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Experimental evidence has by now established that (i) the hydrodynamic effect and (ii)
the presence of stiff interphases (commonly referred to as bound rubber) “bonding” the
underlying elastomer to the fillers are the dominant microscopic mechanisms typically
responsible for the enhanced macroscopic stiffness of filled elastomers. Yet, because of the
technical difficulties of dealing with these fine-scale effects within the realm of finite
deformations, the theoretical reproduction of the macroscopic mechanical response of
filled elastomers has remained an open problem.

The object of this paper is to put forward a microscopic field theory with the capability
to describe, explain, and predict the macroscopic response of filled elastomers under ar-
bitrarily large nonlinear elastic deformations directly in terms of: (i) the nonlinear elastic
properties of the elastomeric matrix, (ii) the concentration of filler particles, and (iii) the
thickness and stiffness of the surrounding interphases. Attention is restricted to the
prominent case of isotropic incompressible elastomers filled with a random and isotropic
distribution of comparatively rigid fillers. The central idea of the theory rests on the
construction of a homogenization solution for the fundamental problem of a Gaussian
elastomer filled with a dilute concentration of rigid spherical particles bonded through
Gaussian interphases of constant thickness, and on the extension of this solution to non-
Gaussian elastomers filled with finite concentrations of particles and interphases by
means of a combination of iterative and variational techniques.

For demonstration purposes, the theory is compared with full 3D finite-element si-
mulations of the large-deformation response of Gaussian and non-Gaussian elastomers
reinforced by isotropic distributions of rigid spherical particles bonded through inter-
phases of various finite sizes and stiffnesses, as well as with experimental data available
from the literature. Good agreement is found in all of these comparisons. The implications
of this agreement are discussed.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction and main results

The addition of filler particles, even in small amounts, has long been known to significantly enhance the stiffness1 of
elastomers. Over the past decades, a number of microscopic mechanisms have been conjectured to be responsible for such a
mies).
significantly influence other mechanical properties of elastomers, including their fracture, abrasion,
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profound resulting macroscopic reinforcement. Among these, arguably, there are two that experimental investigations have
singled out to be dominant: (i) the hydrodynamic and (ii) the interphasial reinforcement effects (see, e.g., Heinrich et al.,
2002; Berriot et al., 2002; Fukahori, 2007; Leblanc, 2010 and references therein). The so-called hydrodynamic effect refers to
the fact that the addition of fillers to an elastomer results in a composite material whose macroscopic (overall or homo-
genized) mechanical properties are, by construction, some weighted average of the properties of the soft elastomer and the
comparatively rigid fillers. The interphasial effect refers to the fact that the “anchoring” of the polymer chains of the elas-
tomer onto the stiff filler particles forces the chains into conformations that are very different from those in the bulk, hence
resulting in “interphases” (often referred to as bound rubber) of possibly several tens of nanometers in thickness that are
substantially stiffer than the elastomer in the bulk.

Within the restricted context of linear elasticity, following the classical work of Einstein (1906) in the mathematically
analogous setting of Stokes flow, Smallwood (1944) put forward a rigorous result that accounted for the hydrodynamic
reinforcement generated by a dilute distribution of rigid spherical particles perfectly bonded (i.e., without interphases) to an
isotropic incompressible elastomer. A number of exact and variational solutions were thereafter worked out that accounted
for the hydrodynamic reinforcement generated by non-dilute distributions of spherical and non-spherical filler particles
(see, e.g., Guth, 1945; Eshelby, 1957; Roscoe, 1973; Willis and Acton, 1976; Willis, 1977; Norris, 1985). Within the context of
finite elasticity, because of the constitutive non-convexity of elastomers at finite deformations, the construction of corre-
sponding results has proved more elusive.2 It is just recently that an exact result for the nonlinear elastic response of
Gaussian (Neo-Hookean) elastomers reinforced by a dilute isotropic distribution of perfectly bonded rigid particles has been
determined (Lopez-Pamies et al., 2013a). Building upon this fundamental dilute result, Lopez-Pamies et al. (2013b) have
constructed a variational solution that allows us to determine the hydrodynamic reinforcement generated by an isotropic
distribution of rigid spherical particles perfectly bonded to non-Gaussian elastomers under arbitrarily large deformations.

The object of this paper is to build upon the work of Lopez-Pamies et al. (2013a,b) to develop a microscopic field theory of
filler reinforcement – accounting directly for both the hydrodynamic and the interphasial reinforcement effects – that can
describe, explain, and predict the macroscopic response of filled elastomers undergoing arbitrarily large nonlinear elastic
deformations.3 Specifically, the focus is on the industrially prominent case of isotropic incompressible elastomers filled with
a random and isotropic distribution of rigid particles of polydisperse sizes. This is accomplished by way of a twofold strategy.
Roughly speaking, a solution is first constructed for the homogenized nonlinear elastic response of Gaussian elastomers
filled with a dilute isotropic distribution of rigid particles and interphases. By means of a combination of iterative and
variational techniques, this fundamental dilute result is then utilized to generate in turn a solution for the homogenized
nonlinear elastic response of non-Gaussian elastomers filled with an isotropic distribution of rigid particles and interphases
at finite concentrations. Here, it is relevant to remark that the reinforcement of materials (not just elastomers) via the
addition of inclusions bonded through finite-size interphases is a subject that has received considerable attention over the
last three decades, but almost exclusively within the restricted small-deformation contexts of linear elasticity (see, e.g.,
Walpole, 1978; Mikata and Taya, 1985; Qiu and Weng, 1991; Herve and Zaoui, 1993; Duan et al., 2006) and linear viscoe-
lasticity (see, e.g., Hashin, 1991; Diani et al., 2013; Diani and Gilormini, 2014).

In this paper, for purposes of gaining further insight and of assessing the accuracy of the proposed theory, full 3D finite-
element (FE) results are also generated for the large-deformation response of Gaussian and non-Gaussian elastomers re-
inforced by isotropic distributions of rigid spherical particles bonded through interphases of various finite sizes and
stiffnesses.

The presentation of the work is organized as follows. Section 2 formulates the elastostatics problem that defines the
overall nonlinear elastic response of filled elastomers, with a random distribution of rigid particles that are bonded to the
elastomer through interphases, under finite deformations. Section 3 deals with the derivation of the first main result of this
paper: the overall nonlinear elastic response of a Gaussian elastomer with stored-energy function W I/2[ 3]m m 1μ= − , filled with a
dilute isotropic distribution of rigid particles that are bonded through interphases made up of a different Gaussian elastomer with
stored-energy function W I/2[ 3]i i 1μ= − , is characterized by the effective stored-energy function
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to O c( )p and O c( )i in the concentration of particles cp and interphases ci. Here, μm and μi stand for the initial shear moduli of
the matrix and interphases, I F F1 = · denotes the first principal invariant associated with the macroscopic deformation
gradient F, and the coefficients q1, q2, q3, q4, which depend solely on the concentration ratio c c/i p , are given by
2 See, e.g., the Introduction in Lopez-Pamies et al. (2013a) for a brief historical review on this problem.
3 Dissipative processes such as viscous (see, e.g., Deepalekshmi and Thomas, 2014) and damage effects (see, e.g., Diani et al., 2009; Zhang et al., 2012;

Gent and Park, 1984; Spring and Paulino, 2014) are not considered in this work.
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The fundamental dilute result (1) is utilized in Section 4 to generate in turn the following more general result: the overall nonlinear
elastic response of a non-Gaussian elastomer with I1-based stored-energy function W I( )m m 1Ψ= , filled with an isotropic distribution of
rigid particles of polydisperse sizes and finite concentration cp that are bonded through interphases made up of a Gaussian elastomer with
stored-energy function W I/2[ 3]i i 1μ= − at finite concentration ci, is characterized by the effective stored-energy function
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and the variables 0μ and μ0 are defined implicitly by the system of two coupled nonlinear algebraic equations:
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Section 4 includes a discussion of the key theoretical and practical features of this result. The basic details of the FE
calculations are presented in Section 5. Section 6 provides sample predictions by the theoretical result (2) together with
comparisons to corresponding FE solutions. Finally, Section 7 confronts the theoretical result (2) to experimental data and
records some concluding remarks.
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2. The problem

2.1. Microscopic description of filled elastomers

A filled elastomer is taken here to consist of a random distribution of rigid particles bonded to an elastomeric matrix
through interphases of finite sizes; Fig. 1 shows a schematic illustration of this microscopic view. The domain occupied by
the entire composite in its ground state is denoted by Ω and its boundary by Ω∂ . Similarly, Ωm, Ωp, and Ωi denote the
domains occupied collectively by the matrix, the particles, and the interphases so that m p iΩ Ω Ω Ω= ∪ ∪ and their re-
spective initial volume fractions (or concentrations) are given by c /m mΩ Ω≐ | | | |, c /p pΩ Ω≐ | | | |, and c /i iΩ Ω≐ | | | |. We assume that
the distribution of the particles is statistically uniform (i.e., translation invariant) and that their sizes and those of their
surrounding interphases are much smaller that the size of Ω.

Upon application of mechanical loads, the initial position vector X of a material point in Ω moves to a new position
specified by x X( )χ= , where χ is a one-to-one mapping from Ω to the deformed configuration Ω′. We assume that χ is twice
continuously differentiable, except possibly on the matrix/interphase and interphase/particles boundaries, where it is only
required to be continuous. The associated deformation gradient is denoted by

F Grad (3)χ=

and its determinant by J Fdet= . The elastomeric matrix is considered to be a homogeneous nonlinear elastic solid with
stored-energy function W W F( )m m= . Similarly, the rigid particles are homogeneous nonlinear elastic solids characterized by
the stored-energy function

⎧⎨⎩W
Orth

F
F Q

( )
0 if

otherwise, (4)
p =

= ∈
+ ∞

+

where Orthþ stands for the set of all proper orthogonal second-order tensors. The interphases are taken to be nonlinear
elastic solids as well, but need not be homogeneous. We write their stored-energy function asW W X F( , )i i= . Given the above
local constitutive descriptions, it follows that at each material point X in the undeformed configuration Ω, the first Piola–
Kirchhoff stress tensor S is given in terms of F formally by

W
S

F
X F( , ), (5)= ∂

∂

where

W W W WX F X X F X F X X F( , ) [1 ( ) ( )] ( ) ( ) ( ) ( ) ( , ) (6)p i m p p i iθ θ θ θ= − − + +

with θp and θi denoting the characteristic functions of the spatial regions occupied by the particles and interphases:
X( )pθ ¼1 if X pΩ∈ and zero otherwise, and, likewise, X( )iθ ¼1 if X iΩ∈ and zero otherwise.

2.2. The macroscopic response

In view of the assumed separation of length scales and statistical uniformity of the microstructure, the above-defined
filled elastomer behaves macroscopically as a “homogenous” material. Its macroscopic or overall response is defined as the
relation between the volume average of the first Piola–Kirchhoff stress S and the volume average of the deformation gra-
dient F over the undeformed configuration Ω when the composite is subjected to affine boundary conditions (Hill, 1972).
Consistent with our choice of F as the independent variable of the problem, we consider boundary conditions that are affine
in the deformation, namely,

x FX on , (7)Ω= ∂
Fig. 1. Schematic microscopic view of a filled elastomer.
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where the second-order tensor F stands for a prescribed quantity. Granted the boundary data (7), the divergence theorem
warrants that F X X F( ) d1 ∫Ω| | =Ω

− and hence the derivation of the macroscopic response reduces to finding the average
stress S S X X( ) d1 ∫Ω≐ | | Ω

− for a given F. The result can be conveniently written in a variational form as (Ogden, 1978)

W
c cS

F
F( , , ), (8)p i= ∂
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the effective stored-energy function, corresponds physically to the total elastic energy per unit undeformed volume stored
in the filled elastomer. In these expressions, the concentrations cp and ci are utilized as explicit variables for later con-
venience and denotes a sufficiently large set of kinematically admissible deformation gradient fields with prescribed
volume average F.

2.3. Filled elastomers with overall isotropic incompressible behavior: the basic case of spherical filler particles and constant-
thickness Gaussian interphases

The foregoing formulation is valid for arbitrary stored-energy functions for the elastomeric matrix, W F( )m , and inter-
phases, W X F( , )i , as well as for general classes of microstructures as characterized by X( )pθ and X( )iθ . The focus of this work
is on the prominent case of elastomeric matrices that are constitutively isotropic and incompressible and microstructures that
are isotropic. Within this class of materials, we further restrict attention to those wherein the particles are spherical and the
interphases are of constant thickness and made up of a Gaussian (Neo-Hookean) elastomer.4 Specifically, we consider
I1-based stored-energy functions of the form
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for the elastomeric matrix and interphases. In these expressions, 1λ , 2λ , 3λ stand for the singular values of the deformation
gradient tensor F, I F F1 = · , 0iμ > denotes the initial shear modulus of the interphases, and Ψm is any non-negative function
of choice satisfying the linearization conditions5

(3) 0, (3)
2

, (11)m m
mΨ Ψ

μ
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where μm denotes the initial shear modulus of the elastomeric matrix, and the strong ellipticity conditions (Zee and
Sternberg, 1983)
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Stored-energy functions of the form (10)1 with (11) and (12) are generalization of the classical Gaussian energy
I I( ) /2[ 3]m m1 1Ψ μ= − that have been shown to describe reasonably well the response of a wide variety of elastomers over

large ranges of deformations (see, e.g., Arruda and Boyce, 1993; Gent, 1996; Lopez-Pamies, 2010a). A further merit of these
types of constitutive models is that they are derivable from microscopic considerations (see, e.g., Beatty, 2003).

Owing to the assumed constitutive isotropy and incompressibility of the matrix material (10)1, interphases (10)2, and
rigid particles (4), and the assumed isotropy of the microstructure, the resulting overall elastic response is isotropic and
incompressible. This implies that the effective stored-energy function W in this case depends on the macroscopic de-
formation gradient F only through its singular values 1λ , 2λ , 3λ and becomes unbounded for non-isochoric deformations
when J Fdet 11 2 3λ λ λ≐ = ≠ . Accordingly, the result (9) can be simply written as a symmetric function of 1λ , 2λ , 3λ subject to
the constraint 11 2 3λ λ λ = . Alternatively, in this work, we shall find it more convenient to write the effective stored-energy
function (9) as a function of the two principal invariants I F F1 1
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The object of this paper reduces hence to generating a solution for the finite branch Ψ of the effective stored-energy
function (13). Paralleling previous work on filled elastomers without interphases (Lopez-Pamies et al., 2013a,b), as already
4 As elaborated further below, these geometric and constitutive idealizations prove sufficiently general for most filled elastomers, wherein the in-
terphases are typically stiffer than the matrix.

5 Throughout this paper, the notation I I I( ) d ( )/dm m1 1 1Ψ Ψ′ ≐ and I I I( ) d ( )/dm m1 2 1 1
2Ψ Ψ″ ≐ is used for convenience.



Fig. 2. Schematic of the single-particle problem: a rigid spherical particle of radius r is bonded through an interphase of thickness t to a matrix of infinite
extent that is subjected to the affine boundary condition x FX= . The matrix and interphase are both Gaussian elastomers with shear moduli μm and μi,
respectively.
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alluded to in Section 1, our strategy to generate such a solution involves two main steps. In the first step, presented in
Section 3, we work out a solution for the fundamental limiting case of Gaussian elastomers filled with a dilute concentration
of particles and interphases. This dilute solution for Gaussian elastomers is then utilized in a second step, presented in
Section 4, to work out in turn a solution for non-Gaussian elastomers filled with a finite concentration of particles and
interphases. In order to assist the presentation of the results, the unbounded branch of the energies (10) and (13) is omitted
in most of the remainder of the analysis.
3. Dilute concentration of particles and interphases in Gaussian elastomers

In this section, we derive an asymptotic solution for the effective stored-energy functionΨ , as defined by (13) with (9), of
filled elastomers in the limit when the filler particles and surrounding interphases are present in dilute concentrations, as
c 0p → + and c 0i → +, and the behavior of the matrix is characterized by the Gaussian stored-energy function

I I( )
2

[ 3], (14)m
m

1 1Ψ
μ

= −

where, again, μm stands for the shear modulus of the elastomeric matrix; recall that the interphase is also comprised of a
Gaussian elastomer but with different shear modulus μi.

Assuming that the particles are “well separated” and thus do not interact with one another in the limit as c 0p → + and
c 0i → +, the effective stored-energy function Ψ for a dilute suspension of particles is expected to agree identically with the
total elastic energy per unit undeformed volume of an infinitely large matrix containing just a single spherical particle. This
single-particle problem, schematically depicted in Fig. 2, is now taken up. In the calculations that follow, we shall denote the
radius of the particle by r and the initial thickness of the interphase by t.
3.1. The exact solution in the small-deformation limit

It is instructive to begin by examining the small deformation limit as the applied macroscopic deformation F I→ with
Fdet 1= . In this limit, the elasticity problem (9) for the case of the single spherical particle admits an exact closed-form

solution; for clarity of presentation, the relevant calculations are provided in Appendix A. The result for the finite branch Ψ
of the effective stored-energy function reads as
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has been introduced for later reference and
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Expression (16) corresponds to the effective shear modulus of an isotropic incompressible elastomer, with shear modulus
μm, filled with a dilute distribution of rigid spherical particles that are bonded through isotropic incompressible interphases
with shear modulus μi and thickness t. Three key points are worth remarking:
�
 The dependence of the effective shear modulus (16) on t enters through the interphase-thickness-to-particle-radius ratio
t r/ , or equivalently, through the ratio of concentration of interphases to concentration of particles c c/i p . A corollary of
such a dimensionless dependence is that the result (16) applies not only to microstructures with monodisperse particles,
but also to microstructures with polydisperse particles provided that all particles and surrounding interphases have the
same interphase-thickness-to-particle-radius ratio t r/ .
�
 The result (16) constitutes a generalization of the classical result of Einstein–Smallwood (Smallwood, 1944) for the ef-
fective shear modulus of a dilute suspension of rigid spherical particles in rubber with perfect bonding (i.e., without
interphases) between the particles and the rubber. Indeed, in the absence of interphases when ci¼0, the effective shear
modulus (16) reduces identically to the well-known formula c5/2m m p

dilμ μ μ= + . The choices i mμ μ= and iμ =+∞ also
recover this classical result; in the latter, c c5/2 ( )m m p i

dilμ μ μ= + + since the total concentration of particles is c cp i+ in
that limiting case.
�
 A further salient feature of the solution (15)–(18) is that the stress fields inside the particles are not uniform; see Ap-
pendix A for details. Uniform intra-particle (stress and strain) fields are the hallmark of the classical solution of Einstein–
Smallwood, and, more generally, that of Eshelby (1957), where no interphases are accounted for. The solution (15)–(18)
reveals that the presence of interphases, however small, disrupts the uniformity of the fields inside the particles. The
theoretical and practical implications of this feature are far reaching since many homogenization techniques (e.g., the
Mori–Tanaka approximation and most techniques based on Hashin–Shtrikman-type variational principles) make critical
use of the very fact that the fields in at least one of the underlying constituents are uniform. The employment of such
techniques to study the behavior of particulate composites with interphases might hence lead to inaccurate results.

3.2. An approximate closed-form solution for arbitrarily large deformations

For arbitrarily large applied deformations F, the single-particle problem does not appear to admit an exact analytical
solution. In the following two subsections, guided by earlier results for dilute suspensions of rigid particles without in-
terphases (Lopez-Pamies et al., 2013a), we first construct a FE solution for the effective stored-energy functionΨ fromwhich
we are then able to devise a closed-form approximation for it.

3.2.1. Finite-element solution
By virtue of the invariance of the equations of elastostatics under the transformation X x X x( , ) ( , )β β→ , it is indifferent to

consider the problem of an infinitely large elastomeric matrix containing a finite-size particle or that of a finite-size block of
elastomer that contains a particle of infinitesimal size. In constructing a FE solution, we are compelled to consider the latter.
Without loss of generality, we take the elastomer block to be a cube of side L. In this context, given that the radius r of the
particle and the thickness t of its surrounding interphase must be necessarily finite, we need to identify how small their
concentrations c r L4 /3p

3 3π= and c r t r L4 [( ) ]/3i
3 3 3π= + − ought to be in order to accurately approximate an infinitesimally

small particle and infinitesimally small interphase. To this end, we carried out a parametric study with decreasing con-
centrations of the particle cp and interphase ci. The results indicate that for combined values c c 10p i

8+ ≤ − , the particle and
interphase behave effectively as infinitesimally small. Based on this analysis, all the calculations that follow are such that

c c
125

48
10 , (19)p i

9π+ = × −

corresponding to a combined particle-interphase length of r t 1+ = in a cube of side L¼800.
The geometric and constitutive symmetries of the problem allow us to perform the calculations in just one octant of the

cube. A standard mesh generator is utilized to construct the 3D geometry for such an octant. The particle need not be



Fig. 3. A representative finite element discretization – in the undeformed configuration – of a small rigid spherical particle of radius r bonded to the matrix
through an interphase of thickness t r1= − located at the center of a cubic block with edge length L¼800. The boundary of the cube is subjected to the
stretches 1λ , 2λ , and ( )3 1 2 1λ λ λ= − aligned with the three principal axes of the cube.
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meshed, instead, the nodes at the particle/interphase boundary are fixed in the undeformed configuration in order to model
the rigid behavior of the particle. For illustration purposes, Fig. 3 shows the mesh utilized for the case with r 5/6= and
t r0.2 1/6= = , which correspond to c 4.73 10p

9≈ × − and c 3.45 10i
9≈ × − . Small elements are placed near the rigid particle at

uniform angular intervals of 3°, while the radial length is gradually increased toward the outer boundary. The mesh consists
of 18,900 brick elements with 675 elements on a radial plane and 28 layers along the radial direction. The interphase is
comprised of 8 layers of elements in the radial direction. This discretization was selected after various mesh refinements
were tried to assess sufficient mesh convergence. In selecting an appropriate type of element, we tested 8-node linear and
20-node quadratic hybrid elements, where the pressure is treated as a further degree of freedom in order to be able to
handle the incompressibility of the Gaussian matrix and interphase. The 20-node quadratic elements with linearly varying
pressure proved to have a faster convergence and thus were selected.

Given the overall isotropy and incompressibility of the problem, it suffices to restrict attention to affine boundary
conditions (7) with deformation gradients of the diagonal form

⎛
⎝⎜

⎞
⎠⎟F diag , ,

1
.

(20)
1 2 3

1 2
λ λ λ

λ λ
= =

We find it convenient to implement this type of loading conditions by following radial straining paths in principal-loga-
rithmic-strain space. Specifically, we set

and (21)a
1 2λ λ λ λ= =

(and hence ( ) a
3 1 2

1 (1 )λ λ λ λ= =− − + ), where λ is a positive load parameter that takes the value of 1 in the undeformed con-
figuration and a ∈ . Any desired macroscopic deformation state ( , , ( ) )1 2 3 1 2

1λ λ λ λ λ= − can be accessed by marching along
(starting at 1λ = ) radial paths (21) with appropriate fixed values of the parameter a.

Under boundary conditions (7) with (20), the total elastic energy per unit undeformed volume computed from the FE
model, denoted here by FEΨ , turns out to be of the expected asymptotic form

⎡
⎣⎢

⎤
⎦⎥c c H c G c( , , , )

2
1

3 ( , ) ( , )
(22)

FE
p i

m
m p m i1 2 1

2
2
2

1
2

2
2 1 2 1 2Ψ λ λ

μ
λ λ

λ λ
μ λ λ μ λ λ= + + − + +

to leading order in cp and ci. In this expression, H and G are functions of the applied stretches 1λ and 2λ such that

H H H H H H

G G G G G G

( , ) ( , ) ( , ( ) ) (( ) , ) ( , ( ) ) (( ) , ),

( , ) ( , ) ( , ( ) ) (( ) , ) ( , ( ) ) (( ) , ), (23)

1 2 2 1 1 1 2
1

1 2
1

1 2 1 2
1

1 2
1

2

1 2 2 1 1 1 2
1

1 2
1

1 2 1 2
1

1 2
1

2

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ

= = = = =

= = = = =

− − − −

− − − −

as a result of the overall isotropy and incompressibility; in addition to the applied stretches, the function G depends also on
the ratio /i mμ μ between the shear moduli of the Gaussian interphase and the matrix, as well as on the ratio t r/ between the
thickness of the interphase and the radius of the particle, but such a dependence is not stated explicitly here for notational
simplicity. Now, in order to extract the correcting functions H and G from the computed values of FEΨ , an expedient strategy
is first to compute FEΨ in the absence of the interphase when ci¼0 so that

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

H
c

c( , )
1 1

( , , , 0)
1
2

1
3 .

(24)p m

FE
p1 2 1 2 1

2
2
2

1
2

2
2

λ λ
μ

Ψ λ λ λ λ
λ λ

= − + + −



Fig. 4. (a) Full 3D view of the FE solution for the correcting function H, defined in (22), over a large range of applied macroscopic stretches 1λ and 2λ . (b) 2D
view along the axisymmetric shear loading with 1 2λ λ λ= = .
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Having determined H from (24), we can readily extract the function G from the computed values of FEΨ for the case when
the interphase is accounted for, namely,

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

G
c

c c H c( , )
1 1

( , , , )
1
2

1
3 ( , ) .

(25)i m

FE
p i p1 2 1 2 1

2
2
2

1
2

2
2 1 2λ λ

μ
Ψ λ λ λ λ

λ λ
λ λ= − + + − −

Here, it is important to emphasize that the correction terms in (22) are in the order of 10�9 or smaller, as dictated by the
combined concentration of particle and interphase (19), and hence that the computation of FEΨ must be carefully carried out
in double precision in order to be able to accurately determine the correcting functions H and G from (24) and (25). It is also
important to emphasize that in the computation of the functions H and G, by virtue of their symmetries (23), it suffices to
restrict attention to radial loadings (21) with 1λ ≥ and a [ 0.5, 1]∈ − .

Results and discussion: Fig. 4 shows the FE solution for the correcting function H. Part (a) of the figure shows the full 3D
view of the function over a large range of stretches 1λ and 2λ , while part (b) shows its 2D view along the axisymmetric shear
loading with 1 2λ λ λ= = .
Fig. 5. (a) Full 3D view of the FE solution for the correcting function G, defined in (22), over a large range of applied macroscopic stretches 1λ and 2λ . (b) 2D
view along the axisymmetric shear loading with 1 2λ λ λ= = . The results correspond to an interphase that is five times stiffer than the matrix, / 5i mμ μ = ,
whose thickness is one tenth the particle radius, t r/ 0.1= .



Fig. 6. FE solutions for the correcting function G along the axisymmetric shear loading with 1 2λ λ λ= = . Part (a) shows results for various ratios /i mμ μ
between the interphase and matrix shear moduli at fixed t r/ 0.1= , while part (b) shows results for various ratios t r/ between the interphase thickness and
particle radius at fixed / 5i mμ μ = .
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Similarly, Fig. 5 shows the FE solution for the correcting function G. Part (a) of the figure shows the full 3D view of the
function over a large range of stretches 1λ and 2λ , while part (b) shows its 2D view along the axisymmetric shear loading
with 1 2λ λ λ= = . As opposed to H, again, the function G does depend on the ratio /i mμ μ between the shear moduli of the
interphase and the matrix, as well as on the ratio t r/ between the thickness of the interphase and the radius of the particle.
The results displayed in Fig. 5 correspond to the values / 10i mμ μ = and t r/ 0.1= .

The dependence of G on /i mμ μ and t r/ is illustrated in Fig. 6. For purposes of visualization, the results are presented only
for the case of axisymmetric shear loading when 1 2λ λ λ= = . Specifically, Fig. 6(a) displays the function G for

/ 2, 5, 10, 20,i mμ μ = + ∞ and t r/ 0.1= . On the other hand, Fig. 6(b) displays G for t r/ 0.05, 0.1, 0.2= and / 5i mμ μ = . An im-
mediate observation from these plots is that G is a monotonically increasing function of the interphase stiffness /i mμ μ , but a
decreasing function of its thickness t r/ . With respect to the dependence on the interphase stiffness, it is worth remarking
that G saturates quickly with increasing values of /i mμ μ . There is indeed little difference between the result for / 10i mμ μ =
and that for /i mμ μ =+∞. It is also worth remarking that G¼H for /i mμ μ =+∞, as expected, since in this limiting case there is
actually no interphase but instead a rigid spherical particle of radius r t+ perfectly bonded to the matrix.

For further scrutiny of the correcting functions H and G, Fig. 7 shows results for H and G in terms of the first and second
principal invariants of the applied macroscopic loading: I F F1 1

2
2
2

1
2

2
2λ λ λ λ= · = + + − − and I F FT T

2 1
2

2
2

1
2

2
2λ λ λ λ= · = + +− − − − .

Parts (a) and (c) show H and G as functions of I1 for the two fixed values I 42 = and 6. Parts (b) and (d), on the other hand,
show H and G as functions of I2 for the four fixed values I 4, 7, 10, 131 = . The results for G correspond to the case of an
interphase with / 5i mμ μ = and t r/ 0.1= . In the context of these plots, it is appropriate to recall that the constraint of in-
compressibility imposes a restriction on the physically allowable values of I1 and I2. Thus, for fixed I 42 = and 6, the first
invariant is restricted to take values in the ranges I [3.71, 4.52]1 ∈ and I [4.72, 9.34]1 ∈ , respectively. For fixed I 4, 7, 10, 131 = ,
the allowable values of the second principal invariant are such that I [3.71, 4.52]2 ∈ , I [5.14, 12.54]2 ∈ , I [6.22, 25.20]2 ∈ , and
I [7.13, 42.40]2 ∈ , respectively. These are the ranges of values utilized in the figure.

The dominant observation from Fig. 7 is that both correcting functions H and G are approximately linear in I1 and in-
dependent of I2; while the results for G in this figure correspond to the particular case of interphase stiffness / 5i mμ μ = and
thickness t r/ 0.1= , the approximately linear dependence on I1 and independence from I2 of this function has been checked
(through a parametric study) to be insensitive to the choice of values for /i mμ μ and t r/ . The fact that these macroscopic or
average correcting functions are, in essence, functionally identical – namely, linear in I1 and independent of I2 – to the local
stored-energy functions for the underlying Gaussian matrix and interphase is admittedly remarkable. Indeed, the functional
character of the average behavior of nonlinear material systems is in general substantially different from that of its con-
stituents, but that is not the case here. This is a most distinctive trait that we exploit next to generate a simple yet accurate
closed-form approximation.



Fig. 7. FE solutions for the correcting functions H and G plotted in terms of the principal invariants I1 1
2

2
2

1
2

2
2λ λ λ λ= + + − − and I2 1

2
2

2
1
2

2
2λ λ λ λ= + +− − . Parts

(a) and (c) show H and G as functions of I1 for different fixed values of I2, whereas parts (b) and (d) show corresponding plots as functions of I2 for different
fixed values of I1. The results shown for the function G in (c) and (d) correspond to an interphase that is five times stiffer than the matrix, / 5i mμ μ = , whose
thickness is one tenth the particle radius, t r/ 0.1= .
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3.2.2. The proposed approximate closed-form solution
In view of the analytical asymptotic solution (15) in the small-deformation limit together with the foregoing numerical

observations for finite deformations, we propose the following closed-form approximations:

⎡
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⎦⎥H ( , )

5
4

1
3 ,
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1 2 1
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Fig. 8. Comparison between the correcting function H computed from the FE simulations and its closed-form approximation (26). Part (a) shows the
comparison for a wide range of stretches 1λ and 2λ , while part (b) shows the comparison for the case of axisymmetric deformations with 1 2λ λ λ= = .
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for the correcting functions H and G. By construction, the approximations (26) and (27) have the merit to be exact in the
limit of small deformations, as 1λ , 12λ → . For arbitrarily large deformations, although not exact, the approximations (26) and
(27) are practically identical to the exact solution in a functional sense: they are linear in I ( )1 1

2
2
2

1
2

2
2λ λ λ λ= + + − − and

independent of I ( )2 1
2

2
2

1
2

2
2λ λ λ λ= + +− − . In addition, as illustrated by Figs. 8 and 9, the simple closed-form expressions (26)

and (27) are remarkably accurate when compared with the corresponding FE solutions. Specifically, Fig. 8 shows
comparisons between the proposed approximation (26) for the function H and its FE solution. Similarly, Fig. 9 shows
comparisons between the proposed approximation (27) for G and its FE solution. Parts (a) and (b) of Fig. 9 correspond to the
case of an interphase that is five times stiffer than the matrix, / 5i mμ μ = , whose thickness is one tenth the particle radius,
t r/ 0.1= , while parts (c) and (d) illustrate comparisons for various values of the ratios /i mμ μ and t r/ .

Making use of the approximations (26) and (27) for H and G, we readily obtain the resulting closed-form approximate
solution for the effective stored-energy function Ψ of a Gaussian elastomer with shear modulus μm, filled with a dilute
distribution of rigid spherical particles that are bonded through interphases of constant thickness t, made up of a different
Gaussian elastomer with shear modulus μi. The result reads as

I I c c I I c
q q

q q q
I c I( , , , )

2
[ 3]

5

4
[ 3]

5( )( )

4( )
[ 3]

2
[ 3]

(28)
p i

m m
p

i m i m m

i i m m
i1 2 1 1

1 4

1
2

2 3
2 1

dil

1Ψ
μ μ μ μ μ μ μ

μ μ μ μ
μ= − + − +

− +
+ +

− = −

to leading order in the concentration of particles cp and interphases ci. Here, it is recalled that the coefficients q1, q2, q3, q4
are given in terms of the concentration ratio c c/i p by expressions (17), whereas the effective shear modulus dilμ is given by
expression (16). Because of the above-discussed properties of the functions (26) and (27), the approximate solution (28) is
identical to the exact solution (15) in the limit of small deformations and, while not exact, qualitatively and quantitatively
very close to the FE solution for arbitrarily large deformations. We conclude by remarking that the dependence of the
effective stored-energy function (28) on t enters via the effective shear modulus dilμ through the dimensionless interphase-
thickness-to-particle-radius ratio t r c c/ (1 / ) 1i p

1/3= + − . This implies that the result (28) applies not only to microstructures
with monodisperse particles, but also to microstructures with polydisperse particles wherein all particles and surrounding
interphases have the same aforementioned interphase-thickness-to-particle-radius ratio.
4. Finite concentration of particles and interphases in non-Gaussian elastomers

Next, we construct a solution for the effective stored-energy function Ψ , as defined by (13) with (9), of non-Gaussian
elastomers filled with an isotropic distribution of rigid spherical particles of polydisperse sizes and finite concentration cp
that are bonded through constant-thickness Gaussian interphases of finite concentration ci. This is accomplished by making
use of two different techniques in two successive steps. First, as elaborated in Section 4.1, the fundamental dilute solution
(28) is utilized within the context of an iterated homogenization method in finite elasticity (Lopez-Pamies, 2010b, 2014) to
generate a finite-concentration solution for filled Gaussian elastomers. In Section 4.2, this finite-concentration result is then
employed within the context of a variational nonlinear comparison medium method (Lopez-Pamies et al., 2013b) to



Fig. 9. Comparison between the correcting function G computed from the FE simulations and its closed-form approximation (27). Parts (a) and (b) show
the comparison for a wide range of stretches 1λ and 2λ for / 5i mμ μ = and t r/ 0.1= . Part (c) shows results for various ratios /i mμ μ between the interphase and
the matrix shear moduli at fixed t r/ 0.1= , while part (d) shows results for various ratios t r/ between the interphase thickness and particle radius at fixed

/ 5i mμ μ = along axisymmetric deformations with 1 2λ λ λ= = .
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generate in turn a corresponding solution for the more general case when the underlying elastomeric matrix is non-
Gaussian, as characterized by any I1-based stored-energy function I( )m 1Ψ of choice.

4.1. Filled elastomers with Gaussian matrix

Iterated dilute homogenization methods are a class of iterative techniques that make use of results for the overall
properties of dilute composites in order to generate corresponding results for composites with finite concentration of
constituents. Within the non-convex realm of finite elasticity, extending the formulation of Lopez-Pamies (2010b) for two-
phase composites, Lopez-Pamies (2014) has put forward an iterated dilute homogenization technique applicable to com-
posite materials with any number of phases. For the generic three-phase problem outlined in Sections 2.1 and 2.2, assuming
that the effective stored-energy function (9) is of the asymptotic form

W c c W W W W c W W W cF F F F( , , ) ( ) { , , ; } { , , ; } (29)p i m m p i p m p i i= + +

to O c( )p and O c( )i , the formulation states that the effective stored-energy function (9) of elastomers filled with particles
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bonded through interphases is given implicitly by the differential equation:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

W
W W W W W WF F(1 ) (1 )

d

d

d

d
{ , , ; } (1 )

d

d

d

d
{ , , ; }

(30)
p i i

p
p

i
p i p

i
i

p
p iϕ ϕ

τ
ϕ

ϕ

τ
ϕ

ϕ
τ

ϕ
ϕ
τ

ϕ
ϕ

τ
− − ∂

∂
= − + + − +

subject to the initial condition

W c c WF F( , , ) ( ). (31)p i m0| =τ=

The functionals and in (30) are the same as in the asymptotic result (29), τ is a time-like variable taking values from
0 and 1, the range over which the differential equation (30) must be integrated, and ( )pϕ τ and ( )iϕ τ are non-negative, non-
decreasing functions of choice that must satisfy the properties ( ) ( ) 1p iϕ τ ϕ τ+ ≤ , (0) (0) 0p iϕ ϕ= = , c(1)p pϕ = , c(1)i iϕ = . More
specifically, the functions ( )pϕ τ and ( )iϕ τ characterize the manner in which the composite is constructed and thus contain
microstructural information; see Fig. 10 for a schematic depiction of the iterative construction process. The interested reader
is referred to Section 3.1 of Lopez-Pamies (2014) for the derivation and full description of the above results. Here, it suffices
to remark that knowledge of an exact (approximate) dilute solution (29) allows us to compute exact (approximate) non-
dilute solutions via the initial-value problem (30) and (31). And that, by construction, such non-dilute solutions correspond
to polydisperse microstructures with particles of infinitely many sizes. This feature is of practical relevance here because
standard reinforcing fillers (e.g., carbon black and silica) typically agglomerate, resulting effectively in polydisperse
microstructures with“particles” of many different sizes.

When specialized to the class of isotropic incompressible filled elastomers described in Section 2.3, assuming that the
matrix is Gaussian and employing the analytical approximation (28) as (the finite-branch of) the dilute solution (29), the
formulation (30) and (31) generates the following result:
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with the coefficient μ being defined implicitly by the first-order nonlinear ode
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again, to be integrated from 0τ = to 1τ = , subject to the initial condition

, (34)m0μ μ| =τ=
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Expression (32) with (33)–(36) corresponds to the effective stored-energy function of a Gaussian elastomer, with shear
modulus μm, filled with an isotropic distribution of polydisperse rigid spherical particles at finite concentration cp that are
bonded through constant-thickness Gaussian interphases, with shear modulus μi and finite concentration ci. Thorough
comments on the theoretical and practical merits of this result are deferred to Section 4.2, where the more general case of
filled elastomers with non-Gaussian matrix is addressed. At this stage, it is important to emphasize, however, that in
addition to its explicit dependence on the concentration of particles cp and interphases ci, the result (32) depends on the
microstructure through the functions ϕp and ϕi, which, again, characterize the way in which the composite is constructed.

Microstructures with constant interphase-thickness-to-particle-radius ratio: In this work, for relative simplicity, we shall
consider microstructures wherein all filler particles, irrespectively of their size, are surrounded by interphases with the
same interphase-thickness-to-particle-radius ratio. This amounts to choosing



Fig. 10. Schematic of the iterative dilute construction process of an elastomer (characterized by a stored-energy function Wm) filled with particles
(characterized by a stored-energy function Wp) at finite concentration cp bonded through interphases (characterized by a stored-energy function Wi) at
finite concentration ci.
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c cand , (37)p p i iϕ τ ϕ τ= =

in which case q q1 1= , q q2 2= , q q3 3= , q q4 4= , k k= , and the initial-value problem (33) and (34) for the coefficient μ reduces to
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where, again, q1, q2, q3, q4, and k are given explicitly in terms of the concentration ratio c c/i p by expressions (17) and (18).
Upon integration from 0τ = to 1τ = , the ode (38)1 takes the form
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Further, upon recognizing that the integral in (39) can be carried out explicitly (together with some algebraic manipulation),
this last equation can be rewritten as
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where the function 1 has been introduced for later reference. In general, as discussed in more detail below, Eq. (40) does not
admit an explicit solution for the coefficient μ . For given values of μm, μi, cp, and ci it is, however, straightforward to generate
a numerical solution for it.
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4.2. Filled elastomers with non-Gaussian matrix

Comparison medium methods are variational techniques that allow us to generate approximations for the overall
properties of composites in terms of the properties of “simpler” comparison media. Generalizing ideas from the works of
Talbot and Willis (1985), Ponte Castañeda (1991), Willis (1994), and deBotton and Shmuel (2010), Lopez-Pamies et al.
(2013b) have introduced a nonlinear comparison medium approach that is capable to deal with the general types of non-
convex behaviors inherent to finite elasticity. For the problem of filled elastomers formulated in Sections 2.1 and 2.2, the
method provides the following variational approximation for the effective stored-energy function (9):
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In this expression, W0 stands for the local stored-energy function of any comparison medium of choice, possibly hetero-
geneous, while the functions f and f0 are defined such that f J WX F X F( , , ) ( , )= and f J WX F X F( , , ) ( , )0 0= when J Fdet= .
The interested reader is referred to Section 4.1 of Lopez-Pamies et al. (2013b) for the derivation and full description of the
above result. Here, it suffices to remark that knowledge of the overall nonlinear elastic response of a medium with local
energy W0, as characterized by its effective stored-energy function W X F Xmin ( , ) dF

1
0∫Ω| | Ω∈

− , allows us to compute a
solution (approximate in general, but possibly exact in some cases) for the effective stored-energy function W of the filled
elastomer of interest via the variational relation (41).

When specialized to the class of isotropic incompressible filled elastomers described in Section 2.3, by taking the
comparison medium to be a filled Gaussian elastomer with the same microstructure and the same constitutive behaviors for
the underlying rigid particles and Gaussian interphases as the actual filled elastomer of interest:
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and employing the approximation (32) as (the finite-branch of) the effective stored-energy function of such a comparison
medium, the formulation (41) generates the following result:
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where the coefficient 0μ is defined implicitly by the nonlinear algebraic equation { , } 01 0 0μ μ = , cf. Eq. (40). In view of the
monotonicity (11)1 of the function Ψm, the max–min and min–max problems in (44) are solved by exactly the same
stationary conditions:
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irrespectively of the growth conditions ofΨm. Making use of these relations, the effective stored-energy function (44) can be
written more explicitly as
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and the variables 0μ , μ0 being defined implicitly by the system of two coupled nonlinear algebraic equations:
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{ , } 0, { , } ( )
2

0, (48)m1 0 0 2 0 0 1
0μ μ μ μ Ψ

μ
= ≐ ′ − =

where it is recalled that the coefficients q1, q2, q3, q4 are given explicitly in terms of the concentration ratio c c/i p by ex-
pressions (17) and the function 1 is defined by expression (40).

The effective stored-energy function (46) with (47) and (48) constitutes the main result of this paper. It characterizes the
overall nonlinear elastic response of a non-Gaussian elastomer, with stored-energy function Ψm, filled with an isotropic
distribution of rigid spherical particles, of polydisperse sizes and finite concentration cp, that are bonded to the elastomer
through Gaussian interphases with shear modulus μi, finite concentration ci, and constant thickness-to-particle-radius ratio

c c(1 / ) 1i p
1/3+ − . The following theoretical and practical remarks are in order:
(i)
 In terms of the macroscopic first Piola–Kirchhoff stress tensor S and macroscopic deformation gradient tensor F, the
constitutive response implied by the effective stored-energy function (46) is given by

I
p pS F F F F2

(49)
T T

1
0

Ψ μ= ∂
∂

− = −− −

where p stands for the arbitrary hydrostatic pressure associated with the incompressibility constraint Fdet 1= and,
again, the coefficient 0μ is defined implicitly by the system of two coupled nonlinear algebraic equations (48), which
ultimately depend on the concentration of the particles cp, the concentration of the interphases ci, the stored-energy
function of the matrix Ψm, the stiffness of the interphases μi, and the applied loading via the first principal invariant
I F F1 = · .
(ii)
 The effective stored-energy function (46) is independent of the second principal invariant I F FT T
2 = ·− − . The origin of

this independence can be traced back to the choice of approximation (28) for the dilute response of filled Gaussian
elastomers, which neglects the weak but existent dependence on I2 of the exact solution in order to favor analytical
tractability (see Section 3.2.1). Neither the iterated dilute homogenization procedure to account for finite concentra-
tions of particles and interphases (Section 4.1), nor the comparison medium procedure to account for non-Gaussian
behavior (Section 4.2) introduced dependence on I2 thereafter. This suggests that the response of any filled I1-based
non-Gaussian elastomer is by and large independent of I2. The FE simulations presented below provide further support
that this is indeed the case.
(iii)
 For stored-energy functions Ψm that are convex in I1,

I I( ) 0 and ( ) 0, (50)m m1 1Ψ Ψ′ > ″ ≥

it follows that
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and hence that the effective stored-energy function (46) is strongly elliptic. For the case when Ψm is merely strongly
elliptic (i.e., it satisfies the weaker conditions (12)) but not convex in I1, the effective stored-energy function (46) can
still be shown to be strongly elliptic for small enough deformations, but it may lose strong ellipticity at sufficiently
large values of deformation.
(iv)
 In the limit of small deformations (I I, 31 2 → ), 2 (3)m m0μ Ψ μ= ′ = to leading order in I1 and the stored-energy function
(46) reduces asymptotically to

I I c c( , , , ) tr (52)p i1 2
2εΨ μ=

to leading order in the deformation measure F F I( 2 )/2Tε = + − , where the effective shear modulus 0μ μ= in (52) is
defined implicitly by the remaining equation

{ , } 0. (53)m1 μ μ =

In general, Eq. (53) does not admit an explicit solution and thus μ must be evaluated numerically. In this regard, it is
useful to deduce that μ is strictly positive, bounded from below by
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for any choice of shear moduli μm, 0iμ > and any choice of concentrations c c, 0p i ≥ with c c 1p i+ ≤ . Further, in the
dilute limit as c c, 0p i → +,
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to leading order in the concentration of particles cp and interphases ci.

The result (53) for μ constitutes a generalization of the classical result of Brinkman–Roscoe (Roscoe, 1973) for the
effective shear modulus of a suspension of polydisperse rigid spherical particles in rubber with perfect bonding (i.e.,
without interphases) between the particles and the rubber. Indeed, in the absence of interphases when ci¼0, Eq. (53)
can be solved explicitly to render identically the well-known formula:

c(1 )
.

(57)

m

p
5/2

μ
μ

=
−

(v)
 The connection with the effective shear modulus μ for isotropic distributions of polydisperse rigid spherical particles
bonded through interphases as defined by Eq. (53) is not restricted to small deformations. Indeed, for the special case
when the underlying matrix material is a Gaussian elastomer, I/2[ 3]m m 1Ψ μ= − , m0μ μ= , and the effective stored-en-
ergy function (46) reduces to

I I c c I( , , , )
2

[ 3], (58)p i1 2 1Ψ μ= −

which is seen to have the same functional form as the Gaussian matrix material, with the effective shear modulus μ defined
by (53). While exact and realizable in the limit of small deformations, for arbitrarily large deformations the effective stored-
energy function (58) is not an exact realizable result for Gaussian elastomers filled with an isotropic distribution of rigid
spherical particles of polydisperse sizes bonded through Gaussian interphases. Owing to its iterative construction process
(see Section 4.1), however, it is expected to provide a very accurate approximation for this class of material systems. By the
same token, the approximate effective stored-energy function (46) is also expected to describe very accurately the response
of any such type of filled elastomer when the underlying matrix is a non-Gaussian elastomer, especially in the small and
moderate deformation regimes. For large deformations, the result (46) is likely to be relatively less accurate for this class of
material systems, as its variational construction process (see Section 4.2) entails that it corresponds to some sort of lower
(upper) bound when the underlying matrix material has stronger (weaker) growth conditions than a Gaussian elastomer.
These expectations are supported by comparisons with the FE simulations presented in Section 6.
(vi)
 In the absence of interphases when ci¼0, Eq. (48) admits the explicit solution c/(1 )p0 0
5/2μ μ= − ,

I c2 ([ 3]/(1 ) 3)m p0 1
7/2μ Ψ= ′ − − + , and the effective stored-energy function (46) reduces to the result of

Lopez-Pamies et al. (2013b) for the effective stored-energy function of a suspension of polydisperse rigid spherical
particles in rubber with perfect bonding between the particles and the rubber, namely,
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(vii)
 In the limit of rigid interphases when iμ =+∞, Eqs. (48) similarly admit the explicit solution c c/(1 )p i0 0
5/2μ μ= − − ,
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This result also agrees with the effective stored-energy function of Lopez-Pamies et al. (2013b) for a suspension of
polydisperse rigid spherical particles in rubber with perfect bonding between the particles and the rubber, since in this
limiting case there are actually no interphases but instead a distribution of rigid particles with total concentration
c cp i+ .
5. FE simulations of filled elastomers undergoing large deformations

With the aim of gaining further insight, in Section 6 we confront the above-developed theoretical results to full 3D FE
simulations of the large-deformation response of Gaussian and non-Gaussian elastomers filled by random isotropic
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distributions of rigid spherical particles that are bonded through constant-thickness interphases. In particular, following
common practice (see, e.g., Gusev, 1997; Michel et al., 1999), we consider infinite periodic media made up of the repetition of
unit cells that contain a random distribution of a large but finite number of particles, as dictated by a sequential adsorption
algorithm. In order to probe the effect that particle polydispersity plays on the overall response of filled elastomers with
interphases,6 we consider distributions with both, particles of the same (monodisperse) size and particles of different
(polydisperse) sizes. The details of the simulations are as follows.

5.1. Monodisperse microstructures

The monodisperse microstructures are constructed using a random sequential adsorption algorithm in which the se-
quential addition of spherical particles, of the same radius r with surrounding interphases of the same constant thickness t,
is constrained so that the distance between a given interphase with other interphases and with the boundaries of the unit
cell – chosen here to be a cube of unit side L¼1 – take a minimum value that allows for an adequate spatial discretization
(see, e.g., Segurado and Llorca, 2002; Lopez-Pamies et al., 2013b), namely:
�

Fig. 1
surro

6

large
The center-to-center distance between a new particle i and any previously accepted one j i1, 2, , 1= … − has to exceed
the minimum value s r t d2( )(1 )1 1= + + , where the offset distance d1 is fixed here at d 0.031 ≥ . The condition to be
checked at each step of the algorithm takes then the form

sX X h (61)i j
1∥ − − ∥ ≥

where X X( )i j denotes the location of the center of particle i(j) and h is a vector with entries 0, L, or L− for each of its
three Cartesian components with respect to the principal axes of the cubic unit cell.
�
 The outermost surface of any interphase should be sufficiently distant from the boundaries of the unit cell as enforced
by the inequalities:

X r t s X r t L sand ( 1, 2, 3), (62)i i
2 2 α| − − | ≥ | + + − | ≥ =α α

where s d r t( )2 2= + with d2 being fixed here at 0.05.
For this class of monodisperse microstructures, we note that the radius r of the particles and the thickness t of the surrounding
interphases are related to the total number of particles N, particle concentration cp, and interphase concentration ci via
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Previous results based on this approach – for linear (Segurado and Llorca, 2002) as well as for nonlinear (Lopez-Pamies et al.,
2013b) problems – have indicated that N¼30 particles is, in general, sufficient to approximate isotropic symmetry. Fig. 11
1. Representative unit cells containing a random distribution of N¼30 monodisperse spherical particles of radius r at concentration cp¼0.15 that are
unded by interphases of three different constant thicknesses t: (a) t r0.05= , (b) t r0.1= , and (c) t r0.2= .

In the absence of interphases, Lopez-Pamies et al. (2013b) have shown that the effect of polydispersity, rather remarkably, is negligible up to relative
concentrations of particles in the order of cp¼0.3.
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depicts representative examples of such unit cells with N¼30 particles at concentration cp¼0.15 for three different
interphase thicknesses t: (a) t r0.05= , (b) t r0.1= , and (c) t r0.2= .

5.2. Polydisperse microstructures

The polydisperse microstructures are constructed by means of a similar constrained adsorption algorithm. The focus is
on polydisperse microstructures with three different families of particle sizes such that – consistent with the assumptions
made in the derivation of the theoretical results of Section 4 – the interphase-thickness-to-particle-radius ratio is the same
for all particles. While there is no distinct rule for the creation of such microstructures and the possibilities are many, we
consider for definiteness the following procedure:
�

Fig. 1
surro
Three different families of spherical particles with radii r I( ) and respective concentrations c I( 1, 2, 3)p
I( ) = , surrounded

by interphases with thicknesses t I( ) and respective concentrations c I( 1, 2, 3)i
I( ) = , are utilized such that
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2. Representative unit cells containing a random distribution of N¼80 spherical particles of three different radii at concentration cp¼0.15 that are
unded by interphases with three different constant thickness-to-particle-radius ratios: (a) t r/ 0.05= , (b) t r/ 0.1= , and (c) t r/ 0.2= .
where N(1) is the number of particles with the largest radius and thickest surrounding interphase, r r(1) = and t t(1) = , in
the unit cell.
�
 The microstructures are generated sequentially by first adding the particles with the largest radius r r(1) = and desired
thickness t t(1) = , until the particle concentration reaches the value c c0.5p p

(1) = , subsequently adding particles with radius
r(2) and surrounding interphases of thickness t r t r/(2) (2)= until c c c0.75p p p

(1) (2)+ ≈ , and finally adding particles with the
smallest radius r(3) and smallest interphase thickness t r t r/(3) (3)= until c c c cp p p p

(1) (2) (3)+ + ≈ . In following this construction
process, we note that a target concentration cp (similarly for a target concentration ci if preferred over a target ratio t r/ ) can
only be achieved approximately up to a small error that depends on the various choices of the parameters. To guarantee
adequate spatial discretization, the randomly generated placements of the centers of the particles are enforced to satisfy
constraints analogous to those enforced for the case of monodisperse microstructures, cf. inequalities (61) and (62).
In this work we utilize N 10(1) = which results in unit cells containing a total of N¼80 particles that prove to be sufficiently
isotropic for our purposes. Fig. 12 depicts representative examples of such unit cells with N¼80 particles of three different
radii at concentration cp¼0.15 for three different interphase-thickness-to-particle-radius ratios: (a) t r/ 0.05= , (b) t r/ 0.1= ,
and (c) t r/ 0.2= .



Fig. 13. Three progressively refined meshes, with about (a) 35,000, (b) 90,000, and (c) 180,000 elements, for a distribution of monodisperse particles with
concentration cp¼0.15 and interphase concentration ci¼0.1.

T. Goudarzi et al. / J. Mech. Phys. Solids 80 (2015) 37–67 57
5.3. Spatial discretization, particle material behavior, and computation of the overall response

The discretizations of the microstructures are carried out by means of the mesh generator code Netgen (Schöberl, 1997).
Hybrid isoparametric 10-node quadratic tetrahedral elements with constant pressure proved to deliver accurate results, and
thus were selected to carry out the calculations. Fig. 13 displays three representative meshes of increasing refinement for a
monodisperse microstructure with concentrations of particles cp¼0.15 and interphases ci¼0.1. Mesh sensitivity analyses
revealed that meshes containing about 200,000 elements, such as the one shown in Fig. 13(c), are refined enough to deliver
accurate results for all the cases considered here.

Within the utilized formulation, the perfectly rigid behavior (4) of the particles is modeled approximately by means of a
very (but not infinitely) stiff material. Here, for definiteness, we model the particles as a Gaussian elastomer with stored-
energy function

⎧
⎨⎪

⎩⎪
W I JF( ) 2

[ 3] if 1

otherwise, (67)

p
FE

p
FE

1
μ

= − =

+ ∞

where the parameter p
FEμ is set to be four orders of magnitude larger than the shear modulus of the underlying matrix

material, i.e., 10p
FE

m
4μ μ= × .

By virtue of their periodicity, the computation of the effective stored-energy function (9) for any of the above-defined
classes of filled elastomers amounts to subjecting their defining cubic unit cells to the periodic boundary conditions

u X X u L X X F L

u X X u X L X F L

u X X u X X L F L

(0, , ) ( , , ) ( ) ,

( , 0, ) ( , , ) ( ) ,
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2 3 2 3 1 1

1 3 1 3 2 2

1 2 1 2 3 3

δ

δ

δ

− = −
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− = −

α α α α

α α α α

α α α α

( 1, 2, 3)α = in terms of the displacement field u x X= − , and computing the resulting total elastic energy per unit un-
deformed volume of the unit cell. In expression (68), the components uα and Xα ( 1, 2, 3α = ) refer to a Cartesian frame of
reference with origin placed at a corner of the cubic unit cell whose axes e{ }α are aligned with the principal axes of the cubic
unit cell (see Fig. 13), and δαβ denotes the Kronecker delta.

5.4. Assessment of the simulations

Because of the finite number of particles – N¼30 for the monodisperse and N¼80 for the polydisperse microstructures –
included per unit cell, the microstructures simulated here are (not exactly but) only approximately isotropic. In order to
assess the isotropy of each realization that is constructed, we examine the co-axiallity between the average Cauchy stress
tensor T SFT≐ and the average left Green–Cauchy strain tensor B FFT≐ under three types of loading conditions: (i) ax-
isymmetric tension where F e e e e e e( )1 1

1/2
2 2 3 3λ λ= ⊗ + ⊗ + ⊗− with 1λ ≥ , (ii) axisymmetric compression where

F e e e e e e( )1 1
1/2

2 2 3 3λ λ= ⊗ + ⊗ + ⊗− with 1λ ≤ , and (iii) simple shear where F I e e1 2γ= + ⊗ with 0γ ≥ . Only micro-
structures for which the maximum difference between any two corresponding principal axes of T and B is less than 0.05
radians for all three loadings are admitted as approximately isotropic.

All FE results to be presented in the next section correspond to the average of three different realizations, all of which are
approximately isotropic in the sense described in the preceding paragraph. The computations are carried out in the
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Fig. 14. Contour plots of the maximum principal logarithmic strain for a monodisperse realization with cp¼0.15 and ci¼0.05, Gaussian elastomeric matrix
with shear modulus 1 MPamμ = , and 5 MPaiμ = subjected to a macroscopic simple shear strain of 0.91γ = ; the undeformed configuration is also depicted
for comparison purposes. Part (b) shows an inside view of three pairs of particles/interphases in between which the matrix material is highly deformed.
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commercial code ABAQUS by following an incremental loading path. We utilize the default dual convergence criterion in
this code (see ABAQUS Version 6.11 Documentation, 2011), namely, the permissible ratio of the largest solution correction to
the largest corresponding incremental solution is set at u u/ 10max

2|Δ | | | = − , while the permissible ratio of the largest residual
to the corresponding average force norm is set at R 5 10tol

3= × − . Whenever one of these criteria is not satisfied the com-
putations are stopped. This typically happens whenever the elements in between two adjacent interphases become ex-
ceedingly distorted because of the locally large deformations involved.

Fig. 14 presents an example of large local deformations in between interphases for the case of a monodisperse realization
with cp¼0.15, ci¼0.05, Gaussian elastomeric matrix with shear modulus 1 MPamμ = , and 5 MPaiμ = under simple shear.
Part (a) shows contour plots of the maximum principal logarithmic strain at an overall shear strain level of 0.91γ = ; the
initial undeformed geometry is also depicted for comparison purposes. The deformation contours are seen to be highly
heterogeneous with principal logarithmic strains as large as 1.66 within regions between interphases. In part (b), an inside
view is shown of three regions of strong particle/interphase interaction and high local strains that lead to significant mesh
distortion and therefore problems with the numerical convergence of the FE calculations. In principle, re-meshing of these
regions should allow to reach further overall deformations, but this is not pursued here.
6. Sample results and comparisons with FE simulations

Sample results are now presented that provide quantitative insight into the proposed theoretical result (46) and that, at
the same time, serve to reveal the importance of the various microscopic quantities (the nonlinear elastic behavior of the
matrix Ψm, the concentration of the particles cp, the concentration of the interphases ci, and the stiffness of the interphases
μi) on the macroscopic response of filled elastomers. We begin in Section 6.1 by presenting results for the linear elastic
response of filled elastomers in the small-deformation regime. These are followed in Section 6.2 by results for the large-
deformation response of filled Gaussian elastomers. Finally, in Section 6.3 we present results for a filled elastomer wherein
the matrix is characterized by the non-Gaussian stored-energy function:
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with 0.032 MPa1μ = , 0.3 MPa2μ = , 3.8371α = , 0.5592α = , corresponding to a model that describes accurately the nonlinear
elastic response of a standard silicone rubber over large ranges of deformations (Lopez-Pamies, 2010a).

6.1. Linear elastic results

In the limit of small deformations (see remark (iv) in Section 4.2), the effective stored-energy function (46) reduces to
(52) and hence is completely characterized by the effective shear modulus μ defined by Eq. (53). Fig. 15 shows results for the
normalized effective shear modulus / mμ μ for various values of the interphase-thickness-to-particle-radius ratio7 t r/ and
interphase stiffness /i mμ μ , all as functions of the concentration of particles cp. Results are also presented for the FE simu-
lations described in Section 5 for monodisperse (Fig. 15(a) and (c)) and polydisperse (Fig. 15(b) and (d)) microstructures.

As expected, an immediate observation from Fig. 15 is that the addition of rigid particles increases significantly the
overall stiffness of elastomers. Remarkably, the presence of interphases (with i mμ μ> ) is seen to also have a comparable
stiffening effect. We note that the stiffening granted by the interphases is highly more sensitive to the value of their
7 Throughout this section, we shall favor writing the content of interphases in terms of the ratio t r c c/ (1 / ) 1i p 1/3= + − , instead of directly in terms of
their concentration ci.



Fig. 15. The normalized effective shear modulus / mμ μ of an isotropic incompressible elastomer, with shear modulus μm, filled with an isotropic distribution
of rigid spherical particles bonded through isotropic incompressible interphases with various shear moduli /i mμ μ and constant thickness-to-particle-radius
ratios t r/ . Results are shown for the theoretical result (53) compared to FE simulations for distributions of (a, c) monodisperse and (b, d) polydisperse
particles, all as functions of the concentration of particles cp.
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thickness t r/ than to the value of their stiffness /i mμ μ . Indeed, Fig. 15(c) and (d) show that interphases that are just 5 times
stiffer than the matrix ( / 5i mμ μ = ) already grant an increase in overall stiffness that is similar to that granted by rigid
interphases ( iμ =+∞). On the other hand, Fig. 15(a) and (b) show that moderate increases in the thickness of the interphases
from t r/ 0= , to t r/ 0.05= , to t r/ 0.1= , to t r/ 0.2= , consistently lead to larger enhancements of the overall stiffness. The
practical implications of these results are far reaching as they suggest that when dealing with conventional filled elastomers
– where interphases are typically in the order of 10 times stiffer than the matrix material (see, e.g., Qu et al., 2011) – their
macroscopic response is by and large unaffected by the constitutive complexity of the underlying interphases (in terms of
heterogeneity, anisotropy, and non-linearity) and de facto simply dependent on their average stiffness and size.

While the effective shear modulus μ defined by Eq. (53) is exact for infinitely polydisperse particles, Fig. 15(b) and
(d) show it to be in good agreement with the FE results for microstructures with only three families of particle sizes for the
entire range of particle concentrations and interphase thicknesses considered, c [0, 0.25]p ∈ and t r/ [0, 0.2]∈ . More re-
markably, Fig. 15(a) and (c) show the theoretical effective shear modulus to also be in good agreement with the FE results for
monodisperse particles up to the relatively high particle concentration cp¼0.2 with relatively large interphase thickness
t r/ 0.2= . Consistent with earlier results for suspensions of particles in rubber without interphases (Lopez-Pamies et al.,



Fig. 16. Macroscopic response of a filled Gaussian elastomer with particle concentration cp¼0.15 under: (a) uniaxial compressive, (b) uniaxial tensile,
(c) pure shear, and (d) simple shear loading conditions, as characterized by the proposed theory, cf. expressions (70)–(72). Results are shown for three
different types of interphases: (i) no interphases t r/ 0= , (ii) interphases with moderate shear modulus / 5i mμ μ = and moderate thickness t r/ 0.1= , and (iii)
rigid interphases iμ =+∞ with relatively large thickness t r/ 0.2= . The dashed lines in the plots correspond to results from the FE simulations, while the
dotted lines correspond to the response of the unfilled Gaussian elastomer.
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2013b), these favorable comparisons suggest that polydispersity does not play a role in the response of filled elastomers for
particle concentrations and interphase thicknesses sufficiently below the percolation limit.

6.2. Results for filled Gaussian elastomers

Fig. 16 presents results for the large-deformation response of a filled Gaussian elastomer with particle concentration
cp¼0.15 under: (a) uniaxial compression, (b) uniaxial tension, (c) pure shear, and (d) simple shear. The constitutive stress-
deformation relations for these loading conditions read as (see remark (v) in Section 4.2) follows:
�
 Uniaxial loading ( 1λ λ= , 2 3
1/2λ λ λ= = − with 02 3τ τ= = ):
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Pure shear ( 1λ λ= , 2
1λ λ= − , 13λ = with 02τ = ):
�
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where Sun , Sps , Sss denote first Piola–Kirchhoff stress measures, 1τ , 2τ , 3τ have been introduced to denote the macroscopic
principal Cauchy stresses, and, again, the effective shear modulus μ is implicitly defined by Eq. (53). Three different types of
interphases are considered: (i) no interphases t r/ 0= , (ii) interphases with moderate shear modulus / 5i mμ μ = and moderate
thickness t r/ 0.1= , and (iii) rigid interphases iμ =+∞ with relatively large thickness t r/ 0.2= . Corresponding FE results are
included in the figure for comparison purposes. No distinction is made of whether the particles are monodisperse or
polydisperse since, somewhat remarkably, both classes of simulated microstructures exhibit essentially the same large-
deformation response. This is consistent with the linear elastic results of Fig. 15, where the monodisperse and polydisperse
FE simulations render practically identical effective shear moduli for particle concentrations below cp¼0.2 with interphase-
thickness-to-particle-radius ratios below t r/ 0.2= .

It is plain from Fig. 16 that the overall large-deformation response of the Gaussian elastomer is stiffened significantly by
the addition of rigid particles for all loading conditions. The figure also makes it plain that the presence of interphases (with

i mμ μ> ) produces levels of stiffness enhancement that are comparable to those produced by the particles themselves. As it
was the case for small deformations, the increase in stiffness generated by the interphases is more dependent on their
thickness t r/ than on their stiffness /i mμ μ . Another important observation from Fig. 16 is that the theoretical predictions and
FE results are in good qualitative and quantitative agreement for all loading conditions.

To further probe the connections between the proposed theory and the FE simulations, Fig. 17 compares their elastic
energies / mΨ μ , normalized by the initial shear modulus μm of the underlying Gaussian matrix, as functions of the principal
invariants I1 and I2. Part (a) of the figure shows / mΨ μ for fixed values of the second invariant I 3.322 = for cp¼0.15 and
I 4.402 = for cp¼0.05 as functions of I1, while part (b) shows results for fixed values of the first invariant I 3.40, 3.821 = for
cp¼0.15 and I 4.80, 5.131 = for cp¼0.05 as functions of I2.

The main observation from Fig. 17 is that the FE results are approximately linear in the first invariant I1 and independent
of the second invariant I2. This behavior is in accordance with that of the theory, corroborating that both results are very
much identical in their functional form. The fact that the macroscopic behavior of filled Gaussian elastomers is functionally
the same – i.e., linear in I1 and independent of I2 – as that of its underlying Gaussian matrix and interphases is of note.
. 17. Comparison of the effective stored-energy function (58) for a filled Gaussian elastomer with corresponding FE simulations. The results are shown
erms of the principal invariants I1 and I2 for interphase-thickness-to-particle-radius ratio t r/ 0.1= , interphase shear modulus / 5i mμ μ = , and two values
oncentration of particles, cp¼0.05 and 0.15. Part (a) shows results for fixed values of I2 as functions of I1, while part (b) shows results for fixed values of I1
unctions of I2.



Fig. 18. Macroscopic response of a filled silicone elastomer under: (a) uniaxial compressive, (b) uniaxial tensile, and (c) simple shear loading conditions.
Plots are shown for the theoretical stress-deformation results (75), (76) with (73), and corresponding FE simulations for particle concentration cp¼0.15 and
three different types of interphases: (i) no interphases t r/ 0= , (ii) interphases with moderate shear modulus / 5i mμ μ = and moderate thickness t r/ 0.1= ,
and (iii) rigid interphases iμ =+∞ with relatively large thickness t r/ 0.2= . Part (d) of the figure shows comparisons between the effective stored-energy
function (73) and corresponding FE results for t r/ 0.1= , / 5i mμ μ = , c 0.05, 0.15p = and two fixed values of the first principal invariant I1, in terms of the
second invariant I2.
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Indeed, as already mentioned in the discussion of Fig. 7, the functional character of the average behavior of nonlinear
material systems is in general substantially different from that of its constituents, but that is not the case here.

6.3. Results for a filled silicone elastomer

Finally, Fig. 18 shows results for the large-deformation response of a filled non-Gaussian elastomer wherein the un-
derlying matrix material is a typical silicone rubber characterized here by the stored-energy function (69) with

0.032 MPa1μ = , 0.3 MPa2μ = , 3.8371α = , 0.5592α = , and thus initial shear modulus 0.332 MPam 1 2μ μ μ= + = . In this case,
the proposed theoretical effective stored-energy function (46) specializes to
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where 1 is explicitly given by expression (47) in terms of cp, ci, I1, and the variables 0μ , μ0, which are defined implicitly by the
system of two coupled nonlinear algebraic equations:
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recall that the function 1 is defined by expression (40).
Parts (a), (b), and (c) of Fig. 18 show stress-deformation results for uniaxial compression, uniaxial tension, and simple

shear for particle concentration cp¼0.15 and three different types of interphases: (i) no interphases t r/ 0= , (ii) interphases
with moderate shear modulus / 5i mμ μ = and moderate thickness t r/ 0.1= , and (iii) rigid interphases iμ =+∞ with relatively
large thickness t r/ 0.2= . The constitutive stress-deformation relations for the specified loadings are given by
�

(75)
Uniaxial loading ( 1λ λ= , 2 3
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where, as above, Sun , Sss denote first Piola–Kirchhoff stress measures, 1τ , 2τ , 3τ stand for the macroscopic principal Cauchy
stresses, and, again, the coefficient 0μ is defined implicitly by the system of Eqs. (74). Part (d) of Fig. 18 displays results for the
effective stored-energy function (73) for fixed values of the first principal invariant I 3.451 = for cp¼0.15 and I 4.181 = for
cp¼0.05, both for interphases with t r/ 0.1= and / 5i mμ μ = , in terms of the second invariant I2. All four parts of Fig. 18 include
corresponding FE results. Akin to the preceding Gaussian case, we make no distinction here of whether the particles are of
the same or of different sizes since, again, the simulated monodisperse and polydisperse microstructures turn out to exhibit
practically the same response for particle concentrations below cp¼0.2 with interphase-thickness-to-particle-radius ratios
below t r/ 0.2= .

Similar to the foregoing, Fig. 18(a)–(c) illustrates that both the addition of particles as well as the presence of interphases
have a profound stiffening effect for all deformations. They also show that the theoretical and FE results are in fairly good
qualitative and quantitative agreement for all loading conditions, especially for small and moderate deformations. For large
enough deformations at which the limiting chain extensibility of the silicone elastomer comes into effect, the analytical
results are consistently softer – as expected from their variational construction process (see remark (v) in Section 4.2) – than
their FE counterparts. Fig. 18(d) shows that the FE results for the filled silicone elastomer, much like those for the filled
Gaussian elastomer, are approximately independent of the second macroscopic invariant I2, in functional accord with the
proposed theory.
7. Comparisons with experimental data and final comments

In the sequel, we deploy the theoretical result (46) to scrutinize a series of representative experimental data available in
the literature. The objective is to illustrate the use of the proposed theory and to showcase its ability not only to describe the
macroscopic response of real filled elastomers but also, and more critically, to unveil how the various microscopic quantities
contribute individually to such a macroscopic response.

We begin by considering the experimental data of Mullins and Tobin (1965), Omnès et al. (2008), and Smallwood (1944)
for the macroscopic response in the small-deformation regime of polyisoprene rubber reinforced with a random and iso-
tropic distribution of carbon black particles. Specifically, Fig. 19(a) shows the effective initial shear modulus μ , normalized by
the shear modulus of the underlying polyisoprene matrix μm, as a function of the concentration of carbon black cp. The
discrete symbols (empty circles, triangles, and solid circles) correspond to the experimental data, while the solid lines stand
for the theoretical predictions.

The results of Mullins and Tobin (1965) correspond to specimens with a well-dispersed distribution of roughly spherical
aggregates of carbon black that had a relatively large average radius of about 200 nm (cf. Fig. 1 in their paper). By way of
swelling experiments, these authors were able to conclude that the elastic properties of the polyisoprene rubber were
essentially unmodified by the presence of fillers, but provided no insight into the amount or type of bound rubber sur-
rounding them. Given this partial information, at the level of the theoretical result (46), it is reasonable to assume that the
shear modulus of the polyisoprene rubber matrix is identical to that of the polyisoprene rubber when synthesized in the
absence of carbon black, namely, 0.44 MPamμ = . And that the content of interphases is comparatively negligible to that of
the relatively large fillers so that ci¼0, or equivalently, t r/ 0= . Fig. 19(a) shows that the theoretical predictions based on



Fig. 19. Comparisons of the proposed theory with experimental data. Part (a) shows the experimental results of Mullins and Tobin (1965), Omnès et al.
(2008), and Smallwood (1944) for the effective initial shear modulus μ of polyisoprene rubber filled with carbon black particles, normalized by the initial
shear modulus of the corresponding rubber μm, as a function of the concentration of carbon black cp. Part (b) shows the experimental results of Ramier
(2004) for the uniaxial tensile stress–stretch response of SBR rubber filled with silica particles, at concentration cp¼0.15, with two different types of
chemical treatments, labeled as AC75 and AR8. In both parts of the figure, the discrete symbols (empty circles, triangles, and solid circles) correspond to the
experimental measurements, while the solid lines stand for the theoretical predictions.
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these inputs are in fairly good agreement with the experimental measurements of Mullins and Tobin (1965), save for the
filled elastomer with the largest particle concentration cp¼0.2.

The specimens studied by Omnès et al. (2008) were also comprised of a well-dispersed distribution of roughly spherical
carbon black aggregates but of much smaller size, in the order of 30 nm in average radius (cf. Fig. 1(a) and (c) in their paper).
As opposed to Mullins and Tobin (1965), Omnès et al. (2008) did find that the elastic properties of the polyisoprene rubber
were somewhat modified by the presence of carbon black. Unfortunately, no concrete measurements of this change were
reported nor details about the amount or type of bound rubber surrounding the fillers provided. In view of this partial
information, at the level of the theoretical result (46), we assume, as a first-order approximation, that the shear modulus of
the polyisoprene rubber matrix is identical to that of the polyisoprene rubber when synthesized in the absence of carbon
black, which in this case was reported as 0.53 MPamμ = . Also, based on the recent experiments of Qu et al. (2011), we take
the shear modulus of the interphases to be 10 times stiffer than that of the matrix, namely, 10 5.3 MPai mμ μ= × = . Making
use of these values, we then select the thickness of the interphases by fitting the experimentally measured effective shear
modulus. As shown in Fig. 19(a), it is found that an interphase-thickness-to-particle-radius ratio of t r/ 0.37= – corre-
sponding to interphase thicknesses in the order of t 0.37 30 nm= × 11.1 nm= – renders good agreement with the data of
Omnès et al. (2008).

Regarding the classical data reported by Smallwood (1944) for carbon black filled rubber, no microscopic information is
known other than the concentration of particles cp. Assuming that the elastic properties of the rubber making up the matrix
are unaffected by the presence of carbon black, and that the shear modulus of the interphases is 10 times stiffer than that of
the matrix, the theoretical result (46) can be seen to describe fairly accurately the measurements of Smallwood (1944) by
choosing an interphase-thickness-to-particle-radius ratio of t r/ 0.2= .

We now turn to examine the experimental data of Ramier (2004) for the large-deformation response under uniaxial
tension of SBR rubber filled with a random and isotropic distribution of silica particles. Fig. 19(b) shows the measured
uniaxial (first Piola–Kirchhoff) stress Sun as a function of the applied stretch λ for two specimens with the same con-
centration of silica particles, cp¼0.15, which have undergone two different chemical treatments, labeled as AC75 and AR8.
To aid the discussion, Fig. 19(b) also shows the uniaxial stress–stretch response for the unfilled SBR rubber. Akin to Fig. 19(a),
the discrete symbols (empty circles, triangles, and solid circles) correspond to the experimental data, while the solid lines
stand for the theoretical predictions.

Irrespective of the chemical treatment of the particles, the results of Ramier (2004) correspond to specimens with a well-
dispersed distribution of roughly spherical aggregates of silica that had an average radius of about 40 nm (see Chapter III in
that reference). It is unclear to what extent the presence of silica with either treatment, AC75 or AR8, affected the elastic
properties of the SBR rubber. On the other hand, the AC75 treatment was expected, by design, to promote the formation of
thicker and stiffer interphases than the AR8 treatment. The much stiffer macroscopic response exhibited by the specimen
with the AC75-treated silica is consistent with this expectation.
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In computing the theoretical predictions for the data of Ramier (2004), given the above-outlined partial information, we
assume that the SBR rubber is, to a first approximation, unaffected by the presence of silica. Moreover, we take the SBR
rubber to be characterized by the Lopez-Pamies stored-energy function (69) with material parameters 0.3734 MPa1μ = ,

0.0425 MPa2μ = , 0.38411α = , 1.77672α = . Fig. 19(b) shows that this model describes accurately the experimentally mea-
sured response of the SBR rubber, at least for uniaxial tension. We shall further assume, again, based on the recent ex-
periments due to Qu et al. (2011), that the interphases in the specimen with AR8-treated silica are 10 times stiffer than the
matrix, 10 10 ( ) 4.16 MPai m 1 2μ μ μ μ= × = × + = , whereas the interphases in the specimen with AC75-treated silica are 50
times stiffer, 50 50 ( ) 20.80 MPai m 1 2μ μ μ μ= × = × + = . Since there is no experimental evidence available regarding the
sizes of the interphases, we select them here by fitting the theory to the experimental stress–stretch responses. As shown by
Fig. 19(b), an interphase-thickness-to-particle-radius ratio of t r/ 0.1= – corresponding to interphase thicknesses in the order
of t 0.1 30 nm 3 nm= × = – leads to a good agreement with the AR8 data. On the other hand, an interphase-thickness-to-
particle-radius ratio of t r/ 0.42= – corresponding to interphase thicknesses in the order of t 0.42 30 nm 12.6 nm= × = –

renders good agreement with the AC75 data.
In summary, the above comparisons with experiments indicate that the proposed microscopic field theory is able to

describe and explain the macroscopic response of filled elastomers at finite deformations. In particular, the comparisons
indicate that the reinforcement granted by interphases is comparable to that granted by the fillers themselves. These results
make it plain that some knowledge of the geometry and constitutive properties of the underlying interphases – and not just
the fillers – in elastomers is of the essence to be able to predict, and thus also to design from the bottom up, the macroscopic
behavior of filled elastomers.

As a final comment, we remark that in addition to the hydrodynamic and interphasial reinforcement effects, the presence
of occluded rubber in filled elastomers may also provide additional reinforcement. Occluded rubber refers to the regions of
elastomer that are entrapped by the agglomeration of filler particles. To a first approximation, because of its shielding from
the rest of the elastomer, its constitutive behavior can be idealized as rigid. In this case, the presence of occluded rubber can
be accounted for by the proposed theory by simply reinterpreting cp as the combined concentration of fillers and occluded
rubber.
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Appendix A. Solution for the single-particle problem in the small-deformation limit

In this appendix, we work out the elasticity solution for the single-particle problem formulated in Section 3 from which
the effective shear modulus (16) is determined.

We find it convenient to begin by considering the boundary-value problem of an isotropic incompressible multicoated
sphere occupying the domain rX X{ : }mΩ = | | ≤ , made up of a core (the particle) with initial shear modulus μp, an inner shell
(the interphase) with initial shear modulus μi, and an outer shell (the matrix) with initial shear modulus μm, that is sub-
jected to the affine simple shear deformation x FX= with F I e e1 2γ= + ⊗ on its boundary rX X{ : }mΩ∂ = | | = . The hetero-
geneous shear modulus of such a sphere can be written in the compact form

X X X X X( ) [1 ( ) ( )] ( ) ( ) , (77)p i m p p i iμ θ θ μ θ μ θ μ= − − + +

where X( ) 1pθ = if rX| | ≤ and zero otherwise, X( ) 1iθ = if r r tX≤ | | ≤ + and zero otherwise. Here, r and t stand, respectively,
for the initial radius of the core and the thickness of the inner shell. In the limit as the applied amount of shear 0γ → , the
equilibrium displacement field u x X= − that minimizes the total elastic energy Ψ (per unit undeformed volume) of the
sphere takes the form u u uu X e X e X e( ) ( ) ( )1 1 2 2 3 3= + + with
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to O( )γ (see, e.g., Love, 1906, Chapter XI). By the same token, the corresponding traction field takes the form
t X e X e X et ( ) t ( ) t ( )1 1 2 2 3 3= + + with
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In these expressions, Bm
I( ), Bp

I( ), and Bi
I( ) (I 1, 2, 3, 4= ) are constants to be determined from the boundary conditions applied at

rX X{ : }mΩ∂ = | | = and from the continuity of the displacement and traction fields at the surfaces of material discontinuity
rX X{ : }pΓ = | | = and r tX X{ : }iΓ = | | = + . Upon recognizing that B B 0p p

(2) (4)= = , these conditions lead to a system of 10 linear
algebraic – and thus readily solvable – equations for the 10 unknowns B B B B, , ,p p i i

(1) (3) (1) (2), B B,i i
(3) (4), Bm

(1), Bm
(2), Bm

(3), Bm
(4). The

explicit expressions for these constants, in terms of the shear moduli μp, μi, μm, and the lengths r, t, rm, are fairly cum-
bersome and thus not reported here. Having determined the equilibrium displacement field u over the entire sphere, its
total elastic energy (per unit undeformed volume) is simply given by
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Now, in the limit when the radius of the sphere is taken to be infinitely large and the core is taken to be rigid, as rm → + ∞
and pμ → + ∞, the total elastic energy (81) reduces to the effective stored-energy function for the single-particle problem
formulated in Section 3, in the limit of small deformations and for the specific case of simple shear loading, namely,

tr
2

. (82)
dil 2

dil
2εΨ μ μ γ= =

The solution (16) for dilμ provided in the main body of the text follows by comparing (81) with (82). As also remarked in the
main body of the text, the product Bp p

(3)μ does not vanish in this limit and thus the stress field within the particle – contrary
to the classical solution (Eshelby, 1957) without an interphase – is not uniform.
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