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Abstract

This paper presents an integrated theoretical and computational investigation into the macroscopic behavior of com-

posite materials containing multi-phase reinforcing particles with simultaneous nonlinear debonding along the micro-

constituent interfaces. The interfacial debonding is characterized by the nonlinear Park–Paulino–Roesler potential-based

cohesive zone model. The extended Mori–Tanaka method is employed as the basis for the theoretical model, which

enables micromechanical formulations for composite materials with high particle volume fractions. The computational

analysis is performed using a three-dimensional finite element-based cohesive zone model with intrinsic cohesive elem-

ents. To place the generality and robustness of the proposed technique in perspective, we consider several examples of

composite materials with single or double separation along the interfaces of coated particles. The effects of many

microstructural parameters, such as the geometry of the microstructure, the location of debonding, the material

properties of the coating layer (i.e. homogenous and functionally graded coatings), and the fracture parameters, are

comprehensively investigated by both theoretical and numerical approaches. We verify that both theoretical and numer-

ical results agree well with one another in estimating the macroscopic constitutive relationship of corresponding com-

posite materials. The strong dependence of the overall response of composite materials on their microstructure is well

recognized for all hardening, snap-back, and softening stages.
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Introduction and motivation

In characterizing the macroscopic behavior of compos-
ite materials, the behavior of the material in the vicinity
of the reinforcing particles is of utmost importance. In
other words, the microgeometry and associated prop-
erty of each phase of the particle ensemble, as well as
the interface conditions, contributes to the macroscopic
behavior of composite materials. In general, a particle
ensemble in a composite material consists of an inner
most phase (called core particle) enclosed by several
phases along the interfacial zone (called coating
layers). Nowadays, coating techniques are often applied
to the particles of a composite material to meet various
desired specifications. For instance, single or multiple
coating layer(s) are employed to reduce or redistribute
residual tensile stresses between the particles and the
matrix and, consequently, to prevent matrix cracking
during the cool-down process. In addition, coatings are

often applied to protect reinforcing particles
against aggressive corrosive agents or to improve
thermomechanical behavior, electroelastic constants,
or electrical conductivity of composite materials. On
the other hand, as a result of chemical interactions, a
transition phase (coating layer) may form between the
core particle and the matrix during the manufacturing
and processing of composite materials. Even though
these coating layers are typically microscopic, they
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can greatly influence the macroscopic behavior of com-
posite materials.

Because of the abovementioned potential gains that
coated particles can deliver, several investigators have
paid special attention to this topic. Recently, Qu et al.1

visualized and investigated the mechanical influence of
this coating layer in rubber-carbon black nanocompo-
sites. They illustrate, using torsional harmonic atomic
force microscopy, that the coating layer in these com-
posites is an order of magnitude stiffer that the sur-
rounding rubber matrix and has a thickness anywhere
from 10% to 50% the radius of the particle inclusions.
They also illustrate that the stiffness of the interphase is
not constant but varies as a function of the distance
from the particle, as illustrated in Figure 1.

Prediction of the macroscopic behavior of compos-
ites consisting of multi-phase inhomogeneities, perfectly
bonded to the surrounding matrix, has been investi-
gated extensively during the past two decades.2–11

However, the perfect bonding assumption across the
constituents’ interfaces is sometimes a limiting idealiza-
tion. Interfacial debonding can occur within microcon-
stituents of a composite material either during the
manufacturing process or due to damage evolution
when the composite is loaded.12–17

An examination of the literature reveals that several
researchers have linked particle-matrix interface behav-
ior with the macroscopic behavior of composite mater-
ials; see, for example, Benveniste,18 Achenbach and
Zhu,19 Sangani and Mo,20 Nie and Basaran,21 Schjudt
and Pyrz,22 and Lee and Pyo.23 These researchers char-
acterize imperfect bonding at the particle-matrix inter-
face as linear spring-type models, thus a fully debonded
stage cannot be reached in their studies. Alternatively,
several analytical and numerical investigations have

been conducted on the interface debonding process
using nonlinear cohesive models, which assume a phe-
nomenological relation between the traction and separ-
ation at the interface. For instance, Xu and
Needleman24 investigated void nucleation along the
interface in conjunction with an exponential cohesive
relation. Using a bilinear cohesive relation, Tan et al.14

studied the effect of nonlinear interface debonding on
the macroscopic constitutive behavior of high explosive
materials subjected to hydrostatic tension. In a separate
study, they extended their method to the case of uni-
axial tension.25,26 Carpinteri et al.27 investigated snap-
back instabilities in microstructured composites under
uniaxial displacement boundary conditions in conjunc-
tion with a contact formulation which handles cohesive
forces. Ngo et al.28 estimated the macroscopic consti-
tutive behavior of composite materials using the
potential-based Park–Paulino–Roesler (PPR) cohesive
model for interfacial debonding. Their investigation
integrates a theoretical micromechanics model together
with a finite element-based numerical model. Recently,
Othmami et al.29 proposed an Eshelby’s equivalent
inclusion solution in order to model interface debond-
ing of spherical particles using a cohesive zone
approach. All of these studies are pertinent to compos-
ites containing single-phase inhomogeneities; none is
concerned with multi-coated particles. To the best of
the authors knowledge, the nonlinear interfacial
debonding along different constituent phases of
multi-coated particles, which is of great value in under-
standing the physical behavior of high-performance
composites, has not been addressed in the literature.
This is the main focus of the present contribution.

In this paper, we present theoretical and numerical
investigations into the macroscopic behavior of
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Figure 1. (a) Normalized particle profiles measured on torsional harmonic atomic force microscopy height and stiffness maps. Scale

bar¼ 50 nm and (b) three-dimensional rendering of height and stiffness images. Scale bar¼ 100 nm. (Images from Qu et al.1)
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composite materials with multi-phase inhomogeneities
accounting for simultaneous interfacial debonding
across different phases of a particles’ ensemble. To
account for nonlinear debonding, the PPR potential-
based cohesive zone model is used. Three key emphasis
of this study are: (1) extending the Mori–Tanaka
method to account for nonlinear debonding along all
interfaces of a multi-coated particle, (2) implementing
a three-dimensional finite element-based cohesive zone
model for the computational simulation of debonding,
and (3) investigating the influence of microstructure par-
ameters on the macroscopic behavior of composite
materials through a comprehensive theoretical and
numerical parametric study. Accordingly, the remainder
of the paper is organized as follows. First, we present the
problem statement and formulation, where we formu-
late our theoretical micromechanics model accounting
for nonlinear separation at all interfaces of composite
microstructures. Then, we present an integrated theor-
etical and numerical investigation of several examples of
microstructures of practical and theoretical importance.
Then, we discuss andmotivate the extension of this work
to additional loading conditions. Finally, the key find-
ings of the paper are summarized.

Problem statement and formulation

Consider a representative volume element (RVE), with
volume V, of a composite material containing a random
distribution of spherical, multi-coated particles with dif-
ferent sizes and/or material properties. We assume the
matrix, particles, and coating layers as linear elastic. As
depicted in Figure 2(a), the �th particle ensemble (�¼ 1,
2, . . ., P, where P is the number of particles in the com-
posite) consists of an inner core, ��

1, surrounded by an
arbitrary number of coating layers, ��

�

(� ¼ 2, 3, . . . ,N�, where N� is the number of layers in
the particle ensemble). The interface between the �th
and (�þ 1)th coating layers of the �th particle ensemble
is denoted as ��� (�¼ 1,2, . . ., N�� 1), and the
interface between the outer most coating, ��

N�
, and

the surrounding matrix is denoted as ��N�
. The volume

fraction of each particle phase, f �
�
� , is denoted asV�

�
� =V.

The average stresses in the matrix, ��m, and in the �th
phase of the �th particle ensemble, ����

� , are defined as

��m ¼
1

Vm

Z
Vm

�mdV and ���
�
� ¼

1

V�
�
�

Z
V

�
�
�

��
�
�dV ð1Þ

respectively, where �m is the microscopic stress in the
matrix, and ��

�
� is the microscopic stress in the corres-

ponding phase. Then, the average, or macroscopic,
stress in the RVE, ��, is expressed in terms of these
averaged quantities as

�� ¼ ð1� f Þ ��m þ
XP
�¼1

XN�

�¼1

f ��
� ����

�

 !
ð2Þ

where f ¼
PP

�¼1

PN�

�¼1 f
�
�
� : Similarly, suppose that the

average strains in the matrix and in phase ��
� are

denoted as

�"m ¼
1

Vm

Z
Vm

"mdV and �"�
�
� ¼

1

V�
�
�

Z
V

�
�
�

"�
�
�dV ð3Þ

respectively. The average, or macroscopic, strain in the
RVE, �", is related to �"m and �"�

�
� by

�" ¼ ð1� f Þ �"m þ
XP
�¼1

XN�

�¼1

f �
�
� �"�

�
� þ f �

�
� �"�

�
�

 !
ð4Þ

where f �
�
� ¼ 4�R3

�
�
�
=3V, and R�

�
�
denotes the radius of

interface ��� , and �"�
�
� represents the average
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Figure 2. (a) Microgeometry and microconstituent phases of �th particle ensemble and (b) illustrative cohesive relation of normal

separation along a typical interface, �
�
N��1.
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contribution from the separation along interface ��� .
This contribution is related to the displacement
discontinuity

��
�
� ¼

u�
�
�þ1 � u�

�
� , for � ¼ 1, 2, . . . ,N� � 1,

um � u�
�
� , for � ¼ N�,

8<
: ð5Þ

across the interface, ��� , by

�"�
�
� ¼

1

2V�
�
�

Z
S

�
�
�

��
�
� � nþ n���

�
�

� �
dS, ð6Þ

where um and u�
�
� are the displacements on the asso-

ciated debonding interface from the matrix side and
particle side, respectively, and n is the unit outward
normal vector on the interface (following positive sign
convention).

The average strains in the matrix, and in the �th
phase of the �th particle ensemble, are related to the
associated average stresses by �"m ¼Mm : ��m and �"�

�
� ¼

M�
�
� : ���

�
� , where Mm and M�

�
� are the elastic compli-

ance tensors of the matrix and the corresponding phase,
respectively. Then, the macroscopic strain can be
rewritten in terms of the macroscopic stress as

�" ¼Mm : �� þ
XP
�¼1

XN�

�¼1

f ��
� ðM��

� �MmÞ : ����
� þ f ��� �"���

 !

ð7Þ

This expression indicates that the macroscopic strain
can be thought of as the combination of strain due to
the average stress applied to the matrix (first term), the
perturbation strain due to induced stresses in the par-
ticle phases (second term), together with the strain due
to the simultaneous debonding across the interfaces
(third term). Note that equations (2) and (7) are exact
general relations which hold for composite materials
with multi-coated particles experiencing concurrent
debonding across the interfaces.

To find the macroscopic stress–strain relationship,
some approximations need to be made for the evalu-
ation of ��m, ���

�
� , and �"�

�
� in terms of �� and �". In order

to be able to proceed with an analytical solution for this
complex problem, we consider the case of a composite
material subjected to a state of hydrostatic tension,
�� ¼ �� I, where I is the second-order identity tensor.
For spherical particles, the average strain due to the
displacement discontinuity at interface ��� is

�"
�
�
�

ii ¼
1

V�
�
�

Z
S

�
�
�

�
�
�
�

n dS ¼ 3�
�
�
�

n =R���
ð8Þ

where �
�
�
�

n is the average radial separation at interface,
��� . Tensorial equations (2) and (7) are rewritten as the

following scalar equations

�� ¼ ð1� f Þ ��m þ
XP
�¼1

XN�

�¼1

f �
�
� ���

�
�

 !
ð9Þ

�"¼
1� 2�m

Em
��þ

XP
�¼1

�
XN�

�¼1

f�
�
�

1� 2���
�

E�
�
�

�
1� 2�m

Em

 !
���

�
� þ f�

�
��

�
�
�

n =R���

( )

ð10Þ

where (Em, vm) and (E�
�
� , v�

�
� ) are the elastic moduli and

Poisson’s ratios of the matrix and corresponding phase,
respectively. The average stresses in the matrix and in
the �th phase of the �th particle ensemble are defined as
��m ¼ ��mii =3 and ����

� ¼ ��
�
�
�

ii =3, respectively.
To obtain the constitutive relation between �� and �",

we adopt the extended Mori–Tanaka method to deter-
mine both the average stress, ���

�
� , and the displacement

separation, �
�
�
�

n , in terms of the macroscopic stress, ��.
The main idea of this method is to relate the micro-
scopic stress to the average stress in the matrix, instead
of the macroscopic stress, in the RVE.30–32 As schemat-
ically illustrated in Figure 3, following the Mori–
Tanaka approach, we consider the �th particle
ensemble as a single inhomogeneity in an infinite
matrix subjected to remote hydrostatic tension, ��m.
Then, we decompose the multi-phase particle into the
core particle together with a series of hollow elastic
spheres subjected to uniform radial stress across their
inner and outer boundaries. The stresses acting on the
interfaces are obtained from a cohesive relation, which
describes the nonlinear debonding at the particle inter-
faces. In the present study, as illustrated in Figure 2(b),
we use the PPR potential-based model for the descrip-
tion of interfacial debonding, which consistently relates
the cohesive traction, ��

�
� , to the normal separation,

�
���
n , along interface, ��� , of a particle ensemble.28,33

The constitutive cohesive relation at interface ��� is
written as:

. For loading across the interface

��
�
� ¼

�n
�n

	

m

� �m
1�

�
�
�
�

n

�n

0
@

1
A
	�1

m

	
�

�
�
�
�

n

�n

0
@

1
A

m�1

ðmþ	Þ
�

�
�
�

n

�n

ð11Þ

. For unloading/reloading across the interface

��
�
� ¼ ��

�
� ð�

�
�
�

nmax Þ
�

�
�
�

n

�
���
nmax

0
@

1
A ð12Þ
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in which characteristic fracture parameters of 	, m, �n,
and �n are the shape parameter, nondimensional expo-
nent, final opening separation length, and fracture
energy of the debonding interface, respectively.34,35

With the abovementioned decomposition scheme,
together with the elastic solution for a hollow sphere
under applied internal and external stresses,36,37 the
microscopic stress in the particle core and its surround-
ing coating layers is obtained in terms of cohesive trac-
tions, as

���
�
� ¼

��
�
� , for � ¼ 1,

��
�
��1R3

�
�
��1

� ��
�
�R3

�
�
�

� ��
R3

�
�
��1

� R3
�
�
�

� �

for � ¼ 2, 3, . . . ,N�:

8>>>>><
>>>>>:

ð13Þ

Then, the equation for the constitutive relation between
the macroscopic stress and macroscopic strain of

the composite material is obtained in terms of �
�
�
�

n

and ��
�
� , as

�� ¼ ð1� f Þ ��m þ
XP
�¼1

f �
�
1��

�
1

�

þ
XN�

�¼2

f �
�
� ���

��1R3
�
�
��1

� ��
�
�R3

�
�
�

� ��
R3

�
�
��1

� R3
�
�
�

� �!

ð14Þ

�"¼
1�2�m

Em
��þ

XP
�¼1

f�
�
1

1�2��
�
1

E�
�
1

�
1�2�m

Em

 !
��

�
1

(

þ
XN�

�¼2

f��
�

1�2��
�
�

E�
�
�

�
1�2�m

Em

 !

� ��
�
��1R3

��
��1

���
�
�R3

���

� ��
R3

��
��1

�R3
���

� �
þ f�

�
��

�
�
�

n =R�
�
�

�
ð15Þ

Similarly, using the theory of elasticity,36,37 the radial
displacement of each phase of the particle ensemble at

Matrix

+ + +…

Matrix

+

+

Figure 3. Decomposition of a typical multi-inhomogeneity system into the core particle and its coating layers, subjected to cohesive

tractions. Hydrostatic loading is considered.
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its inner and outer debonding interfaces can be
obtained. In other words, by substitution of the corres-
ponding displacement into equation (5), the normal
separation at each interface of the multi-phase system
is computed as:

. Normal separation at particle-coating interface, ��1

�
�
�
1

n ¼
1� 2��

�
2

E�
�
2 R3

�
�
1

� R3
�
�
2

� � R3
�
�
1

��
�
1 � R3

�
�
2

��
�
2

� �
R

�
�
1

þ
1þ ��

�
2

2E�
�
2 R3

�
�
1

� R3
�
�
2

� �� ��
�
1 � ��

�
2

� �
R3

�
�
2

R
�
�
1

�
1� 2��

�
1

E�
�
1

��
�
1R

�
�
1

ð16Þ

. Normal separation at debonding interface ��� (�¼ 2,
. . ., N�� 1)

�
�
�
�

n ¼
1� 2���

�þ1

E�
�
	þ1 R3

���
� R3

��
�þ1

� � R3
���
��

�
� � R3

��
�þ1

��
�
�þ1

� �
R

�
�
�

�
1� 2��

�
�

E�
�
� R3

�
�
��1

� R3
�
�
�

� � R3
�
�
��1

��
�
��1 � R3

�
�
�
����

� �
R

�
�
��1

þ
1þ ��

�
�þ1

2E�
�
�þ1 R3

�
�
�

� R3
�
�
�þ1

� � ��
�
� � ��

�
�þ1

� �
R3

�
�
�þ1

R
���

�
1þ ��

�
�

2E�
�
� R3

��
��1

� R3
���

� � ��
�
��1 � ��

�
�

� �
R3

���
R

�
�
��1

:

ð17Þ

. Normal separation at coating-matrix interface, ��N�

�
�
�
N�

n ¼ R
�
�
N�

3ð1� �mÞ ��m � ð1þ �mÞ�
�
�
N�

� 	
=2Em

�
1� 2�

�
�
N�

E
�
�
N� R3

��
N��1

� R3
��
N�

� � R3
�
�
N��1

�
�
�
N��1 � R3

�
�
N�

�
��

N�

� �

� R
�
�
N�

�
1þ �

�
�
N�

2E
�
�
N� R3

�
�
N��1

� R3
�
�
N�

� � �
�
�
N��1 � �

��
N�

� �

� R3
�
�
N�

R
��
N��1

ð18Þ

Then, the average stress in the matrix, ��m, is obtained
in terms of the displacement jump and the

traction at the corresponding interfaces, i.e. ��N�
and

��N��1
, as

��m ¼
2Em

3ð1� �mÞ
�

�
�
N�

n =R3
�
�
N�



þ

1� 2�
��

N�

E
�
�
N� R3

�
�
N��1

�R3
�
�
N�

� �
2
664

� R3
��
N��1

�
�
�
N��1 �R3

��
N�

�
��

N�

� �
þ

ð1þ �
�
�
N� ÞR3

�
�
N��1

2E
�
�
N� R3

��
N��1

�R3
��
N�

� �

� �
��

N��1 � �
�
�
N�

� �	�
þ
ð1þ �mÞ�

�
�
N�

3ð1� �mÞ
, �¼ 1, 2, . . . ,P

ð19Þ

Equations (14), (15), and (19) contain 2
PP

�¼1 N� þ 3
unknown quantities, i.e. ��m, ��, �", �

�
�
�

n , and ��
�
� (�¼ 1,

2, . . ., P; �¼ 1,2, . . ., N�); however, there are only Pþ 2
equations. To determine the constitutive relation
between the macroscopic stress and the macroscopic
strain, it is necessary to consider the cohesive constitu-
tive relation for ��

�
� in terms of �

���
n , i.e. equations (11)

or (12), which provide another
PP

�¼1 N� equations. In
addition, the relations for radial separations at the
debonding interfaces, equations (16) and (17), providePP

�¼1 N� � P equations. Thus, equations (11), (14),
(15), (16), (17), and (19) provide a system of algebraic
equations which can be solved in terms of separation at
only one of the debonding interfaces of multi-phase par-
ticles. Using this system of nonlinear algebraic equa-
tions, we determine the macroscopic behavior of
composite materials accounting for nonlinear interface
debonding within multi-phase particles. For illustration
of the abovementioned solution procedure, we rewrite
the system of equations for the example of a composite
material containing two-phase particles with the same
size and material properties (i.e. �¼ 1, and �¼ 1, 2).
Thus, for this composite material, equations (11), (14),
(15), (16), (17), and (18), respectively, are rewritten as

��1
� ¼

�n
�n

	

m

� �m
1�

�
�1
�

n

�n

 !	�1
m

	
�

�
�1
�

n

�n

 !m�1

� ðmþ 	Þ
�

�1
�

n

�n
, � ¼ 1 and 2,

�
�1

1
n ¼

1� 2��1
2

E�1
2 R3

�1
1

� R3
�1
2

� � R3
�1
1
��1

1 � R3
�1
2
��1

2

� �
R�1

1

þ
1þ ��1

2

2E�1
2 R3

�1
1

� R3
�1
2

� � ��1
1 � ��1

2

� �
R3

�1
2
R�1

1

�
1� 2��1

1

E�1
1

��1
1R�1

1
,
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��m ¼
2Em

3ð1� �mÞ
�

�1
2

n =R
3
�1
2

n
þ

1� 2��1
2

E�1
2 R3

�1
1

�R3
�1
2

� �
2
4

� R3
�1
1
��1

1 �R3
�1
2
��1

2
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Solving this system of algebraic equations, in terms of
�

�1
2

n , we determine the macroscopic stress–strain
relation of the corresponding composite material with
concurrent debonding at both interfaces.

Illustrative examples and discussion

The microstructural debonding process and macro-
scopic constitutive behavior of composite materials is
investigated through a paired theoretical and computa-
tional study. The computational study is conducted on
a single coated particle, embedded in a matrix, as illu-
strated in Figure 4(a). In this model, linear eight-node
brick (B8) elements are used to discretize the domain.
Mesh refinement studies on the model indicate that
meshes with approximately 150,000 bulk elements

produce accurate results and is the level of refinement
used throughout this study, as illustrated in Figure 4(b).
At both the particle-coating and coating-matrix inter-
faces, 3230 cohesive elements are used to capture the
debonding phenomena. The insertion of cohesive elem-
ents was automated through a MATLAB script which
duplicates nodes at the boundary of the particle, and/or
interphase, and adjusts the connectivity of the adjacent
bulk elements to accommodate the newly inserted
cohesive elements. The cohesive elements are
implemented as user-defined elements in the commer-
cial software ABAQUS.34,35,38 Displacement boundary
conditions are applied to the exterior surface of
the RVE.

In order to illustrate the diverse applications of the
theory, and corresponding model, we now apply it to
several complex problems. First, we verify the finite
element model by comparing it with a full RVE with
multiple particle inclusions. Then, we investigate the
effect of many microstructural parameters; including
particle size, particle volume fraction, coating thickness,
material properties, and cohesive properties. In the fol-
lowing examples, unless stated otherwise, the bulk
Poisson’s ratio has been fixed at 0.25, and the cohesive
parameters have been fixed at a cohesive fracture energy
(�n) of 1.0N/m, a cohesive strength (�) of 15MPa, a
softening shape parameter (	) of 3, and an initial slope
indicator (
n) of 0.005.

Comparison between the single particle model
and a full RVE

In order to verify the use of the finite element model
used in this investigation, we compare the response of
a single coated particle to that of a full RVE. The
RVE is periodic and contains 30 randomly placed par-
ticles with a radius of 1mm. The size of the RVE is
such that the particles have a volume fraction of 10%,
and an interphase thickness of 0.2mm, as illustrated in
Figure 5. The geometry is meshed with approximately
330,000 linear tetrahedral elements and periodic
boundary conditions are applied.39,40 The matrix has
an elastic modulus of 80MPa, and the particles have
an elastic modulus of 400MPa. Cohesive elements are
inserted between every particle and its corresponding
coating and have a cohesive fracture energy of 1.0N/
m, a cohesive strength of 10MPa, a softening shape
parameter of 3, and an initial slope indicator of 0.005.
The macroscopic stress–strain behavior of the two dif-
ferent models is compared in Figure 6. As expected,
the behavior of the single particle model and the full
RVE model is the same under hydrostatic tension.
This study is useful to verify the effectiveness of the
single particle model and leads to increased confidence
in using the simpler model. The single particle model

Matrix

Coating

Particle

(a) (b)

Figure 4. (a) Geometry of the reduced volume element with

particle, coating and matrix and (b) finite element mesh of the

computational model.

Hashemi et al. 3445

 at GEORGIA TECH LIBRARY on November 1, 2015jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


has distinct advantages in this case, as it allows us to
model higher volume fractions of the particle ensem-
ble, as the volume fraction of the RVE is limited by
the requirement of having a well-formed mesh
between particles, and becomes cumbersome once
the total volume fraction of the particle ensemble (par-
ticles and coatings) exceeds approximately 30%. This
limitation is not present in the single particle model.
Additionally, the single particle model allows for a
direct visualization of the local debonding process,
providing a greater understanding of the physical
behavior at the microscale. Furthermore, the single
particle model allows for a greater resolution (finer
mesh) to capture the debonding process at the inter-
face. This becomes significant when the fracture prop-
erties are chosen such that they cause the fracture
region to reduce in size. When the fracture region is
small, the size of the mesh in the RVE grows signifi-
cantly, and from a computational viewpoint, becomes
prohibitive.

Composites with single separation within the
inhomogeneity system

We first consider scenarios in which the composite is
only permitted to debond at either the particle-coating
interface or the coating-matrix interface. The effects
due to the location of separation, the geometry of the
microstructure, the bulk material properties, and the
cohesive properties are investigated.

Rigid particles with homogeneous coating: Separation along the

coating-matrix interface. The location of separation
greatly influences the overall response of the composite.
The first case considers a single location of separation,
occurring at the coating-matrix interface. The particle
sizes are R¼ 0.2mm and R¼ 1.0mm, with a fixed par-
ticle volume fraction of f particle ¼ 0:3. The coating
thickness is varied, such that the volume fraction of
the coating, f coating, equals 0.01, 0.1, 0.2, or 0.4. The
matrix has an elastic modulus of 100MPa, the coating
an elastic modulus of 400MPa, and the particle an elas-
tic modulus of 100GPa. For the given microstructure,
the elastic range and elastic limit is equal for each par-
ticle size, with an increasing elastic limit as the thickness
of the coating increases, as illustrated in Figure 7.
The elastic limit is reached, and separation initiates,
once the local stress at the coating-matrix interface
reaches the cohesive strength. For the case of coarse
particles (R¼ 1mm), the material demonstrates soften-
ing behavior past the elastic limit, then gradually tran-
sitions to hardening behavior. The magnitude of the
softening increases as the thickness of the coating
increases, as illustrated in Figure 7(a). For the case of
fine particles (R¼ 0.2mm), the material demonstrates
hardening behavior past the elastic limit for coatings
below f coating ¼ 0:4. For the case of f coating ¼ 0:4, the
material displays softening behavior past the elastic
limit, as illustrated in Figure 7(b). The stiffness of the

Figure 5. Representative volume element used for verifying the single particle model. (a) Geometry and (b) mesh.
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material past the elastic limit increases as the volume
fraction of the coating decreases.

Rigid particles with homogeneous coating: Separation along the

particle-coating interface. When the location of separ-
ation is repositioned to the particle-coating interface,
the macroscopic behavior of the material is altered.
For this study, the size of the particles is kept con-
stant at R¼ 1mm, with a fixed volume fraction of
f particle ¼ 0:3. The elastic modulus of the particle is
100GPa, and the elastic modulus of the matrix is
100MPa. The volume fraction and elastic modulus
of the coating is varied. When the coating is softer
than the surrounding matrix (40MPa), the elastic
stiffness of the material decreases as the volume frac-
tion of the coating increases, as illustrated in Figure
8(a). In all cases, the softer coating leads to soften-
ing behavior past the elastic limit. When the coating
is stiffer than the matrix (400MPa), the elastic stiff-
ness of the material increases as the volume fraction
of the coating increases; however, the macroscopic
stress at the elastic limit is only slightly altered, as

illustrated in Figure 8(b). For a very small
coating thickness (f coating ¼ 0:01), the material dis-
plays softening behavior past the elastic limit;
however, as the thickness of the coating increases,
the material displays hardening behavior past the
elastic limit.

Particles containing centric voids: Separation along the particle-

matrix interface. The composition of the particle is
important to the overall constitutive response of the
composite. This investigation looks at the case when
a void is present at the center of the particle.
Particles with centric voids are commonly used in
the manufacturing of syntactic foams, light weight
composites, and self-healing materials.41–44 They are
particularly suitable when weight considerations are
important, such as in the case of the core material
in marine and aerospace structures.41 For this study,
we consider two different particle sizes of R¼ 0.5mm
and R¼ 1.0mm. The elastic modulus for the particle
is set at 400MPa, while that for the matrix is set at
100MPa. The volume fraction of the void is taken as
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Figure 7. Effect of microstructure on the constitutive response

of the composite considering separation along the coating-matrix

interface (Eparticle ¼ 100 GPa and fparticle ¼ 0:3). Particle radius (a)

R¼ 1 mm and (b) R¼ 0.2 mm.
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response of the composite considering separation along the

particle-coating interface (R¼ 1 mm, Eparticle ¼ 100 GPa and
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a fraction of the volume of the inhomogeneity (par-
ticleþ void) and is varied from f void ¼ 0:05 to
f void ¼ 0:5. When the volume fraction of the inhomo-
geneity is f i ¼ 0:3, the response of the material varies
as both the size of the particles and the volume frac-
tion of the voids increases, as illustrated in Figure
9(a). When the volume fraction of the voids
increases, the elastic stiffness of the material decreases
and the elastic limit increases. With coarse particles
(R¼ 1mm), the material displays softening behavior
past the elastic limit; whereas, hardening behavior is
observed for the case of fine particles (R¼ 0.5mm).
For the case of coarse particles with large voids,
snap-back behavior is observed in the post-peak
response of the numerical result, indicating an
unstable debonding process. When the volume frac-
tion of the inhomogeneity is increased to f i ¼ 0:6, the
elastic range of the material decreases and softening
behavior is displayed past the elastic limit, as illu-
strated in Figure 9(b). At large macroscopic strains,
complete separation occurs and the load is carried
entirely by the matrix shell.

Particles with functionally graded coating: Separation along the

particle-coating interface. The distribution of material in
the coating effects the localization of stress at the par-
ticle-coating interface. In this study, we investigate the
case of heterogeneous coatings with graded elastic
modulus in the radial direction. The modulus is linearly
varied from that of the particle (400MPa) to that of the
matrix (80MPa). The particle size is fixed at R¼ 1mm,
and the effect due to the volume fraction of particle and
thickness of coating is investigated. For the case of a
thin coating (0.02mm), as the volume fraction of the
particle increases, the elastic stiffness and elastic limit of
the material increases, as illustrated in Figure 10(a). In
all cases, softening behavior is observed past the elastic
limit. As the particle size decreases, complete debond-
ing occurs earlier, and for a volume fraction of 0.1,
snap-back behavior is observed in the post-peak
response. For thicker coatings (0.2mm), the influence
of the graded coating is increased. Similar to the case
with thin coatings, as the volume fraction of the particle
increases, the elastic stiffness and elastic limit of
the material increases, as illustrated in Figure 10(b).
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The material generally displays softening behavior past
the elastic limit, but transitions to hardening behavior
after a small increase in macroscopic strain.

Composites with double concurrent separation within
the inhomogeneity system

We now consider scenarios in which concurrent separ-
ation is permitted at both the particle-coating interface,
and the coating-matrix interface. The effects of the
geometry of the microstructure, the material properties,
and the cohesive properties are investigated.

Effect of microstructure. Microstructure plays a significant
role in the response of the composite. Both the effect of
particle size and the effect of coating thickness are
investigated. First, the effect of particle size is con-
sidered. The particle sizes are chosen as R¼ 0.5mm,
1mm, and 1.5mm, with a fixed particle volume fraction
of f particle ¼ 0:3, and a fixed coating volume fraction of
f coating ¼ 0:3. The matrix has an elastic modulus of
100MPa, the coatings an elastic modulus of 200MPa,
and the particles an elastic modulus of 100GPa. For
this investigation, the cohesive strength is 10MPa. The
initial elastic behavior of the composite is independent
of the particle size, as illustrated in Figure 11(a).
However, there are two distinct kinks in the stress-
strain response of the material. Separation initiates at
the particle-coating interface, at a macroscopic stress of
approximately 6.8MPa. Beyond this point, the stiffness
of the material decreases with increasing particle size.
The second distinct kink in the stress–strain response
represents the initiation of separation at the coating-
matrix interface. After the coating-matrix interface sep-
arates, the material hardens for fine particles
(R¼ 0.5mm), whereas the material softens for coarse
particles (R> 0.5mm).

In addition, for a coarse particle (R¼ 1mm), the
effect of coating thickness is investigated. For a particle
volume fraction of f particle ¼ 0:3, the coating volume
fraction is varied (f coating ¼ 0:15, 0.3, 0.45). As the
volume fraction of the stiff coating increases, the elastic
stiffness of the material increases; however, the macro-
scopic stress at the elastic limit remains the same, as
illustrated in Figure 11(b). Separation initiates at the
particle-coating interface, followed by that at the coat-
ing-matrix interface. For all cases considered, the
material displays softening behavior after both inter-
faces have separated.

Effect of cohesive energies at debonding interfaces. The
debonding behavior at each interface depends on
the fracture energy of the cohesive model; the larger
the fracture energy, the more energy is required to
cause debonding. First, the case of a rigid particle

with a stiff coating is considered. The particle size is
R¼ 1mm, with a particle volume fraction of
f particle ¼ 0:3, and a 0.3mm thick coating. The matrix
has an elastic modulus of 100MPa, the coating an elas-
tic modulus of 200MPa, and the particle an elastic
modulus of 100GPa. The cohesive strength is 10MPa
and the fracture energy is varied. The particle-coating
interface separates first, at a macroscopic stress of
approximately 6.8MPa, as illustrated in Figure 12(a).
As the fracture energy at this interface increases, the
stiffness of the subsequent material increases. The coat-
ing-matrix interface separates second, and the material
displays softening behavior past the elastic limit. The
rate at which the material displays softening behavior
increases with decreasing fracture energy at the coating-
matrix interface.

In addition, we consider the case of particles which
are softer than both the coating and the matrix. The
geometry of the microstructure remains the same, but
now the elastic modulus of the matrix is 150MPa, the
elastic modulus of the coating is 110MPa, and the elas-
tic modulus of the particle is 80MPa. Although cohe-
sive elements are inserted at both interfaces, the
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Figure 11. Effect of (a) particle radius and (b) coating thickness.

The following properties are considered: Ematrix ¼ 100 MPa,

Ecoating ¼ 200 MPa, Eparticle ¼ 100 GPa, fparticle ¼ 0:3, fcoating ¼ 0:3
and �cohesive ¼ 10 MPa.
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material only separates at the coating-matrix interface,
as illustrated by the presence of a single kink in the
stress–strain response in Figure 12(b). The fracture
energy does not alter the elastic behavior of the mater-
ial. Beyond the elastic limit, the material displays
softening behavior, the rate of which increases with
decreasing fracture energy, indicating a more brittle
behavior.

Effect of cohesive strengths at debonding interfaces. The
effect of the cohesive strength on the behavior of the
material is investigated. The particle size is set as
R¼ 1mm, with a volume fraction of f particle ¼ 0:3,
and a coating thickness of 0.3mm. The particle, coat-
ing, and matrix have an elastic modulus of 100GPa,
200MPa, and 100MPa, respectively. The cohesive
strengths for the two interfaces are varied independ-
ently. When the strength of the particle-coating inter-
face is set to 15MPa, the material separates at the
coating-matrix interface, and no separation occurs at
the particle-coating interface, as demonstrated by the

single kink in the response illustrated in Figure 13.
However, when the strength of the particle-coating
interface is set to 10MPa, the material separates at
the particle-coating interface first then at coating-
matrix interface. Beyond the elastic limit, the material
displays softening behavior in all cases considered. At
large macroscopic strains, complete separation occurs
and the load is carried entirely by the matrix shell.

Remarks on results

The results from both the theoretical and computa-
tional models agree well with one another. The initial,
elastic region is captured exactly in all cases. In general,
the elastic limit (the point at which separation initiates)
is captured, and the post peak behavior is represented
well. When the chosen cohesive parameters lead to very
brittle behavior, represented by rapid changes in stress
with small increases in strain, the results from the finite
element model deviate slightly from those captured the-
oretically. Through this thorough parametric study, we
have illustrated the significant effect that a coating has
on the overall macroscopic behavior of composite
materials.

Discussion of extensions

While the current formulation focuses on the important
case of hydrostatic tension, the numerical model is gen-
eral and can be extended to any case of loading or
underlying material. In this section, we motivate the
extension of this work, by numerically considering the
case of a composite material with coated particle inclu-
sions loaded in uniaxial tension. Under uniaxial ten-
sion, the debonding behavior of the matrix from the
particle is nonuniform, going through gradual stages
of partial debonding, as observed experimentally and
illustrated in Figure 14.
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Figure 12. Effect of cohesive fracture energy for (a) rigid par-

ticles and (b) softer particles. The properties for each case are:

(a) Ematrix ¼ 100 MPa, Ecoating ¼ 200 MPa, Eparticle ¼ 100 GPa,

fparticle ¼ 0:3 and �cohesive ¼ 10 MPa; (b)Ematrix ¼ 150 MPa,

Ecoating ¼ 110 MPa, Eparticle ¼ 80 MPa, fparticle ¼ 0:3, and

�cohesive ¼ 10 MPa.
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The problem of uniaxial tension of linear elastic
materials, accounting for debonding, has been investi-
gated by numerous researchers. Needleman46 devel-
oped a cohesive model and applied it to the problem
of inclusion debonding of a particle reinforced compos-
ite. He was able capture the partial debonding and
stress redistribution behavior around the particle.
Levy47 investigated nonlinear interfacial debonding of
a fiber reinforced composite material using a single
composite cylinder. Tan et al.26 extended the Mori–
Tanaka method to the case of uniaxial tension,
accounting for interface debonding using a linear
softening cohesive relation. None of the above investi-
gations considered the influence of a coating (or inter-
phase) between the particle and the matrix; however,
Shodja and Sarvestani,48 Shodja and Roumi,7 and
Hatami-Marbini and Shodja49 have demonstrated

that there are significantly different elastic fields
around such inclusions, effecting the behavior of
debonding.

Uniaxial tension with separation along the
particle-coating interface

The first scenario we consider investigates progressive
debonding at the particle-coating interface. The geom-
etry and mesh of the model is illustrated in Figure 15.
The particle has a volume fraction of 20%, with a
diameter of 1mm, and the coating is 0.1mm thick.
The matrix has an elastic modulus of 80MPa, and
the particle has an elastic modulus of 400MPa.
Cohesive elements are inserted between the particle
and the matrix and have a cohesive fracture energy of
1.0N/m, a cohesive strength of 15MPa, a softening
shape parameter of 3, and an initial slope indicator of
0.005. The finite element mesh contains approximately
100,000 linear tetrahedral elements to model the bulk
material and 3765 cohesive elements to capture the
debonding behavior. Rollers are placed on the faces
corresponding to the planes of symmetry, and the lat-
eral extension is displacement controlled, as illustrated
in Figure 15.

The results of the analysis are illustrated in Figure 16.
When the coating is introduced, the elastic stiffness and
elastic limit increase slightly. However, the most signifi-
cant influence of the coating is in the post-peak behavior
of the composite. Without the coating, the composite
displays a small region of softening prior to an extended
region of hardening. The cases which include a coating
display hardening behavior past the elastic limit. In com-
parison to the hydrostatic loading cases considered
throughout the rest of the paper, the global strain at
the elastic limit is two to three times greater than that

Figure 15. Single particle model used for uniaxial tension simulations. (a) Geometry illustrating the displacement controlled lateral

displacement and (b) mesh.

Figure 14. Experimental observation of interface debonding in

a metal matrix composite undergoing uniaxial tension, Kanetake

et al.45
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seen in comparable hydrostatic loading cases. As well,
the transition between the elastic range and the
debonded range is more gradual in the case of uniaxial
tension, because the debonding occurs gradually, initi-
ating at the pole of the particle and propagating down to
the equator, as illustrated in Figure 17.

Uniaxial tension with separation at both the particle-
coating and coating-matrix interfaces

For additional motivation, we consider a scenario in
which concurrent separation is permitted at both the
particle-coating interface and coating-matrix interface.
The same bulk mesh is selected for this study, with an
additional 5812 cohesive elements inserted between the
coating and the matrix. All the cohesive elements have
a cohesive fracture energy of 1.0N/m, a softening
shape parameter of 3, and an initial slope indicator of

0.005. The cohesive strength is 8MPa and 12MPa at
the particle-coating and coating-matrix interfaces,
respectively.

The results of the analysis are illustrated in
Figure 18. The ‘‘no coating’’ case corresponds to a
coating layer with the properties of the matrix. As
with the single separation case, when the coating is
introduced, the elastic stiffness and elastic limit increase
slightly. There are two distinct kinks in the stress–strain
response of the material. Separation initiates at the par-
ticle-coating interface, at a macroscopic stress of
approximately 10MPa. Beyond this point, the stiffness
of the material decreases with decreasing coating modu-
lus. The second distinct kink in the stress–strain
response represents the initiation of separation at the
coating-matrix interface. After the coating-matrix

Figure 17. Progression of debonding of a coated particle under uniaxial tension when separation is permitted at the particle-coating

interface. Displacements scaled by a factor of 10, for illustrative purposes.
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Figure 18. Constitutive response for the coated particle

composite loaded in uniaxial tension, demonstrating the influence

of the coating when separation is permitted at both the particle-

coating and coating-matrix interfaces. The following properties

are considered: Ematrix ¼ 80 MPa, Eparticles ¼ 400 MPa,

fparticle ¼ 0:2, tcoating ¼ 0:1 mm, �cohesive ¼ 10 MPa,

�cohesive ¼ 1:0 N=m. The configurations A, B, and C are illustrated

in Figure 19.
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Figure 16. Constitutive response for the coated particle

composite loaded in uniaxial tension, demonstrating the influence

of the coating when separation is permitted at the particle-

coating interface. The following properties are considered:

Ematrix ¼ 80 MPa, Eparticles ¼ 400 MPa, fparticle ¼ 0:2,

tcoating ¼ 0:1 mm, �cohesive ¼ 15 MPa, �cohesive ¼ 1:0 N=m:
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interface separates, the material displays snap-back
behavior in all cases considered. At large macroscopic
strains, complete separation occurs, and the load is
carried entirely by the matrix shell. The progression
of debonding is illustrated in Figure 19.

Conclusion

The macroscopic response of composite materials with
multi-coated particles is investigated through a paired
theoretical and computational study. We have used the
extended Mori–Tanaka model for the theoretical
micromechanics investigation, while the computational
study uses three-dimensional finite element models with
intrinsic cohesive elements. The cohesive elements
follow the PPR potential-based cohesive zone model,
capturing the nonlinear debonding process at the inter-
face, and are implemented in the commercial finite
element software ABAQUS. The change in the macro-
scopic behavior due to changes in the microstructure is
the focus of this investigation. The effects due to vari-
ation in volume fraction of particles, in coating thick-
ness, in material properties, in cohesive properties, and
in location of separation are investigated. In general,
when separation is permitted at a single interface (either
the particle-coating or coating-matrix interface), the
behavior captured numerically agrees well with that
captured theoretically (Figures 7 to 10). Depending
on the material properties, when multiple interfaces
are permitted to separate, the particle-coating interface
tends to separate first, followed by the coating-matrix
interface, resulting in two distinct kinks in the stress–
strain response (Figures 11 to 13). When the macro-
scopic stress–strain response displays softening or
hardening behavior, the debonding process is stable,
whereas when the response displays snap-back behav-
ior, the debonding process demonstrates instabilities.
Overall, the results from the computational study

correlate very well with those from the theoretical
study and provide insight to the debonding process of
composite materials with multi-coated particles. The
natural extension of this work is to consider additional
loading cases and constitutive relations. The extension
of the numerical model to uniaxial tension illustrates
progressive debonding behavior regardless of the loca-
tion of separation.
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