elements. Copyright © 2015 John Wiley & Sons, Ltd.

Received 18 July 2012; Revised 30 July 2014; Accepted 13 October 2014

KEY WORDS: fragmentation simulation; many-core; CUDA; finite element method; cohesive elements

1. INTRODUCTION

Fracture, branching, and fragmentation simulations of large-scale finite element meshes have a
broad range of engineering applications. To achieve realistic and more accurate results, there is a
need to employ highly discretized models, thus requiring a large amount of computational resources.
In order to accelerate finite element analysis, current parallel environments are based on distributed

*Correspondence to: Glaucio H. Paulino, School of Civil and Environmental Engineering, Georgia Institute of
Technology, 790 Atlantic Drive, Atlanta, GA 30332-0355, USA.

†E-mail: paulino@gatech.edu

Copyright © 2015 John Wiley & Sons, Ltd.

860 A. MONTEIRO, W. CELES AND G. H. PAULINO

memory architectures. In this scenario, each processor (or small group of processors) of a computing
node has private access to a region of the global system memory. Processors on different nodes com-
municate among themselves by sending messages over a network. Different parallel finite element
systems with support for distributed mesh representation have been proposed [1, 2].

Fracture and fragmentation phenomena can be modeled using the cohesive zone model (CZM)
[3–6], which can be simulated by enrichment functions [7] or inter-element techniques [6, 8]. Our
application is based on the experiments by Sharon and Fineberg [9, 10] and addresses dynamic
cracking instability; thus, it is not a simple issue as there are several papers in the literature address-
ing the problem. In the inter-element technique, cohesive elements are inserted between bulk finite
elements (e.g. triangular elements in 2D case and tetrahedron elements in 3D case). Two types of
cohesive elements are distinguished: instrinsic and extrinsic. In the intrinsic case, cohesive elements
are inserted before the simulation starts. In the extrinsic case, cohesive elements are inserted adap-
tively during the course of the simulation, when needed and where needed. Because parallel fracture,
microbranching, and fragmentation simulation using the extrinsic CZM [11] requires cohesive ele-
ments to be adaptively inserted during the simulation, challenges for parallelization emerge because
mesh consistency must be ensured among partitions [12]. In such simulations that require a topolog-
ical data structure (including our case), inserting cohesive elements between bulk elements during
the course of the simulation requires a change in element connectivities and adjacency informa-
tion, such as duplicating nodes and updating element neighbors. The convergence of the simulation
could require unstructured meshes [13, 14], and therefore node perturbation is performed to partially
address the problem [15].

In this paper, we focus on the use of many-core architectures, such as the one provided by modern
graphics processor units (GPU), for accelerating fracture, microbranching, and fragmentation sim-
ulations based on the extrinsic CZM. To the best knowledge of the authors, this is the first proposal
of a complete adaptive finite element analysis running on the GPU. During the last years, general
purpose computing on graphics processor units has proved to be an efficient and powerful means
to accelerate expensive numeric simulations and algorithms that require large amount of input data.
GPUs are massively multithreaded many-core chips which are suited for excessive numeric compu-
tations with high arithmetic intensity, which is the case of finite element analysis. However, mapping
the CPU version of an extrinsic cohesive fragmentation simulation to the GPU is not immediate
or trivial. Several challenges emerge, such as algorithm parallelization, high-performance memory
access, concurrency, and device architecture dependent factors.

We investigate and describe mapping and parallelization techniques for two-dimensional frac-
ture, branching, and fragmentation simulation of finite element meshes on a GPU using NVIDIA’s
Compute Unified Device Architecture (CUDA) framework. We propose a simple but effective data
structure for performing all data-parallel computations and algorithms for 2D models using triangu-
lar meshes (but an extension to tetrahedron elements is feasible). The previously established coloring
method for FEM meshes is also used to minimize concurrency. Parallel techniques are presented for
the numeric analysis code and for updating the FEM mesh when cohesive elements are inserted dur-
ing the course of the simulation. As a result, we are able to speedup the simulation by a factor close
to 30, when compared to the serial code running on a single CPU processor. In our experiments, we
have employed a two-dimensional microbranching analysis, but the created framework for parallel
simulation has the potential to support other separation phenomena simulations.

The main contributions of this paper are as follows:

� Establishment of a conceptual framework to map fragmentation simulations to GPUs.
� Creation of a novel special-purpose topological data structure tailored for adaptive finite ele-

ment meshes on GPU platforms with fast global-memory access (hide latency). Because the
GPU memory is limited, the data structure has to be simple and must consume little memory to
store topological entities (e.g. adjacency information) so that it can provide adequate memory
space for simulation attributes (e.g. nodal displacements, stiffness matrices of bulk elements,
and cohesive tractions between cohesive element).

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 861

� Establishment of a framework for dynamic adaptation of the mesh in the GPU, in a consistent
fashion, by inserting cohesive elements on fractured facets (duplicating nodes and updating
connectivity ‘on the fly’).
� Development of an effective nodal update scheme using gather and scatter techniques necessary

for GPU parallelization. Gather techniques were employed to insert cohesive elements while
scattering techniques, based on coloring, were employed to compute nodal stress, nodal mass,
internal forces, and cohesive forces.
� Development of parallel techniques to map fragmentation algorithms to GPUs, such as splitting

of kernels into simpler ones, distributing jobs among threads, taking advantage of memory
coalescence (consecutive threads reading consecutive memory addresses), and using texture
memory to increase kernel performance. For instance, the computation of the cohesive forces
kernel uses one thread per element for n colors. It is decomposed as follows: (1) computation
of cohesive separation kernel (one thread per cohesive element); (2) computation of cohesive
traction kernel (three threads per cohesive element); and (3) computation of cohesive force
kernel (one thread per element for n colors).

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
discusses the CUDA and GPU architecture, and how we can take advantage of many-core devices to
improve performance. Section 4 briefly reviews simulations based on the extrinsic CZM, discussing
the requirements for adaptive insertion of cohesive elements. Section 5 presents the proposed (sim-
ple) topological data structure to support mesh modification on the GPU. Section 6, conceptually
the main section of this paper, discusses the parallelization of the fragmentation simulation itself,
including the parallel algorithm for inserting cohesive elements. Kernel optimizations are also pre-
sented, bearing in mind memory and flow optimizations that lead to performance boosts. We also
discuss the use of mesh coloring and its impact on the simulation’s parallelization performance and
concurrency issues. Section 7 presents the achieved results, and, finally, concluding remarks and
directions of future work are drawn in Section 8.

2. RELATED WORK ON GRAPHICS PROCESSOR UNITS AND HIGH
PERFORMANCE COMPUTING

Various researchers have investigated parallel simulations to improve the performance of finite ele-
ment analysis, addressing the use of a distributed memory architecture (see References [1, 2] and
citations within). Fracture, microbranching, and fragmentation simulation introduce new challenges
because modeling of interface elements is required. Dooley et al. [11] have presented a parallel
implementation of dynamic fracture simulation on extrinsic cohesive models using ParFUM, a par-
allel framework specifically developed for parallel finite element applications [16]. Radovitzky et
al. [17] have opted for parallelizing extrinsic fracture and fragmentation simulations based on a
combination of a discontinuous Galerkin formulation and CZMs. Like Dooley et al. [11], cohesive
elements are pre-inserted throughout the mesh. Espinha et al. [12] developed ParTops, a topological
distributed mesh representation for parallel dynamic simulation of fragmentation phenomena based
on the extrinsic CZM.

Several references have also explored the use of GPU for numerical simulation and paralleliza-
tion techniques other than fracture or fragmentation. Each reference provides a number of similar
and different parallelization strategies to handle scientific simulations that use large-scale data, some
of which are used in this paper. Boltz et al. [18] show that high-intensity numerical simulation can
be performed efficiently on the GPU using sparse matrix conjugate gradient solver and a regular-
grid multigrid solver, a technique widely used in scientific areas and real-time applications, such
as mesh smoothing and parametrization, and fluid solvers and solid mechanics. Wu and Heng [19]
present a deformation model on soft tissue, called hybrid condensed finite element model, based
on the volumetric FEM accelerated by the GPU. Krakiwsky et al. [20] investigate acceleration of
finite-difference time-domain method using the GPU. Tejada and Ert [21] use physics simulation
and volume visualization of tetrahedral meshes on graphics hardware to build a physically-based

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

862 A. MONTEIRO, W. CELES AND G. H. PAULINO

deformation system based implicit solver. Since 2008, several works on GPU acceleration of scien-
tific simulations have been published. Taylor et al. [22] present a fast GPU solution scheme for finite
element equations used in nonlinear total Lagrangian explicit finite element formulation for surgical
simulation. Göddeke et al. [23] explore parallelism for finite element simulations based on parallel
multigrid solvers, and Anderson et al. [24] developed a general purpose molecular dynamics code
running entirely on a GPU. Rodriguez-Navarro and Susin [25] have implemented cloth simulation
on the GPU using FEM for trianglular meshes. Previous studies on FEM in GPUs also focused on
solving large sparse linear systems [25–27] using CUDA. They have explored the strategy of mesh
coloring for minimizing conflicts, thus avoiding excessive use of CUDA atomic operations, which
usually degrade performance. A GPU approach for geometric multigrid solvers on finite elements
for unstructured grid problems was performed by Geveler et al. [28], in which their GPU implemen-
tation is based on cascades of sparse matrix-vector multiplication by applying strong smoothers.
Komatitsch et al. [29] have used CUDA to speedup numerical simulation of seismic wave propa-
gation resulting from earthquakes. Liu et al. [30] use the GPU and CUDA to perform a fast finite
element dynamic deformation simulation. Kindratenko et al. [31] present challenges with build-
ing and running GPU clusters for high-performance computing environments along with discussion
on their experiments with GPU programming toolkits, and their interoperability with other parallel
programming APIs. Godel et al. [32] use cluster of GPUs through CUDA to parallelize Maxwell’s
equations in the time domain using a discontinuous Galerkin finite element method for spatial
discretization. Their parallel implementation tends to minimize overhead and improve efficiency
through assynchronous data transfer. Kakay et al. [33] implement their finite element micromag-
netic simulation in the GPU, demonstrating a high speed performance compared to CPU multi-core
implementation. Ren et al. [34] model and analyze power performance of parallel 3D finite ele-
ment mesh refinement on CUDA and Message Passing Interface (MPI) architecture using multi-core
CPU and GPU cluster, also proposing parallelization techniques for both. In recent works on FEM,
Markall et al. [35] use finite element advection-diffusion solver to demonstrate that FEM imple-
mentations on many-core (GPU) and multi-core (CPU) architectures differ if their performance
potential is to be obtained. Different data structures are to be employed depending on the architec-
ture and algorithms. They use coloring strategy to avoid concurrency and use of atomic operations.
Zegard and Paulino [36] investigate feasibility of FEM and topology optimization for unstructured
meshes in GPUs and discuss challenges in parallel implementation. This list of papers is incomplete
and by no means exhaustive. The field of GPUs for scientific computing is quite vibrant, and new
contributions are continuously being reported.

3. MANY-CORE DEVICES

Over the past decades, the number of parallel applications grew drastically as input data increased.
Consequently, general purpose multicore CPUs became widely used to handle such amount of
data. GPUs are massively parallel computers that work well on massive computation and problems.
However, CPU and GPU parallelization are quite different.

Central processinng units and GPUs use multicore and many-core characteristics, respectively.
The multi-core approach (CPU) seeks to maintain the execution speed of sequential programs while
moving into multiple cores. In contrast, the many-core (GPU) trajectory focuses more on execution
throughput of parallel applications [37]. Graphics chips can more easily achieve higher memory
bandwidth than CPU chips, depending on how memory is accessed. Each multiprocessor have
access to the GPU’s global memory (dynamic random-access memory), which differs from CPU’s
motherboard dynamic random-access memory in computing in that they are the frame buffer mem-
ory that are used for graphics, such as video images and texture information. However, for general
purpose computing, they work as off-chip, very-high-bandwidth memory with more latency than
typical system memory. In CPUs, each core is independent and can execute several instructions
for various processes (multiple instructions/multiple data). Unlike GPUs, all cores can access the
same memory space. Cores are organized into warps, each one of which is assigned a warp num-
ber. All cores in warp 0 execute the same set of instructions, all cores in warp 1 execute the same
instructions, and so on. In GPUs, each core in a given warp executes the same set of instructions

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 863

Figure 1. Diagram of a G80 architecture with 16 set of multiprocessors (SMs) and 128 streaming processors
(SPs) based on the figures presented in [38].

each on different data (single instruction/multiple data). All cores have access to global memory
(off-chip), which has a higher bandwidth than CPU global memory but is slower to access than on
a CPU system (i.e. higher latency). Shared memory (on-chip) is extremely fast to access, but only
the cores within the multiprocessor can access it. Thus, applications can be optimized by ensuring
that this memory is used properly. Because each core in a given warp is executing the same set of
instructions, the cores are not independent, and they communicate via their shared memory. Several
aspects not encountered in CPU programming are issues that arise in GPU programming that can
fatally reduce the application’s performance. Such aspects include memory access (both off-chip
and on-chip), branch divergence, and how to fully occupy the GPU with jobs.

3.1. GPU Architecture

We first present a few definitions that will be necessary to describe the GPU architecture. The term
device means GPU, while host means CPU. Threads are light-weight processes that are managed
independently by a system scheduler and executed in parallel. CUDA arranges a group of threads
to make up a thread block in which they can cooperate and synchronize among themselves. Sub-
sequently, a grid is made up of a group of blocks. A kernel is a function executed in parallel on
the device (GPU) called from the host (CPU) side, while a warp is a group of threads executing
synchronously within a block.

When programming in a CUDA-capable GPU, one must keep in mind its architecture and par-
allelism properties for they have an important role and impact on the performance of a GPU
simulation. The architecture of a modern GPU is organized into a set of multiprocessors, each of
which contains a number of streaming processors, as shown in Figure 1. The device memory space
is organized as follows. Global memory is an off-chip memory with slow access that can be accessed
by all threads. Texture access is cached, as well as the constant memory, which is also read-only and
can be accessed by all threads. Shared memory is an on-chip memory space that can be accessed
by all threads in a block. Threads within a thread block can use shared memory to cooperate among
themselves, and this is a good alternative for optimizing a program. Finally, each thread has its own
memory space known as local memory which resides on global memory. Figure 2 illustrates the
CUDA memory hierarchy.

3.2. Optimization

Next, we highlight some CUDA programming issues. In a kernel execution, each thread must write
on a different memory space as they are being executed concurrently to avoid writing conflicts. All
threads within a warp execute the same instruction (single instruction/multiple data architecture), so

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

864 A. MONTEIRO, W. CELES AND G. H. PAULINO

Figure 2. Compute Unified Device Architecture memory hierarchy based on the figures presented in [38].

it is suggested that there should be no conditionals and loops that lead to thread divergency within the
warp. When multiple global memory accesses are coalesced into a single memory transaction by the
device (i.e. proper memory access alignment and contiguity), we achieve a coalesced reading. When
seeking a performance optimization in a kernel execution, it is best to minimize global memory
accesses because they are slow. When access to global memory is mandatory, coalesce reading
helps increase the simulation performance. To coalesce, each half warp must access contiguous 4,
8, or 16-byte words lying in the same 64 or 128-byte segment (for computing capabilities 1.0 or
1.1, respectively), which sometimes is difficult to achieve in actual simulation. Also, it is important
to avoid bank conflicts when using shared memory. Shared memory is divided into banks, and if
multiple threads in the same half-warp access the same bank, access must be serialized. To avoid
bank conflicts, all threads of a half-warp must access different banks or all of them must read the
identical address. Finally, in order to reach an optimal kernel performance, one has to maximize
thread occupancy, defined as the ratio of the number of resident warps to the maximum number of
resident warps, depending on the GPU architecture [38]. The ways occupancy can be maximized
include minimizing the number of registers per thread and shared memory.

In this paper, we used used the following strategies to optimize our numerical simulations:

� Use of coloring and atomic operations to avoid concurrency.
� Minimizing warp divergence and avoiding different conditionals and loops by splitting one

kernel into two or more .
� Reorganizing data structure pattern to properly coalesce global memory.
� Using shared memory instead of reading continuously from global memory.
� Avoiding bank conflicts in shared memory by adding padding when access is performed.
� Maximizing occupancy by minimizing register number and shared memory amount.
� Distributing jobs among threads (e.g. launching three threads per element, where each thread

in the group does a different job than the other two).

Please refer to [37–39] for additional background on CUDA and many-core devices.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 865

4. FRAGMENTATION SIMULATION

We propose a simple but effective finite element mesh representation for fracture, microbranching,
and fragmentation simulations. For a 2D simulation, we provide support for unstructured meshes
of either linear (T3) or quadratic (T6) triangular elements. Our data structure was designed for
unstructured meshes. Figure 3 shows a typical representation for a T6 finite element mesh. The finite
element types include nodes, facets, bulk elements, and cohesive elements, which are explicitly
represented as an independent element [40]. Our data structure implicitly represents facets corre-
sponding to interfaces between two adjacent bulk elements. The intrinsic cohesive model assumes
that all cohesive elements are embedded in the mesh before the simulation begins [41]. This leads
to an unchanged mesh connectivity during the whole simulation process but introduces an artificial
reduction of stiffness. We adopt an extrinsic cohesive model, which assumes that separation between
bulk elements only occurs when the interfacial traction reaches a finite strength [6, 41]. Challenges
emerge when using an extrinsic model because it requires an adaptive insertion of cohesive elements
and topological changes of finite element mesh during the simulation process.

During simulation, internal, external, and cohesive forces at the nodes generate stresses along
element interfaces, which may lead to fracture and fragmentation evolution. New nodes and cohesive
elements are created whenever a facet fractures. Node attributes such as displacement, position,
velocity, and acceleration are also updated from the internal, external, and cohesive forces. In order
to obtain a precise and stable simulation, one must properly adjust parameters such as material
properties and adopt small time steps, suitable for the explicit time integration scheme, together with
a highly discretized model. Table I shows the algorithm for the fragmentation simulation.

4.1. Pre-processing and updating

Given an initial triangular decomposition of the domain, during the pre-processing phase, the stiff-
ness matrix is calculated for each bulk element. We consider the stiffness matrix to remain constant

Figure 3. T6 mesh attributes belonging to the simulation.

Table I. Fragmentation algorithm.

1: Compute stiffness matrix
2: Update nodal mass
3: current step 0
4: while current step <D maximum step do
5: Update displacements
6: if current stepDD check step then
7: Compute stresses
8: if stresses > stress threshold then
9: Insert cohesive elements

10: Update nodal masses
11: end if
12: end if
13: Compute internal forces
14: Compute cohesive forces
15: Update velocities and accelerations
16: Update boundary conditions
17: current stepC D 1
18: end while

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

866 A. MONTEIRO, W. CELES AND G. H. PAULINO

during the whole simulation. Each lumped mass matrix is initialized before the simulation. The
lumped mass matrix contains mass values relative to each bulk element node. Therefore, nodal
masses are updated from the lumped mass matrix by going through the incident elements to each
node. The lumped mass matrix has to be updated every time the mesh changes. This occurs when
cohesive element insertion results from a fractured facet between two bulk elements.

Accelerations are computed from the cohesive and internal forces and nodal masses, which are
then used to update the nodal velocities according to the following equations:

aiC1 D
Rcohi � Rinti

mi

viC1 D vi C
1

2
.ai C aiC1/�t

(1)

uiC1 D ui C vi�t C
1

2
ai�t2 (2)

4.2. Stresses

The stresses computation is the most costly step of the simulation. After a certain number of steps
(10 in this work), we compute the stress and strain at each bulk element node from their Gauss point
evaluations using an extrapolation method. This whole procedure almost dominates the simulation
time with excessive arithmetic operations and could be considered the bottleneck of the simulation
loop if executed for all steps. To compute the stresses and strains at Gauss points of each bulk
element (for each of the three Gauss points considered in this work) in 2D, we first obtain the shape
functions and its derivatives, compute the Jacobian matrix and its inverse, and compute the strains
and displacements relation matrix. Using the material properties of the element, the constitutive
matrix is computed, followed by the stresses and strains at the Gauss points. In a two-dimensional
T6 mesh case, this is a 3�4 matrix, as shown in the next equation.

�Gelement D

0
@
�1;1 �1;2 �1;3 �1;4
�2;1 �2;2 �2;3 �2;4
�3;1 �3;2 �3;3 �3;4

1
A
3�4

(3)

By means of standard extrapolation, the stress and strain matrices are obtained using the previ-
ously computed stress and strain matrices at the Gauss points and the element shape functions (N).
Thus,

�
�xx �xy �yx �yy

�
node i D

0
@
N1;1
N1;2
N1;3

1
A
T

node i

0
@
�1;1 �1;2 �1;3 �1;4
�2;1 �2;2 �2;3 �2;4
�3;1 �3;2 �3;3 �3;4

1
A
3�4

(4)

The principal stresses and their directions are calculated with respect to each nodal location. We
determine if the principal stresses at each facet between two bulk elements exceed a limit for each
of the nodes composing the element. Average stresses are computed to check for cohesive element
insertion. We indicate that a facet is fractured if the stress exceeds a given threshold [6].

4.3. Insertion of cohesive elements

Insertion of cohesive elements imposes topological changes in the mesh [41]. After inserting the
new cohesive element, each facet node is checked for duplication. Figure 4 illustrates a CPU algo-
rithm for duplicating nodes on a triangular mesh. In 2D, the facet mid-side node must be duplicated
in a T6 mesh. However, this assertion does not apply to the corner nodes, which must be checked
by going through incident elements to which they belong. For each fractured facet, we verify if each
of its corner nodes needs duplication. From a node, we traverse all its incident elements starting

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 867

Figure 4. Cohesive element insertion algorithm on a T3 mesh. (1) Mesh with initial facets that need to be
fractured. Elements belonging to each node are traversed, and cohesive element is inserted, but no node is
duplicated. (2, 3) The other fractured facet is checked for node duplication; the cohesive element is inserted,
and the node is marked as needing duplication. (4) Node is duplicated by traversing through the elements

and updating the node index of the node belonging to them.

with one of the two adjacent elements the facet belongs to. If we reach the other adjacent element
to the facet, then the node is not duplicated. However, if not reached, the node must be dupli-
cated. The global node counter is incremented, and the new node index is retrieved from it. Once
again, we must traverse the adjacent elements to update incidence with the new node index. Finally,
the facet mid-side node is updated with the node index also retrieved from the node incremented
global counter.

If there were new cohesive elements added to the mesh, the topological changes indicate that
some nodal masses also changed because bulk elements loose adjacency relationship. Therefore,
the nodal mass must be updated again like on the pre-processing phase. We then initialize the nodal
internal, external, and cohesive forces for future computations.

4.4. Internal and cohesive forces

The nodal internal force computation is also computationally expensive, because it must be per-
formed every step and requires a large number of arithmetic operations. The internal force vector
results from a product of the stiffness matrix and the element displacement vector containing
displacements for its six nodes in a T6 mesh, as shown in Equation (5). This means, we are mul-
tiplying a 12�12 matrix with a 12�1 vector, and it greatly reduces the performance of our parallel
implementation because of its numerous global memory accesses.

Rint12;12 D

0
BBB@

k1;1 k1;2 � � � k1;12
k2;1 k2;2 � � � k2;12
:::

:::
: : :

:::

k12;1 k12;2 � � � k12;12

1
CCCA

0
BBB@

u1x
u1y
:::

u6y

1
CCCA (5)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

868 A. MONTEIRO, W. CELES AND G. H. PAULINO

The cohesive forces are then calculated by traversing through all cohesive elements and cal-
culating their contributions to each node attached to them. The element vector of the deformed
configuration is obtained, followed by the cohesive separations in the local coordinate system. Then,
the separations and tractions at each Gauss point are calculated, together with the cohesive shape
functions. Finally, the nodal cohesive force vector is obtained from cohesive tractions and shape
functions. Together with the internal force and stresses, calculating the cohesive forces is one of the
most costly computation steps within the simulation loop.

5. DATA STRUCTURE

In order to implement efficient operations on mesh entities used in the simulation, a simple topo-
logical data structure is employed to represent the mesh. Because the GPU memory is limited,
the data structure must not be complex so as to provide space for other simulation attributes that
indeed require much global memory space. The proposed data structure is used for T3 or T6 mesh.
Although adding support for tetrahedral elements (Tet4 or Tet10) is straightforward, inserting cohe-
sive elements in 3D requires a graph structure to traverse a node’s incident elements, which is much
more expensive for the GPU. In this paper, our data structure will focus on 2D elements only.

We maintain two tables that describe the mesh. A table of nodes stores the node world-space
position (x and y coordinates). A second table is used to represent the elements and adjacency
relationships. The elements can be of two types: bulk elements or cohesive elements. Because the
number of bulk elements remains unchanged during the entire simulation, we store the cohesive
elements immediately after the bulk elements. For each bulk element, we store its nodal incidence;
three node indices are used in a T3 mesh and six are used in a T6 mesh. For T6 meshes, the corner
node indices are followed by the mid-side indices. The right hand rule (counter clockwise) is used
to define the order of nodal incidence. Another three values represent adjacent element indices that
are opposite to each of the corner nodes (three values for T3 and T6 meshes). For cohesive elements,
we store six node indices for a T6 mesh and four node indices for a T3 mesh. In a T6 mesh, the first
three node indices represent the three nodes of the corresponding facet of its adjacent bulk element
with the smaller id, following the right hand rule. The next three indices belong to the adjacent facet
of the second adjacent bulk element (with the greater id). For a T3 mesh, two indices are stored for
each of the elements. Another two values are used to represent indices of both bulk elements that are
adjacent to each cohesive element’s facets (in both T3 and T6 meshes). Following the pattern, the
first bulk element is opposite to the the first facet (and to the first three node indices) of the cohesive
element. If a cohesive element is attached to a bulk element’s facet, we update the opposite element
of that facet to the cohesive element id on the element table. Nodes or elements are represented by
their indices in the corresponding table. The last index in the table is not used for cohesive elements.
Both node and element tables are stored in the global memory and are updated along with the
adaptive numerical simulation. Figure 5 shows an example of tables used in the data structure.

With our data structure, we are able to perform the following computational patterns (Figure 6):
(1) a node can be updated based on its own information; (2) a bulk element can be updated based
on its own information; (3) a bulk element can be updated based on the information of its nodes;
and (4) a node can be updated based on the information of its incident bulk elements. For the last
pattern, it is necessary to store a bulk element identifier for each node so as to start traversing its
incident elements. In our implementation, we do not store it because we use this computational
pattern by sweeping the bulk elements first. This only works for global computation (e.g. applied
on all nodes of the bulk elements [Section 5.2]). For each node of a bulk element, we traverse its
incident elements. Not storing a bulk element id for each node also allows us to save GPU memory.

A finite element analysis maintains a set of simulation attributes attached to nodes and elements.
We maintain such attributes in global, constant, or texture memory depending on their memory size
and dynamics during the simulation. In global memory, we store the attributes that change through-
out the entire simulation. The nodes have associated displacements, velocities, accelerations, and
forces (internal and cohesive), which are updated at every timestep. Stresses and strains evaluated
at the nodes are updated only in a number of timesteps. When facets are checked for possible

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 869

Figure 5. A special-purpose simplified data structure with mesh parameters of a T6 mesh.

Figure 6. Computational patterns. (a) a node can be updated based on its own information; (b) a bulk element
can be updated based on its own information; (c) a bulk element can be updated based on information of its

nodes; and (c) a node can be updated based on information of its incident bulk elements.

fractures, the fractured facets in the element attributes store which facets have been fractured. Nodal
mass and number of adjacent bulk elements are updated whenever the topology of the mesh changes.
Finally, cohesive attributes such as tractions and separations are updated every step for each cohe-
sive element. We store other node and element attributes that remain unchanged during the entire
simulation, but require too much memory space, in textures. We cannot store these attributes in
constant memory because of its limited memory space. Each element’s stiffness and lumped mass
matrix and each node’s boundary conditions are stored in texture memory. Other attributes that are
common to all nodes and elements, such as elastic and fracture material properties, are stored in
constant memory. These attributes are stored in one table common to all elements and nodes and
occupy little memory space. Because all threads in a warp access the same memory space in con-
stant memory, there will be no bank conflicts. Figure 7 shows element and node attributes that were
stored in the GPU global, texture, and constant memories.

Paulino et al. [41] present a topology-based framework for supporting fragmentation simula-
tions in extrinsic CZMs for CPUs. Their topological data structure, TopS, contains all information

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

870 A. MONTEIRO, W. CELES AND G. H. PAULINO

Figure 7. Simulation parameters data structure diagram of FEM model. Global memory is used for attributes
that change throughout the simulation. Texture memory is used for attributes that are constant during the
entire simulation but occupy too much memory space. Constant memory is used for attributes that are
constant during the entire simulation but are common to all elements and node, therefore requiring few

memory space.

necessary to retrieve element adjacency relationships needed for the simulation and is able to
perform, for example, the previously described computational patterns (Figure 6). While their data
structure is designed for general element types, our specialized data structure is simpler and has been
especially tailored to operate efficiently on GPUs (i.e. data is stored in 2D arrays versus structures).
To represent the mesh on the GPU, it is sufficient to store node positions, node indices for elements,
and adjacent elements, which is much less information than what is stored in TopS [41]. Both the
element and node tables are designed to make the minimal global memory access as possible, as
well as occupying minimum device memory. Saving device memory is a key issue because mem-
ory from a single GPU is extremely limited. Currently, we lack information of storing an element id
for each node (if we want to traverse its incident elements by sweeping the nodes first). However,
while inserting cohesive elements and duplicating nodes, this information is redundant in this step
because we sweep each element first, followed by each of its nodes’ incident elements. We also need
to perform more arithmetic operations when traversing them because we lack information of node
order in each element. However, the lack of this additional information as well as additional arith-
metic operations is compensated by making less global memory accesses, which is a fine tradeoff
for GPU programming. It has also the advantage of saving GPU memory to run larger models.

5.1. Retrieving adjacency relationship

The node and element tables are enough to perform the previously stated algorithms and do not
require too much memory usage. One key adjacency relationship for the insertion of cohesive ele-
ments is the set of adjacent elements to a given node. With the described data structure, from an
element, for each of its incident node, we can easily traverse the set of adjacent elements. Given the
first node, we search the other node that precedes it in the order of incidence, and then access the
corresponding opposite element and find the order of incidence of the node that had the previous
element as its opposite. From both the element and node order, we obtain the next node in the inci-
dence of the element and access its opposite element. From there, we repeat the procedure until we
reach the element adjacent to the first one. Figure 8 illustrates the traversal algorithm from a given
node if no cohesive element is reached within the path. Blue arrows indicate which node to access
in order to obtain the correct opposite element. Dashed lines indicate the node we must access to
obtain the next element required to continue traversing. Figure 9 illustrates the traversal algorithm
from a given node until it reaches a cohesive element. Cohesive elements can also be obtained by
traversing around a node because they are also stored in the element table and can be accessed by
obtaining the opposite element for a given node.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 871

Figure 8. Traversal algorithm from a given node using the proposed data structure. The illustrated path does
not contain cohesive elements.

Figure 9. Traversal algorithm from a given node using the proposed data structure, with cohesive elements
along the path. (1) From a bulk element, the algorithm starts by accessing a node whose opposite element is
incident to the traversed node (central node). (2) The opposite element to that node is obtained (3) followed
by the next node. (4) The third bulk element is accessed, (5) followed by its respective node. (6) A cohesive
element opposite to a node (or adjacent to a bulk element’s facet) can also be reached because it is explicitly

represented in the element table (Figure 5).

5.2. Node update

The set of adjacent elements of a given node is necessary to update element incidence when a node
is duplicated because of the insertion of a new cohesive element. During the simulation step, we can
also identify computations where such topological relationship can be used. As an example, we can
consider the mass associated to a node, which depends on contributions of all adjacent elements.
However, as we discuss further in our parallel simulation, for almost all cases, accumulating con-
tributions of adjacent elements to nodes is more efficiently handled by traversing all the elements
in the model. Such cases include calculating internal and cohesive forces and stress and strain on
nodes. For each element, we accumulate its contribution to all incident nodes. In the end, the contri-
butions of all corresponding adjacent elements will be accumulated for each node. In a serial code,
this algorithm is straightforward and very efficient. In a parallel environment, writing conflicts arise,

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

872 A. MONTEIRO, W. CELES AND G. H. PAULINO

Figure 10. Node update algorithms: (1) incident elements traversal (or gather), and (2) element sweep
(or scatter).

and one needs to ensure consistency, as we shall discuss. Figure 10 illustrates both strategies to
compute nodal information from its adjacent elements.

The first strategy, known as Gather, traverses the node’s incident elements, accumulating their
information on the node. The second strategy, known as Scatter, accumulate each element’s contri-
bution to all incident nodes. We tested both algorithms on the GPU by accumulating each element’s
mass on their incident nodes. In our experiments, the Scatter algorithm turned to be more efficient
as we increased the number of elements. While this algorithm implements a simple kernel function
with few global memory accesses and no divergence, the Gather algorithm implements a more com-
plex kernel requiring greater number of registers and adding divergence (not all nodes have the same
number of incident elements). Although divergence can be minimized by sorting elements accord-
ing to their incidence, this algorithm still tends to perform much more computation than the other.
The Scatter approach is well suitable for problems that require many computations per elements, but
when duplicating nodes and inserting cohesive elements on fractured facets, the Gather strategy is
essential as the basis of the algorithm, as discussed in Section 4.4. To avoid writing conflicts in the
Scatter algorithm, we adopted the commonly used mesh coloring representation, as we shall discuss
later. While testing both algorithms by accumulating element mass on nodes, it was observed that
a higher number of colors or unbalanced number of elements in each color lowers the efficiency of
the Scatter algorithm. As we increase the number of elements, Gather’s efficiency tends to decrease
in relation to Scatter. For these reasons, we adopted the Scatter algorithm for all cases except when
inserting cohesive elements and duplicating nodes, in which we used the Gather algorithm.

6. PARALLEL IMPLEMENTATION

The main challenge for implementing a many-core parallel fragmentation simulation, based on the
extrinsic CZM, is to ensure topological consistency on mesh adaptation (insertion of new cohe-
sive elements). However, even the mechanics code, at first straightforwardly parallelized, based on
explicit integration, also imposes challenges. Memory access and usage can be a bottleneck when
using the slow accessible global memory space. Concurrency is also an issue to have in mind
because writing conflicts can eventually occur when updating the same memory space for different
threads running concurrently. In order to maximize the performance and benefit from GPU paral-
lelism, it is important to keep in mind programming techniques discussed in Section 4, or else the
attempted GPU speedup will be negligible. Although the parallel algorithms discussed in the next
dicussions refer to a T3 or T6 mesh, they can be extended to 3D meshes using a modified version of
the previously discussed data structure.

In this section, the notation <<<X>>> denotes a kernel call, a function executed by the device
(GPU) that is called by the host (CPU). The parameter X is the number of threads to be launched.
As an example, if each node of the mesh is executed in parallel, then X is the number of nodes of
the mesh.

6.1. Coloring model

In this discussion, we consider the implementation of T6 meshes. The first parallel procedure to
be discussed is updating the node attributes. In our case, we are focused on updating each nodal

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 873

mass with the lumped mass matrix from each adjacent bulk element. The lumped mass matrix is
computed in a pre-processing phase together with the stiffness matrix. We could launch one thread
per element and accumulate the element mass on its respective nodes retrieved from the incidence
table. However, threads would write on the same memory space because different elements share
the same node.

To avoid the race condition, we adopt the commonly used mesh coloring representation. The idea
is that no element of the same color shares a node. Applying this technique when accumulating
the nodal masses from the bulk elements means that we will launch a kernel for each color with a
thread per element in that color group. With this strategy, different threads will not update the same
node because there would not be elements with shared nodes being processed in parallel. Because
bulk elements are neither removed nor inserted during the entire simulation (only cohesive elements
and nodes are inserted), mesh coloring can be pre-processed. In graph theory, a node degree (also
called valency) is the number of incident edges to that node. In our model, each element represents
a graph node, and adjacent elements are connected by a graph edge. The minimum number of
color groups is equal to the maximum node degree on the entire mesh. However, determining the
minimal color number of a graph is known as an non-deterministic polynomial time (NP)-complete
problem, although there are many heuristics for finding a reasonable solution. In our case, we will
be interested in finding a reasonable and balanced solution, or else we will be wasting additional
kernel computations with few threads per color containing few elements, while having other color

Table II. Kernel subroutine call algorithm using mesh coloring.

for c D 1! numColors do
numT hreads numElements.c/
KernelCal l <<< numT hreads >>> .c/

end for

Figure 11. (1) Bulk elements are re-arranged in color groups (preferable balanced) and the same kernel per
color group is called to avoid writing conflicts. (2) Example of a colored T6 structured mesh (3) and using
the colored mesh and scatter strategy to update nodal masses of the group of elements in the current color

in parallel.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

874 A. MONTEIRO, W. CELES AND G. H. PAULINO

with many more elements. We order the graph nodes (elements) in decreasing order of degree to
obtain the closest optimal solution. Table II shows the procedure we use to perform a conceptual
execution unit on the elements in parallel: we launch the same kernel multiple times, one for each
group color. Figure 11 illustrates the colored mesh and its use in kernel calls and updating the nodal
masses using the scatter strategy. We use the Welsh Powell algorithm [42], a greedy algorithm‡ to
color unstructured meshes. In our experiments, we use structured ‘union-jack’ meshes. For these
meshes, we apply a coloring algorithm that takes advantage of their pattern so as to obtain the
optimal color number.

6.2. Pre-processing and update

A pseudo-code of the parallel simulation is shown on Table III. In the pre-processing phase, also
executed on the GPU, we need to compute the stiffness matrix and the lumped mass matrices

Table III. Parallel Fracture Algorithm.

1: ComputeMassMatrix <<< numElem >>>
2: ComputeStiff nessMatrix <<< numElem >>>
3: for c D 1! numColors do
4: numGroupElem numElem.c/
5: UpdateNodalMass <<< numGroupElem >>>
6: end for
7: current step 0
8: while currentstep <D maximumstep do
9: UpdateDisplacements <<< numNodes >>>

10: if current stepDD check step then
11: ComputeStressesAtGaussPoints <<< numElem >>>
12: for c D 1! numColors do
13: numGroupElem numElem.c/
14: ComputeNodeStresses <<< 12 � numGroupElem >>>
15: end for
16: CheckF racturedFacets <<< numNodes >>>
17: F ilterF racturedFacetElements <<< numElem >>>
18: numF racElem CompactF racturedFacetElements
19: if Current Fractured Facets > 0 then
20: for c D 1! numColors do
21: numGroupElem numF racElem.c/
22: InsertCohesiveElements <<< numGroupElem >>>
23: end for
24: for c D 1! numColors do
25: numGroupElem numElem.c/
26: UpdateNodalMass <<< numGroupElem >>>
27: end for
28: end if
29: end if
30: for c D 1! numColors do
31: numGroupElem numElem.c/
32: ComputeInternalForces <<< 12 � numGroupElem >>>
33: end for
34: ComputeCohesiveSeparations <<< numCohElem >>>
35: ComputeCohesiveT ractions <<< 3 � numCohElem >>>
36: numElemCoh CompactBulkElementsW ithCohesiveElements
37: for c D 1! numColors do
38: numGroupElem numElemCoh.c/
39: ComputeCohesiveForces <<< numGroupElem >>>
40: end for
41: UpdateVelocit iesandAccelerations <<< numNodes >>>
42: UpdateBoundaryCondit ions <<< numNodes >>>
43: current stepC D 1
44: end while

‡Refer to: http://ghpaulino.com/educational_GreedyGraphCol.html

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

http://ghpaulino.com/educational_{G}reedyGraphCol.html

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 875

Figure 12. Fracture and fragmentation simulation loop.

associated to each element and then update the nodal masses. Building the stiffness matrix requires
one thread per element but with no color subdivision scheme because we write directly in per-
element memory space. The same kernel computes each element’s lumped mass matrix. The last
kernel in the pre-processing phase updates the nodal masses with the lumped mass matrix by using
the previously discussed parallel algorithm, invoking a kernel per color group. We use constant
memory for storing material attributes that are constant during the entire simulation. Cache hits
when fetching these attributes during stress and other force computations will help to increase
performance because threads in the same warp access the same value at the same time.

Figure 12 depicts the steps in a simulation loop. The first kernel in the simulation loop updates the
nodes’ displacements, launching one thread per node. Each thread fetches the velocity and acceler-
ation of its corresponding node from global memory and updates the result back in global memory
following the Equation (2). This is a simple kernel that uses few global memory accesses, and every
thread in a warp follows the same path because there are no conditionals or loops.

6.3. Stresses

Before checking fractured facets, the next procedure is responsible for computing the stresses and
strains on the nodes by first calculating them at the Gauss points for each element, multiplying its
respective matrix with the element shape function as shown in Equation (4) in Section 5, and writ-
ing them back on the elements’ nodes. Each node stress is then checked for cohesive strength over
a threshold value so it can later indicate if a facet is fractured or not. To implement this whole pro-
cedure in a single thread, we would need to launch one thread per element using the color model to
avoid concurrency. This single kernel would have too many loops and global memory accesses that
cause a low performance. Also, the number of registers would exceed the established limit, forcing
the compiler to put local variables on local memory residing on global memory. Another issue worth
highlighting is that this complex kernel would be executed several times because of the color model.
We have then opted for an alternative strategy to reduce effort and increase performance, dividing
this complex kernel into three simpler ones. In the first kernel, we compute the elements’ stresses
and strains at the Gauss points by launching one thread per element and with no color model. The
second kernel calculates the stresses and strains matrix for each node, launching one thread per ele-
ment but this time using the color model because each element accumulates results on its nodes.
Notice that this kernel’s effort is reduced because it only performs read-write on global memory. The
third kernel checks if each node’s principal stresses exceed the cohesive strength limit by launching
one thread per node. The kernel dividing technique is useful as it distributes efforts among simpler
kernels by reducing global memory accesses and reducing loops, and it will be adopted on other
kernels too. Looking at Equation (4), we can observe that the second kernel performs several global
memory accesses because it accumulates element stresses and strains on its nodes by fetching from
the element stress and strain matrix (3�4 matrix) at the Gauss points, computed on the previous
kernel. An alternative strategy is to launch one thread per element node (six threads per element),
and each thread is responsible for multiplying the stress and strain matrices at Gauss points with
the respective nodal shape functions and writing the result in its respective node. We opt to launch
12 threads per element where each thread would fetch two columns from the four-column Gauss
point element matrix line and write the result on part of the 2�2 nodal stress and strain matrix. This

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

876 A. MONTEIRO, W. CELES AND G. H. PAULINO

Figure 13. Splitting the kernel that computes stress and strain into simpler kernels.

Figure 14. To accumulate the stresses and strains on the nodes, we launch 12 threads per element, where each
thread will accumulate part of the stress and strain matrices by fetching from the element shape functions

and from the stress and strain at the Gauss points.

strategy reduces global memory access per thread, reducing the kernel effort. Figure 13 illustrates
the stress kernel division, and Figure 14 illustrates the second kernel procedure.

6.4. Insertion of cohesive elements

Once fractured facets are identified, new cohesive elements must be inserted in the mesh. When
inserting cohesive elements, launching one thread for each element can result in idle kernels because
there are few elements that contain fractured facets. In order to solve this matter, an additional ker-
nel is used before inserting cohesive elements. This additional kernel filters only the elements that
contain fractured facets by launching one thread per element and checking its three facets for possi-
ble fractures as discussed in Section 5. However, a fractured facet always belongs to two elements
that are adjacent to each other, and we cannot filter both elements for the same facet otherwise the
nodes will be duplicated twice. Therefore, we chose the element that has the smaller (or greater)
identifier number. In our implementation, we also maintain a list of bulk elements that are adjacent
to existing cohesive elements. This list is useful when later computing cohesive forces, otherwise
idle kernels will be included in this simulation step as well.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 877

Figure 15. Cohesive elements insertion on a T6 mesh. (1) Mesh with initial cracks and facets that
fractured facets. Coloring is used to avoid duplicating nodes of elements that share nodes in parallel. (2)
From each facet node belonging to the element in the current color group, the algorithm traverses through its
incident elements. (3) Nodes that need duplication. (4) T6 mesh with final node duplications and new
cracks and cohesive elements. The fractured facets from the next color group are checked for cohesive

elements insertion.

From the list of elements containing fractured facets, we now check for node duplication and
insert the cohesive elements. We use mesh coloring on the filtered elements’ list and launch one
thread per element. Figure 15 illustrates the parallel cohesive element insertion process. During
one element computation, we go through its fractured facets and check its nodes for duplica-
tion. The same traversal algorithm presented in Section 5 is used to check if the node has to be
duplicated. If so, we need to update the global nodal counter and retrieve the new node index.
However, because the node counter resides in one global memory address, many threads updating
the same counter cause a writing conflict. To solve this matter, we use CUDA’s atomic operations
to perform a read-modify-write operation (in this case, a global variable increment), without the
interference of other threads. The function atomicAdd()computes the sum on the word located
in the global address and returns the previous stored word. Therefore, it returns the new node
index needed to update the elements’ incidence table. Node attributes are then copied to the newly
appended node. The traversal algorithm is used to go through the node’s adjacent elements until it
reaches the cohesive element while updating their nodes with the new index value. We also need
to update the opposite indices in the element table. Table IV presents the parallel cohesive element
insertion algorithm.

After duplicating nodes and inserting the cohesive elements, nodal mass is changed as the sets
of adjacent elements are also changed. We update the nodal mass using the previously discussed
parallel algorithm. Cohesive and internal forces are then initialized as they later are calculated.

6.5. Internal Forces

Computing the internal forces is another expensive kernels and occupies a large portion of the sim-
ulation as it is executed every time step. Our first approach was launching one thread per bulk
element and use the color model because the elements’ nodes are updated. The stiffness matrix is
multiplied by the displacement vector, resulting in the nodal internal forces. In a two-dimensional
case, the stiffness matrix has dimension 12�12 and the displacement vector 12�1. With a naive

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

878 A. MONTEIRO, W. CELES AND G. H. PAULINO

Table IV. Parallel Node Duplication Algorithm.

1: e bulkelement
2: for each corner node n belonging to a fractured facet f of e do
3: for each incident element of n starting with e do
4: e next element
5: end for
6: if element adjacent to e is reached again then
7: continue
8: end if
9: newNodeIndex atomicAdd.globalNodeCounter; 1/

10: nodeList ŒnewNodeIndex� D n
11: for each incident element of n starting with e do
12: Replace n index with newNodeIndex
13: e next element
14: if cohesive element or crack is reached then
15: break
16: end if
17: end for
18: Insert cohesive element in facet f
19: end for

multiplication code, we make 1728 global memory accesses. A strategy to reduce the number of
global memory fetches is to load the displacement vector into shared memory once and use it for
multiplying each line of the stiffness matrix. This greatly reduces the number of global accesses
from 1728 to 156. The performance, however, still does not reach optimal expectations. By making
each thread responsible for computing the product of one line of the stiffness matrix with the dis-
placement vector, the number of global memory accesses is reduced to 13 (one for loading a value
from the displacement vector into shared memory and 12 for fetching values from one line of the
stiffness matrix), as well as the kernel’s effort. Launching one thread per matrix line means we are
launching 12 times the number of threads per element. Because coloring is used, the total number
of blocks hardly exceeds the limit. Going further, because the stiffness matrix is constant during
the entire simulation, it can be stored in a texture memory to take advantage of the texture cache
and the spatial locality accessed by the warp. In order to guarantee the right memory access in each
thread, we define the thread block dimension (1D) as the number of matrices per block times the
number of threads per matrix (in our case, 12 threads for each matrix). To guarantee the thread block
is multiple of the warp size, we use 16 matrices per block (192 threads per block) on a GEFORCE

GTX 480 GPU (NVIDIA, 2701 San Tomas Expressway Santa Clara, CA 95050). Each thread of
the block loads one value from the displacement vector into shared memory and are synchronized.
Notice that each group of 12 threads will load its respective element displacement vector. One issue
remains, however. At the same time thread 0 is reading address 0 (row 0, column 0), for instance,
thread 1 of the same warp will be reading address 12 (row 1, column 0), thread 2 will be reading
address 24 (row 2, column 0), and so forth. This means that memory is not being coalesced at all. In
order to properly perform coalesced readings and achieve a higher bandwidth, consecutive threads
must read consecutive memory addresses. Therefore, we transpose the matrices, and each thread of
a warp will be able to read consecutive addresses. Figure 16 illustrates this strategy.

6.6. Cohesive forces and simulation outcome

Unlike the internal force kernel, computing the cohesive forces is expensive because of its
numerous arithmetic operations, especially when calculating the tractions at the Gauss points. It
performs few global memory access (when used registers do not exceed the limit). Launching one
thread per cohesive element possibly generates writing conflicts when updating nodal cohesive
forces because cohesive elements may share nodes. Therefore, one thread per bulk element would
be considered. However, with many arithmetic operations, registers, and color models applied to the
kernel, the previous kernel splitting technique could help increase performance. In the first kernel,

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 879

Figure 16. When computing internal forces, a thread per stiffness matrix line is launched using the color
model and used to perform a dot product with the displacement vector in shared memory. In this example,
the first image shows one element used per block. The second image shows the matrix transposed so memory

reads can be coalesced (i.e. each consecutive thread reads consecutive memory addresses).

we calculate the cohesive separations in the local coordinate system. One thread per cohesive
element is launched because we write directly on the cohesive attributes memory space. The
second kernel calculates the cohesive traction by also launching one thread per cohesive element.
However, this is the most expensive kernel in terms of arithmetic operations, especially when we
need to calculate the cohesive tractions for each of the three Gauss points. Therefore, we adopt the
previous strategy of launching more than one thread per element. In this case, we will be launching
three threads per cohesive element, one for each of the three Gauss points. Each thread is responsible
for calculating the tractions for its cohesive element in its respective Gauss point. Because the total
number of cohesive elements in the simulation is relatively small, the number of threads will not be
high. This strategy helps increase the performance of the the kernel. Finally, the third kernel con-
sists of writing the cohesive forces on the cohesive elements’ respective nodes. We then launch one
thread per bulk element that contains any cohesive element (using the list previously mentioned).
To avoid concurrency, the threads are separated by color group. The cohesive kernel subdivision is
shown in Figure 17.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

880 A. MONTEIRO, W. CELES AND G. H. PAULINO

Figure 17. Splitting the kernel that computes cohesive forces into simpler kernels.

Figure 18. T6 disc mesh used to test insertion of cohesive element decoupled from analysis code.

The last two kernels of the simulation are launched with one thread per node. Updating velocities
and accelerations requires only a few global memory accesses for fetching cohesive and internal
forces as well as current and previous accelerations and nodal mass. They are used to write on
the acceleration and velocity global memory space. Boundary conditions are then applied using a
second kernel to update accelerations and velocities of boundary nodes.

6.7. Overview

Looking closely to all steps of the simulation, we can point out that there are two dominant kernels.
The first is computing cohesive forces, which requires many arithmetic operations. The second is
computing internal forces because it requires several global memory accesses. Splitting the kernels
into simpler ones, distributing jobs among threads, and using texture memory greatly increase the
kernels’ performance. Non-linear simulations would need to compute the stiffness matrix at every
time step instead of pre-processing it. Although it would greatly reduce the program’s performance,
the GPU speedup would also increase. Computing stress and strain is the most complex and expen-
sive kernel. Although it requires a larger processing time and more numerous arithmetic operations
than computing the internal and cohesive forces, it is not computed at every time step, thus not
dominating the simulation time. Kernels that update displacements, velocities and accelerations,
boundary conditions, and nodal masses are small kernels as they perform few and simple read-and-
write operations with no warp divergence and coalesced reading. Shared memory is rarely used,
working more as a cache to optimize memory access.

7. EXPERIMENTAL RESULTS

To test the performance and the correctness of our parallel code, we have run a set of computational
experiments. The experiments were split in two parts: inserting cohesive elements decoupled from

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 881

mechanics analysis and running the fracture and fragmentation simulation. The GPU simulation
results are compared to CPU counterparts running on a INTEL CORE I7 (Intel Corporation, Santa
Clara, CA, USA) CPU @ 2.80GHz with 12GB of memory on a 64-bit Windows 7 operating sys-
tem. The GPU used device is a NVIDIA GEFORCE GTX 480 with 15 multiprocessors, each with
32 cores and a total of 480 CUDA cores, with a clock rate of 1.40 GHz and using compute capa-
bility 2.0 because we use double precision in the simulation. The total amount of GPU memory is
1.536 gigabytes.

Table V. Results for insertion of cohesive elements decoupled from analysis code.

Bulk elements Initial nodes Final nodes Cohesive elements CPU time (s) GPU time (s) Speedup

240,000 481,200 1,440,000 359,400 9.29 0.0407 228.3
960,000 1,922,400 5,760,000 1,438,800 36.946 0.1016 363.6
2,160,000 4,323,600 12,960,000 3,238,200 84.94 0.1935 439.0
3,840,000 7,684,800 23,040,000 5,757,600 150.04 0.3101 483.8

GPU, graphics processor unit.

Figure 19. Time for cohesive elements insertion of a T6 mesh.

Figure 20. Two-dimensional model of a rectangular specimen with initial notch of 2 mm. Initial strain is
0.015, with node thickness of 1 mm. Model dimensions are 16mm per 4mm.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

882 A. MONTEIRO, W. CELES AND G. H. PAULINO

Table VI. Simulation and mesh parameters for a T6 mesh and its refined version.

No. of bulk elements No. of nodes No. of new nodes No. of cohesive elements No. of colors

36,864 74,257 1901 979 8
147,456 295,969 5842 2976 8

Table VII. Simulation and mesh parameters and results (graphics processor unit [GPU]
speedup and GPU and CPU time) for a T6 mesh and its refined version.

No. of bulk elements Timestep CPU time (s) GPU time (s) Speedup

36,864 2.0e-9 410.181 11.788 34.8
147,456 0.5e-9 6,537.839 153.809 42.5

Figure 21. T6 FEM mesh with 36,864 bulk elements at the end of the fragmentation simulation.

7.1. Insertion of cohesive elements

To check the correctness of the algorithm to insert cohesive elements in parallel, we have run a
computational test decoupled from any mechanics simulation (setting up experiments similar to
the ones described by Pandolfi and Ortiz [43] and by Paulino et al. [41]). Cohesive elements were
inserted, in a random order, at all the facets of the underlying meshes. The random order in which the
cohesive elements are inserted results in arbitrarily complex crack patterns during the experiment.
In the end, each node of the mesh is used by only one bulk element. We then have checked if
the final obtained number of topological entities were the expected ones. In the experiments ran
by Pandolfi and Ortiz [43] and Paulino et al. [41], the cohesive elements were inserted in a serial
order. In our experiment, the cohesive elements are inserted in parallel. To better mimic insertion of
cohesive elements in actual simulations, the facets were grouped in 20 sets, inserting 5% of cohesive
elements concurrently within each group of facets, using the color model. To color the mesh, we
used a greedy algorithm§. The number of colors achieved was 10.

We have employed a T6 disk mesh like the one in Figure 18 with different discretizations, varying
the number of bulk elements from 240,000 to 3,840,000. The results are shown in Table V. Figure 19
depicts that the time to insert all cohesive elements varies linearly with the total number of inserted
elements. As can be noted, the gain in performance delivered by the GPU implementation is quite
significant, even though we are more interested in validating the GPU results.

When duplicating thousands to millions of nodes concurrently, as in this experiment, atomic oper-
ations can be quite slow. In order to optimize node duplications in such scenarios, we present a new
algorithm that greatly speed up the kernel. The algorithm is discussed in Appendix A. However, dur-
ing actual fragmentation simulations, few nodes are duplicated concurrently in a timestep, making
the new strategy performance gain negligibly.

§Refer to: http://ghpaulino.com/educational_GreedyGraphCol.html

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

http://ghpaulino.com/educational_{G}reedyGraphCol.html

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 883

7.2. Fragmentation simulation

The fragmentation simulation was tested using two models: a rectangular specimen and ring
specimen. Serial and parallel simulation times as well as kernel times, for the parallel simulation,
were measured, and simulation outputs such as number cohesive elements, number of new nodes
were analyzed. During the pre-processing phase, nodal perturbation is performed on the end-nodes
of a T6 element [15]. Mid-side node positions are linearly interpolated at each facet edge nodes’
positions.

Figure 22. Refined T6 FEM mesh with 147,456 bulk elements at the end of the fragmentation simulation.

Figure 23. Strain energy evolution with crack propagation.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

884 A. MONTEIRO, W. CELES AND G. H. PAULINO

7.2.1. Rectangular specimen. The first model tested was a rectangular specimen with an initial
notch and refined into T6 (quadratic triangle) elements, as illustrated in Figure 20. Fracture propa-
gation is based on mixed-mode fracture and extrinsic CZM [4, 44, 45]. Initial analysis parameters
are as follows: initial strain = 0.015, elastic modulus = 3.24 GPa, Poisson coefficient = 0.35, specific
mass = 1190 kg/m3, fracture energy GI = 352 N/m, cohesive strength smax = 324 MPa, and shape
parameter ˛ = 2.

A first version of the mesh was composed by 74,257 nodes and 36,864 bulk elements. Because
of the regular mesh pattern, we employed a simple procedure to subdivide the elements into eight
color groups, which is the optimal. Although we took advantage of the structured mesh to obtain an
optimal number of colors, our simulation is able to handle unstructured meshes with a non-optimal
number of colors (which is the case in the ring example). Total simulated time is 2 �s, in 10,000
steps of 2 ns. Figure 24 shows an extruded 2D model after the simulation and fracture propagation.

Figure 24. 3D view of fragmented 2D plate with 74,257 nodes and 36,864 bulk elements.

Figure 25. Average time of each kernel of the simulation for a T6 mesh with 36,864 bulk elements.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 885

The refined version of the same model with 295,969 nodes and 147,456 bulk elements was also
tested using time steps of 0.5 ns, performing 40,000 simulation steps. In both experiments, stress
computation and fractured facets are checked at every 10 simulation steps, and cohesive elements
inserted ‘on-the-fly’, when and where needed. Tables VI and VII present results for both the mesh
and its refined version. The increase in speedup with model size is expected when running the
application on GPU. Figures 21 and 22 show the final plotted image of the T6 mesh and its refined
version at the end of the simulation. The fracture evolved in a straight path in consequence of the
initial notch of the model and the transverse strain applied on the model. Figure 23 shows the nodal
strain energy wave propagation with the fracture and simulation evolution. Figure 24 shows an
extruded visualization of the two-dimensional plate.

Figures 25 and 26 present results for the portion and average simulation execution times for
each kernel for the first T6 mesh model. Stress computation is by far the most expensive, as shown
in Figure 25. However, Figure 25 shows that the kernel responsible computing the internal forces
dominates the simulation time with almost twice the time of the stress kernel because of the fact that

Figure 26. Total time each kernel takes in the entire simulation for a T6 mesh with 36,864 bulk elements.

Figure 27. 2D model of a ring specimen. Initial pressure is 400 MPa, with node thickness of 1 mm. The
inner radius is 0.08 m, and the outer radius is 0.15 m.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

886 A. MONTEIRO, W. CELES AND G. H. PAULINO

the internal forces are computed at each time step, while stresses are computed at each ten steps.
Another kernel that greatly occupies the simulation time is computing the cohesive forces because
of its many numeric computations, although kernel splitting helped increase performance. The node

Table VIII. Simulation and mesh parameters for a T6 mesh and its refined version.

Mesh type No. of bulk elements No. of nodes No. of new nodes No. of cohesive elements No. of colors

Ring 20�160 12,800 25,920 1816 955 10
Ring 30�240 28,800 58,080 4923 2506 10
Ring 40�320 51,200 103,040 9178 4686 10
Ring 96�768 294,912 591,360 59,055 29,615 10
Ring 115�787 362,020 725,614 68,842 34,245 10

Table IX. Simulation and mesh parameters and results (graphics processor unit [GPU] speedup
and GPU and CPU time) for a T6 mesh and its refined version.

Meshtype No. of bulk elements Timestep CPU time (s) GPU time (s) Speedup

Ring 20�160 12,800 3e-9 375.963 12.668 29.7
Ring 30�240 28,800 3e-9 900.095 22.632 39.8
Ring 40�320 51,200 3e-9 1601.516 36.384 44.0
Ring 96�768 294,912 3e-9 9,355.186 200.804 46.6
Ring 115�787 362,020 3e-9 11,421.568 242.802 47.0

Figure 28. The figure shows a T6 FEM mesh with 362,020 bulk elements and the strain energy’s evolution
with the crack propagation for times (1) 5 �s, (2) 20 �s, (3) 25 �s, (4) 50 �s, (5) 60 �s, and (6) 68 �s.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 887

duplication kernel does not occupy a large portion of the simulation because the number of cohesive
elements is relatively small. Filtering elements, updating velocities, accelerations, displacements,
and nodal masses, and applying boundary conditions are small job kernels with few global memory
accesses and coalesce readings that do not have high execution time.

7.2.2. Ring specimen. The second tested model was a 2D ring specimen with no initial notch,
refined into T6 (quadratic triangle) elements, as illustrated in Figure 27. We performed a procedure
to color the mesh using the greedy algorithm ¶. Fracture propagation is based on mixed-mode frac-
ture and extrinsic CZM [4, 44, 45]. Initial analysis parameters are as follows: initial pressure = 400
MPa, elastic modulus = 210 GPa, Poisson coefficient = 0.3, specific mass = 7850 kg/m3, fracture
energy (GI) = 2000 N/m, and shape parameters (a) = 2.

A first version of the mesh was a 20�160 ring composed by 25,920 nodes and 12,800 bulk
elements. The number of colors obtained by a greedy coloring algorithm was 10. A radial pressure
was applied on the model. Total simulated time is 81 �s, in 27,000 steps of 3 ns each. The model
was refined in from 25,920 nodes to 725,614 nodes. Stress computation and fractured facets are
checked at every 10 simulation steps, and cohesive elements inserted as necessary. Tables VIII and
IX present results for both the mesh and its refined version. Figure 28 shows the strain energy
evolution throughout the simulation. As expected, the GPU speedup increases with the number of
bulk elements.

8. CONCLUDING REMARKS

In this work, we propose a strategy for GPU-based parallel fracture, microbranching, and frag-
mentation simulations based on the extrinsic CZM. Such parallel simulations impose two main
challenges. First, we need to be able to handle mesh modifications because cohesive elements are
inserted adaptively along the simulation. Second, we need to efficiently perform intensive numer-
ical computation, with numerous memory accesses, in parallel. Using a simple topological data
structure, shared memory, kernel splitting, texture fetch, and minimizing global memory accesses,
we could effectively map and optimize the CPU implementation of a fragmentation simulation to
a GPU environment, taking advantage of CUDA benefits. Mesh coloring proved to be an effective
means to avoid race conditions and simplifying algorithms that would generate complex kernels if
not used.

Although our solution can be extended to three dimensions, we leave the simulation of 3D tetra-
hedron models on the GPU for future implementation. Fragmentation simulation could also be
extended to a multi-GPU approach, where we would need to consider mesh partition subdivision and
communication among them. Another future approach is the extension of the GPU implementation
to adaptively perform mesh refinement and coarsening. One challenge we would have in mind is the
implementation of a parallel coloring method on the mesh as the mesh structure changes at each step.
Maintaining consistency of the topological changes of the mesh would also be challenging because
bulk elements would also be inserted and removed from the mesh. Finally, fragmentation simulation
could extend further than engineering applications. If physical accuracy is relaxed and the timestep
increased, the implementation of breaking objects in computer animation could be performed using
a simplified version of our model.

APPENDIX: OPTIMIZED INSERTION OF COHESIVE ELEMENTS

The following strategy is a much faster way to insert cohesive elements in the GPU. However, it
is not used in our parallel implementation because it requires a large number (e.g. thousands) of
cohesive elements being inserted in parallel, which is not the case in the actual simulation.

¶Refer to: http://ghpaulino.com/educational_GreedyGraphCol.html

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

http://ghpaulino.com/educational_{G}reedyGraphCol.html

888 A. MONTEIRO, W. CELES AND G. H. PAULINO

To optimize the cohesive elements insertion and node duplication, and also avoid writing on the
same global memory address using the atomic operation, we tested a new strategy where each thread
block will have its own node counter. Each thread within the block is responsible for updating
the node counter that resides in shared memory, and only one thread in the block (not necessarily
the first) will be responsible for accumulating the shared counter on the global counter residing in
global memory. The advantages of this strategy are that writing in shared memory is much faster,
and fewer number of threads will be updating the same global memory address simultaneously as
well as few threads updating the same node counter in shared memory. Retrieving the new node
index is performed by using the atomic functions’ return values. For each thread, when adding
one to the block counter in shared memory, we retrieve the number of block’s duplicated nodes
until that moment, representing the node index offset within the block. Threads are then synchro-
nized. One thread in each block adds its block counter to the global node counter, and the atomic
function returns the number of nodes immediately before the sum. This result represents the cur-
rent number of nodes for all of the other blocks. Threads are synchronized, and adding the atomic
intrinsic result from global counter with the shared counter index will give the current new node
index for this thread. This strategy is best taken use for when many nodes are duplicated (such
as test case reported in Section 7.2). In actual simulation, however, cohesive element insertion is
checked at a number of steps in which few nodes are duplicated, so the increase in performance
is unremarkable. Figure A.1 illustrates the algorithm for retrieving the node index inside the cur-
rent block. Using the atomic function to accumulate the shared memory counter when accumulating
the number of nodes inside the current block gives us the node offset inside the block. Figure A.2
illustrates retrieving the node index offset from all other blocks. Using the atomic function to add
the current number of nodes in the global counter with the current number of nodes inside the
block (stored in the shared node counter) gives us the current node offset for this block. Adding
it with the current node offset inside the block gives the new node index. Table A.1 presents
the algorithm.

Figure A.1. Getting part of the new node index for each thread node counter offset inside the block. This
value is added to the current node counters from each block.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 889

Figure A.2. Schematic demonstrating retrieval of the new node index from current block node counters.

To test the optimized insertion of cohesive elements, we fractured 5% of the facets at a time (as
discussed in Section 7.2) and launched a kernel for each color. To color the mesh, we used the Welsh
Powell algorithm [42]. It is important to highlight the performance boost when using a node counter
in shared memory for each block. The results in the next dicussions show that the speedup rose,
indicating that thousands to millions of threads updating the same memory address simultaneously
is a bottleneck, and that shared memory’s fast access as well as few threads updating the same

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

890 A. MONTEIRO, W. CELES AND G. H. PAULINO

Table A.1. Node index retrieving and appending using shared memory when inserting cohesive
elements.

1: n Node to duplicate
2: if first thread then
3: Number of New Nodes Per Block 0

4: Block Offset 0

5: end if
6: syncthreads
7: Node Thread Offset atomicAdd(Number of New Nodes Per Block, 1)
8: syncthreads
9: if first thread then

10: Block Offset atomicAdd(Global Node Counter, Number of New Nodes Per Block)
11: end if
12: syncthreads
13: New Node Index Block OffsetC Node Thread Offset
14: NodeArray[New Node Index] = n

Table A.2. Mesh attributes performance results for T6 disc mesh [18] and its refined versions.

Bulk elements Initial nodes Final nodes CZ elements CPU Time (s) GPU Time (s) Speedup

240,000 481,200 1,440,000 359,400 9.29 0.0363 255.9
960,000 1,922,400 5,760,000 1,438,800 36.946 0.0778 474.9
2,160,000 4,323,600 12,960,000 3,238,200 84.94 0.1161 731.6
3,840,000 7,684,800 23,040,000 5,757,600 150.04 0.1761 852.0

GPU, graphics processor unit.

Figure A.3. Cohesive elements insertion time for T6 meshes using atomic functions in global or shared
memory.

address can be a useful technique when duplicating nodes. Table A.2 shows the GPU results for T6
disc mesh and its refined versions compared to the CPU results, as well as mesh attributes before
and after the simulation. Graphs A.3 and A.4 compare the GPU speedup and time of using and not
using atomic functions in shared memory when inserting cohesive elements in T6 disc mesh and its
refined versions.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 891

Figure A.4. Cohesive elements insertion speedup for T6 meshes using atomic functions in global or
shared memory.

ACKNOWLEDGEMENTS

We acknowledge support from the US National Science Foundation under grant CMMI #1321661 and from
the Donald B. and Elizabeth Willett endowment at the University of Illinois at Urbana-Champaign (UIUC).
We also thank CNPq (Brazilian National Research and Development Council) for the financial support to
conduct this research. We are grateful for insightful discussions with Ms. Sofie Leon during the preparation
of this manuscript. Any opinion, finding, conclusions or recommendations expressed here are those of the
authors and do not necessarily reflect the views of the sponsors.

REFERENCES

1. Seegyoung Seol E, Shephard MS. Efficient distributed mesh data structure for parallel automated adaptive analysis.
Engineering with Computers 2006; 22(3):197–213.

2. Kirk BS, Peterson JW, Stogner RH, Carey GF. Libmesh: a c++ library for parallel adaptive mesh refine-
ment/coarsening simulations. Engineering with Computers 2006; 22(3):237–254.

3. Klein PA, Foulk JW, Chen EP, Wimmer SA, Gao HJ. Physics-based modeling of brittle fracture: cohesive for-
mulations and the application of meshfree methods. Theoretical and Applied Fracture Mechanics 2001; 37(1-3):
99–166.

4. Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation
analysis. International Journal for Numerical Methods in Engineering 1999; 44(9):1267–1282.

5. Cirak F, Ortiz M, Pandolfi A. A cohesive approach to thin-shell fracture and fragmentation. Computer Methods in
Applied Mechanics and Engineering 2005; 194(21-24):2604 –2618.

6. Zhang Z, Paulino GH, Celes W. Extrinsic cohesive modelling of dynamic fracture and microbranching instability in
brittle materials. International Journal for Numerical Methods in Engineering 2007; 72(8):893–923.

7. Belytschko T, Chen H, Xu J, Zi G. Dynamic crack propagation based on loss of hyperbolicity and a new
discontinuous enrichment. International Journal for Numerical Methods in Engineering 2003; 58(12):1873–1905.

8. Zhang ZJ, Paulino GH. Cohesive zone modeling of dynamic failure in homogeneous and functionally graded
materials. International Journal of Plasticity 2005; 21(6):1195–1254.

9. Sharon E, Gross P, Fineberg J. Local crack branching as a mechanism for instability in dynamic fracture. Physical
Review Letters 1995; 74(25):5096–5099.

10. Sharon E, Fineberg J. Microbranching instability and the dynamic fracture of brittle materials. Physical Review B
(Condensed Matter) 1996; 54(10):7128–7139.

11. Dooley I, Mangala S, Kale L, Geubelle P. Parallel simulations of dynamic fracture using extrinsic cohesive elements.
Journal of Scientific Computing 2009; 39(1):144–165.

12. Espinha R, Celes W, Rodriguez N, Paulino G. Partops: compact topological framework for parallel fragmentation
simulations. Engineering with Computers 2009; 25(4):345–365.

13. Arias I, Knap J, Chalivendra VB, Hong S, Ortiz M, Rosakis AJ. Numerical modelling and experimental validation
of dynamic fracture events along weak planes. Computer Methods in Applied Mechanics and Engineering 2007;
196:3833–3840.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

892 A. MONTEIRO, W. CELES AND G. H. PAULINO

14. Molinari JF, Gazonas G, Raghupathy R, Rusinek A, Zhou F. The cohesive element approach to dynamic fragmen-
tation: the question of energy convergence. International Journal for Numerical Methods in Engineering 2007; 69:
484–503.

15. Paulino GH, Park K, Celes W, Espinha R. Adaptive dynamic cohesive fracture simulation using nodal perturbation
and edge-swap operators. International Journal for Numerical Methods in Engineering 2010; 84:1303–1343.

16. Lawlor O, Chakravorty S, Wilmarth T, Choudhury N, Dooley I, Zheng G, Kalé L. Parfum: a parallel framework for
unstructured meshes for scalable dynamic physics applications. Engineering with Computers 2006; 22(3):215–235.

17. Radovitzky R, Seagraves A, Tupek M, Noels L. A scalable 3D fracture and fragmentation algorithm based on a
hybrid, discontinuous Galerkin, cohesive element method. Computer Methods in Applied Mechanics and Engineering
2011; 200(1-4):326–344.

18. Bolz J, Farmer I, Grinspun E, Schrder P. Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM
Transactions on Graphics 2003; 22:917–924.

19. Wu W, Heng PA. A hybrid condensed finite element model with GPU acceleration for interactive 3D soft tissue
cutting: research articles. Computer Animation and Virtual Worlds 2004; 15(3-4):219–227.

20. Krakiwsky SE, Turner LE, Okoniewski MM. Acceleration of finite-difference time-domain (FDTD) using graphics
processor units (GPU). Microwave Symposium Digest, 2004 IEEE MTT-S International 2007; 2:1033–1036.

21. Tejada E, Ertl T. Large steps in GPU-based deformable bodies simulation. Simulation Modelling Practice and Theory
2005; 13(8):703–715.

22. Taylor Z, Cheng M, Ourselin S. High-speed nonlinear finite element analysis for surgical simulation using graphics
processing units. IEEE Transactions on Medical Imaging 2008; 27(5):650–663.

23. Göddeke D, Strzodka R, Mohd-Yusof J, McCormick P, Wobker H, Becker C, Turek S. Using GPUs to improve
multigrid solver performance on a cluster. International Journal of Computational Science and Engineering (IJCSE)
2008; 4(1):36–55.

24. Anderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations fully implemented on
graphics processing units. Journal of Computational Physics 2008; 227(10):5342–5359.

25. Rodriguez-Navarro J, Susin A. Non structured meshes for cloth GPU simulation using FEM 2006:1–7.
26. Göddeke D, Strzodka R, Turek S. Accelerating double precision FEM simulations with GPUs. Proceedings of ASIM

2005 - 18th Symposium on Simulation Technique, SCS Publishing House e.V., ASIM, 2005; 139–144.
27. Cecka C, Lew AJ, Darve E. Assembly of finite element methods on graphics processors. International Journal for

Numerical Methods in Engineering 2011; 85(5):640–669.
28. Geveler M, Ribbrock D, Göddeke D, Zajac P, Turek S. Towards a complete FEM-based simulation toolkit on GPUs:

unstructured grid finite element geometric multigrid solvers with strong smoothers based on sparse approximate
inverses. Computers & Fluids 2012; 80:327–332.

29. Komatitsch D, Michéa D, Erlebacher G. Porting a high-order finite-element earthquake modeling application to
Nvidia graphics cards using CUDA. Journal of Parallel and Distributed Computing 2009; 69(5):451–460.

30. Liu Y, Jiao S, Wu W, De S. GPU accelerated fast FEM deformation simulation. IEEE Asia Pacific Conference on
Circuits and systems, 2008. APCCAS 2008, Macao, 2008; 606–609.

31. Fan Z, Qiu F, Kaufman A, Yoakum-Stover S. GPU cluster for high performance computing. Proceedings of the 2004
ACM/IEEE Conference on Supercomputing, SC ’04, Pittsburgh, PA, 2004; 12.

32. Godel N, Nunn N, Warburton T, Clemens M. Scalability of higher-order discontinuous Galerkin FEM computations
for solving electromagnetic wave propagation problems on GPU clusters. IEEE Transactions on Magnetics 2010;
46(8):3469–3472.

33. Kakay A, Westphal E, Hertel R. Speedup of FEM micromagnetic simulations with graphical processing units. IEEE
Transactions on Magnetics 2010; 46(6):2303–2306.

34. Ren DQ, Bracken E, Polstyanko S, Lambert N, Suda R, Giannacopulos D. Power aware parallel 3-D finite element
mesh refinement performance modeling and analysis with CUDA/MPI on GPU and multi-core architecture. IEEE
Transactions on Magnetics 2012; 48(2):335–338.

35. Markall GR, Slemmer A, Ham DA, Kelly PHJ, Cantwell CD, Sherwin SJ. Finite element assembly strategies on
multi-core and many-core architectures. International Journal for Numerical Methods in Fluids 2013; 71(1):80–97.

36. Zegard T, Paulino HG. Toward GPU accelerated topology optimization on unstructured meshes. Structural and
Multidisciplinary Optimization 2013; 48:473–485.

37. Kirk DB, Hwu W-mW. Programming Massively Parallel Processors: A Hands-On Approach (1st edn). Morgan
Kaufmann Publishers Inc.: San Francisco, CA, 2010.

38. Cuda c programming guide 3.2, 2010.
39. Sanders J, Kandrot E. CUDA by Example: An Introduction to General-Purpose GPU Programming (1st edn).

Addison-Wesley Professional: Boston, MA, 2010.
40. Celes W ER, Paulino GH. A compact adjacency-based topological data structure for finite element mesh representa-

tion. International Journal for Numerical Methods in Engineering 2005; 64(11):1529–1565.
41. Paulino GH, Celes W, Espinha R, Zhang ZJ. A general topology-based framework for adaptive insertion of cohesive

elements in finite element meshes. Engineering with Computers 2008; 24(1):59–78.
42. Welsh DJA, Powell MB. An upper bound for the chromatic number of a graph and its application to timetabling

problems. The Computer Journal 1967; 10(1):85–86.
43. Pandolfi A, Ortiz M. Solid modeling aspects of three-dimensional fragmentation. Engineering with Computers 1998;

14(4):287–308.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

MAPPING COHESIVE FRACTURE AND FRAGMENTATION SIMULATIONS TO GPUS 893

44. Park K, Paulino GH, Roesler JR. A unified potential-based cohesive model of mixed-mode fracture. Journal of the
Mechanics and Physics of Solids 2009; 57(6):891–908.

45. Camacho GT, Ortiz M. Computational modelling of impact damage in brittle materials. International Journal of
Solids and Structures 1996; 33(20):2899–2938.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 103:859–893
DOI: 10.1002/nme

	Mapping Cohesive Fracture and Fragmentation Simulations to Graphics Processor Units
	SUMMARY
	Introduction
	Related Work on Graphics Processor Units and High Performance Computing
	Many-core devices
	GPU Architecture
	Optimization

	Fragmentation Simulation
	Pre-processing and updating
	Stresses
	Insertion of cohesive elements
	Internal and cohesive forces

	Data Structure
	Retrieving adjacency relationship
	Node update

	Parallel Implementation
	Coloring model
	Pre-processing and update
	Stresses
	Insertion of cohesive elements
	Internal Forces
	Cohesive forces and simulation outcome
	Overview

	Experimental Results
	Insertion of cohesive elements
	Fragmentation simulation
	Rectangular specimen
	Ring specimen

	Concluding Remarks
	APPENDIX: Optimized insertion of cohesive elements
	REFERENCES

