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Introduction

Topology optimization has been attracting increasing interest in the
civil engineering industry, especially for the design of high-rise
buildings and long-span structures. Several examples of applications
of topology optimization for architectural design have been presented
in Stromberg et al. (2012), Adams et al. (2012), and Martini (2011).
In such examples, the optimization problem was formulated in terms
of compliance minimization, which is a major parameter of structural
efficiency. However, the high-rise building problem is by nature
characterized by multiple objectives, and several aspects must be
considered in the design beyond overall compliance of the structure,
such as stability, natural frequencies, interstory drifts, etc.

An important issue emphasized throughout this work is the im-
portance of stability and second-order effects. In high-rise design,
the proportions of the building and the applied loads can tremen-
dously affect the overall performance. In the detailed description of
the John Hancock of Boston given next, it is shown that, when us-
ing common design loads with an H=500 drift criteria (H being the
building height), the second-order effects can cause amplification
of the forces up to 43%. The relationship between the amplification
factor and the building width is described as follows: A:F: ¼
1=f1 − ½γD=ðwH=ΔÞ�g, where γ = building density [typically
1.6 kN=m3(10 pcf) for a steel building), D = building
dimension (in meters), w = the wind pressure [typically 1 kPa

(20 psf)], and H=Δ = design criteria utilized (typically H=500).
Thus, A:F: ¼ 1=ð1 − 0.001DÞ. The values of the amplification fac-
tor for typical building widths are summarized in the Table 1.
Notice that for typical building widths in the range of 30–60 m
(100–200 ft), the force amplification is up to 25%, which is very
significant in high-rise design, thus providing motivation for the
studies presented in this work.

Many techniques have been developed for optimization of
single objective problems. For example, Sigmund (2001), Bendsoe
and Sigmund (2002), and Stromberg et al. (2012), among many
others, focus on minimum compliance as the objective. Natural fre-
quency and mass are the objective functions in studies by Diaz and
Kikuchi (1992), Huang and Xie (2010), and Niu et al. (2008).
Furthermore, Neves et al. (1995) tailor topology optimization de-
sign framework for stability problems, where the objective function
is the critical buckling load. As for tip deflection as the objective
function, the technique in Baker (1992) has been used for truss
optimization, where the minimum volume subject to a target tip
displacement is optimized.

In Stromberg et al. (2012), the focus was given to design the
lateral bracing systems for high-rise buildings using compliance
as the objective. This work aims to extend the previous methodol-
ogy for other objective functions with particular attention to linear-
ized buckling. Several examples are given to show the effectiveness
of the methodology for the design of single-story and multistory
portal frames. In addition, in Stromberg et al. (2012), the combi-
nation of continuum and discrete elements was used to overcome
some of the shortcomings of using continuum elements only for a
very sparse problem, such as the high-rise one. Here, this approach
is retained; however, it has been extended to allow simultaneous
sizing of the cross-sectional areas of the discrete members and op-
timization of the continuum elements. This extension is necessary
because the assumption of constant stress used in Stromberg et al.
(2012) does not hold for all objective functions (i.e., buckling).

There are alternatives for the design of tall buildings. Although
core-megacolumn systems with outrigger and belt trusses are seen
in some elements of modern design, this is not the case for all of
today’s high-rise designs. For example, braced diagrid structures
(similar to those presented in this work) have been used recently
(by the authors and by others) in the designs of proposals for the
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San Francisco Transbay Transit Center, the Leadenhall Building
(2014), Heron Tower (2011), Guangzhou International Finance
Center (2010), Hearst Tower (2006), and even an earlier scheme
of the upcoming Freedom Tower. Therefore, lateral bracing sys-
tems are the focus of this work.

The remainder of this paper is organized as follows. In the next
section, previous investigations for buckling optimization are dis-
cussed and compared with the framework introduced here. Then,
the importance of buckling in high-rise design is discussed in relation
to actual buildings. The single-objective framework for continuum
optimization is then introduced for buckling, and generalized for
other objectives. The framework is also updated to include the
cross-sectional areas of the discrete elements as design variables.
A detailed sensitivity derivation is included for both the continuum
and discrete elements. Numerical examples are given to demonstrate
this framework for single-module frames to establish a benchmark
and verify the authors’ results. The framework is then applied to
compare the objectives for practical bracing systems, and the paper
concludes with some final remarks on the extensions of this work.

Literature Review

In the vast majority of papers on topology optimization, minimum
compliance is used as the objective function. For the practicing
engineer, other quantities, such as buckling, natural frequency,
tip deflection, strength, interstory drift, cost, and combinations
thereof, are of interest during the design of a structure. This section
reviews current methods available in the literature, specifically for
buckling optimization.

Typical topology optimization results often contain very slender
members; therefore, the work by Neves et al. (1995) was one of the
first inwhich a buckling load criterionwas considered to address this
issue. This was later expanded upon by Min and Kikuchi (1997), in
which the homogenization method was used for the optimal
reinforcement design of portal (single-story) frames under a buck-
ling load. Similarly, the optimal design of plate reinforcements using
a nonsmooth buckling load criterion was explored in the work by
Folgado and Rodrigues (1998). Later, Rahmatalla and Swan
(2003), Rahmatalla (2004), and Swan (2012) applied the use of
buckling as an optimization criterion for the design of sparse,
long-span bridges. Other contributors to the continuum topology op-
timization problem with buckling as an objective are Zyczkowski
and Gajewski (1988), Sekimoto and Noguchi (2001), and Bendsoe
and Sigmund (2002). Extensions for buckling problems in materials
can be found in the paper by Neves et al. (2002). To make design
problems more realistic, geometric nonlinearities were incorporated
in the stability problem for perfect and imperfect structures in
Kemmler et al. (2005) by directly determining the critical load factor
and including it as an inequality constraint.

It should be noted that many numerical issues are encountered in
the buckling optimization problem. One of the main issues asso-
ciated with topology optimization for buckling is the presence
of localized eigenmodes. To eliminate this effect, many techniques
artificially remove void elements from the optimization problem;
however, this may produce erroneous solutions because, when

an element is removed, it cannot reenter the optimization problem
(Pedersen 2000). An alternative methodology to eliminate localized
eigenmodes in low-density areas for cases in which the problem is
not formulated as reinforcement of an existing structure is pre-
sented in Pedersen (2000). Other numerical issues include the case
of multiple eigenvalues, which are typically present in symmetric
structures, and nonsmoothness of the eigenvalues (Olhoff and
Rasmussen 1977). For a review of multiple eigenvalues in struc-
tural optimization problems and how to treat them, the reader
can refer to the work by Seyranian et al. (1994). The implementa-
tion proposed here includes an adapted version of the method sug-
gested by Olhoff and Du (2012) to stabilize the structure and
eliminate problems with local effects. Furthermore, in this work,
the authors assume simple (nonrepeated) eigenvalues, although
differentiability issues associated with repeated eigenvalues might
be avoided by reducing the design space in accordance with
structural symmetry (Kosaka and Swan 1999).

Buckling and Second-Order Effects in High-Rise
Building Design

In high-rise building design, multiple structural objectives can be
considered—mainly, overall drift, compliance, period, and buck-
ling. Each objective relates to a different aspect of the design,
but they all ultimately affect the topological layout of the structural
system and the sizing of the members.

Building drift (measured by the ratio of the displacement at the
top of the building to the height of the building, H) under lateral
loads has traditionally been used as a good indicator of adequate
stiffness. A building with drift less than H=500 would be deemed
adequate, in terms of having a properly sized lateral structural sys-
tem. Recently, compliance, which measures the work done by the
external applied loads on the building, has been considered to maxi-
mize the overall stiffness of the lateral system. Compliance is a
global indicator of stiffness because it considers the displacements
at each point of load application in the calculations, whereas building
drift is more of a local measure because it considers only the tip dis-
placements. Minimizing the building period is another important ob-
jective, because a shorter period typically means better overall wind
performance. Buckling and second-order effects in general are an-
other aspect which must be addressed to ensure the global stability
of the structure and to include P-delta effects in member design.

To better understand the importance of buckling and second-order
effects in high-rise building design, the authors outline a simple ex-
ample inspired by the work of LeMessurier (1976, 1977). Such work
was developed as a result of the issues and investigations associated
with the construction of the John Hancock Tower in Boston in the
mid 1970s. Consider the structure in Fig. 1(a), which conceptually
represents a high-rise building under gravity loads, P, with lateral
load system represented by the linear spring stiffness, k. For a small
horizontal (virtual) displacement, δ, the moment equilibrium at the
base reads Pδ ¼ kδH, which is equivalent to the eigenvalue problem
ðkH − PÞδ ¼ 0. Therefore, the critical buckling load for the building
is Pcr ¼ kH. To define the stiffness, k, consider Fig. 1(b), where the
lateral loads on the structure are represented by the force, V. Using
the notation in the figure, V ¼ kΔ0. Here,Δ0 represents the building
tip displacement without considering second-order effects, and
Δ0=H is the first-order building drift. The critical buckling load
for the building now reads Pcr ¼ VH=Δ0. Note that using the
traditional design approach, the structure would be designed to
ensure Δ0=H < 1=500. Now superimpose the effects of gravity
and lateral loads, as shown in Fig. 1(c). The moment equilibrium
with respect to the base reads kΔH − PΔ − VH ¼ 0, or

Table 1. Amplification Factor for Second-Order Effects as a Function of
the Building Proportions

D [m (ft)] A.F.

23 (75) 1.08
30 (100) 1.11
60 (200) 1.25
90 (300) 1.43
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Δ ¼ VH
kH − P

¼ PcrΔ0

Pcr − P
ð1Þ

where Δ = horizontal displacements accounting for second-
order effects. Eq. (1) can be rewritten as follows:

Δ
Δ0

¼ 1

1 − P=Pcr
¼ A:F: ð2Þ

The aforementioned amplification factor (A.F.) indicates the
amplification of the first-order drift due to the second-order ef-
fects caused by the gravity loads in the system, and it has been
incorporated in design codes since the 1970 s. To quantify such
effect on a high-rise building, consider the example in Fig. 1(d),
which is similar to the example described by LeMessurier
(1977). The building considered has a rectangular plan with
W ¼ 30 m ð100 ftÞ, L ¼ 90 m ð300 ftÞ, and H ¼ 60 m ð200 ftÞ.
In addition, the authors assume a wind pressure of 1 kPa
(20 psf) acting on the narrow face of the building and a building
density of 1.6 kN=m3 (10 pcf) (typical for a steel building).
Considering the prismatic element through the building in
Fig. 1(d) with a base of 1 m2 (1 ft2) and length L, and assuming
the drift criteria Δ0=H ¼ 1=500 gives Pcr ¼ VH=Δ0 ¼ 1 kPa
ð20 psfÞ · 500 · 1 m2 ð1 ft2Þ ¼ 500 kNð10,000 lbsÞ. The gravity
load of the prismatic element would be P¼ 1.6 kN=m
3 ð10 pcfÞ · 90 m ð300 ftÞ · 1 m2 ð1 ft2Þ ¼ 144 kN ð3,000 lbsÞ. The
amplification factor on the second-order effects for the
narrow face would be A:F: ¼ 1=ð1 − 144=500Þ ¼ 1.43. Similarly,
the amplification factor for the wider face would be
A:F: ¼ 1=ð1 − 48=500Þ ¼ 1.1, which is much less. Therefore,
by using only the first-order drift as a design criterion in both direc-
tions, the lateral system would be significantly undersized in the long

direction because the wind load on the narrow face causes small
forces, but the second-order amplification effects would be very
large. Investigations on the Hancock Tower in Boston triggered
by other issues unearthed this stability problem, which was solved
by strengthening the core elements. An extreme design case of a
condition with small lateral forces would be the situation of a very
large (in plan) warehouse building in a very low seismic area. Such
building would have very large gravity loads applied, and because
expansion joints are required every 90 m (300 ft) or so, it is conceiv-
able to have a structure in the middle of the warehouse complex
which is shielded on all sides and therefore not requiring, in
principle, any lateral system. In such a situation, buckling consider-
ations and second-order effects would control the design. Notice that
the modern codes acknowledge such possibilities, and a minimum
(notional) lateral load should always be factored in the design.

The aforementioned examples emphasize three key aspects:
(1) in a certain class of high-rise buildings, buckling considerations
control the design over drift considerations; (2) second-order ef-
fects can cause significant force amplifications; and (3) a simple
superposition of effects (gravity loads and lateral loads) would
not capture the second-order effects. Therefore, a methodology
to maximize the buckling load would be very beneficial to struc-
tural engineers; such methodology is the main focus of this paper.

Linearized Buckling Framework

The single-objective framework for linearized buckling is
discussed here. Buckling is used as an example of another objective
relevant to structural engineers beyond compliance, although sim-
ilar formulations for other structural objectives could be introduced.

H

P
k

H

0

V

k

H

kk
P

V

(c)(b)(a)

H

L

W

(d)

Fig. 1. Second-order effects in high-rise buildings: (a) gravity loads; (b) lateral loads; (c) combined gravity and lateral loads; (d) second-order effects
in a rectangular building
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The sensitivity analysis is described next for a generic objective,
and buckling is used as an example.

Problem Statement and Formulation

The generalized eigenvalue problem for linearized buckling can be
stated as follows:

½KðdÞ þ PcrKgðu;dÞ�ϕ ¼ 0 ð3Þ
or

½Kgðu;dÞ þ λKðdÞ�ϕ ¼ 0 ð4Þ
whereKðdÞ = stiffness matrix as a function of the design variables,
d, u = vector of nodal displacements, Pcr = critical buckling load,
Kg = geometric stiffness matrix, λ ¼ 1=Pcr is the eigenvalue, and
ϕ = its associated eigenvector. The authors note that the solid iso-
tropic material penalization (SIMP)model (Bendsoe 1989; Rozvany
et al. 1992; Bendsoe and Sigmund 1999) is used in the computation
of the stiffness matrices to gear the optimization toward a 0–1
solution by penalizing intermediate (gray) design variables

EðdÞ ¼ E0dp ð5Þ
where EðdÞ = stiffness of design variable d, p = penalization with
p ≥ 1, and E0 = Young’s modulus of solid material. The
geometric stiffness matrix, Kg, is given by

Kg ¼
Z

GT

" s 0 0
0 s 0
0 0 s

#
GdV ð6Þ

where s = initial stress tensor:

s ¼
" σx0 τ xy0 τ zx0
τ xy0 σy0 τ yz0
τ zx0 τ yz0 σz0

#
ð7Þ

and the terms inG in Eq. (6) are obtained from the differentiation of the
shape functions in N (Cook et al. 2001). The objective, f, is to maxi-
mize the minimum critical buckling load in terms of d as follows:

min
d;uðdÞ

f½d;uðdÞ� ¼ min
h

max
i¼1 : : :NDof

ðλiÞ
i
¼ min

�
1

Pcr

�

¼ min

�
max

�
−ϕTKgϕ

ϕTKϕ

��

Thus, the problem statement can be written using a nested
formulation (Christensen and Klarbring 2008) as

min
d;uðdÞ

f½d;uðdÞ� ¼ max
i
λi

s:t: g1½d;uðdÞ� ¼ VðdÞ − V̄
0 ≤ di ≤ 1

ð8Þ

where uðdÞ is defined implicitly through the equilibrium equation,
KðdÞuðdÞ ¼ p, where p = vector of applied nodal loads; g1 = con-
straint on the volume of material; V̄ = the allowable total volume;
and the ith eigenvalue is

λi ¼ −ϕT
i Kgϕi

ϕT
i Kϕi

ð9Þ

Derivation of Sensitivities

To use a gradient-based update scheme for the optimization, the
design gradient of the objective function must be computed. Next,

the expression for the gradient is derived for a general objective
function, with linearized buckling given as an example.

Using a nested formulation (Christensen and Klarbring 2008),
the general objective function is FrðdÞ ¼ F½d;uðdÞ�, in which u is
implicitly defined as a solution to the equilibrium equation
KðdÞu ¼ p, where u = a vector containing the structural response,
which is displacement in this case; KðdÞ = stiffness matrix as a
function of the design variable, d; and p = applied external forces.
The authors note that in this case, the design variable were
selected as the element densities with d ¼ 0 signifying a void
and d ¼ 1 representing solid material. The sensitivity of the objec-
tive function with respect to the design variable, di, is thus given
using a chain rule as follows:

∂Fr

∂di ¼
∂F
∂di ½d;uðdÞ� þ

Xn
j¼1

∂F
∂uj ½d;uðdÞ�

∂uj
∂di ðdÞ

¼ ∂F
∂di ½d;uðdÞ� þ f∇uF½d;uðdÞ�gT

∂uðdÞ
∂di ðdÞ ð10Þ

where uj = jth displacement as a function of the i design
variable, with n being the total number of degrees of freedom.
To obtain an explicit expression for ½∂uðdÞ=∂di�, the equilibrium
expression is differentiated with respect to di

∂KðdÞ
∂di uðdÞ þKðdÞ ∂uðdÞ∂di ¼ ∂pðdÞ

∂di ð11Þ

∂uðdÞ
∂di ¼ K−1ðdÞ

�∂pðdÞ
∂di − ∂KðdÞ

∂di uðdÞ
�

ð12Þ

Substituting Eq. (12) into Eq. (10), the sensitivity of the
objective function can then be written as

∂Fr

∂di ¼
∂F
∂di ½d;uðdÞ�

þ fK−T∇uF½d;uðdÞ�gT
�∂pðdÞ

∂di − ∂KðdÞ
∂di uðdÞ

�
ð13Þ

The adjoint displacement, ua, can be defined as follows:

ua ¼ fK−T∇uF½d;uðdÞ�gT ð14Þ

or

KðdÞua ¼ ∇F½d;uðdÞ� ð15Þ

Thus, in general, for any objective function, the sensitivities of
the design variables can be written as follows:

∂Fr

∂di ¼
∂F
∂di ½d;uðdÞ� þ ua

�∂pðdÞ
∂di − ∂KðdÞ

∂di uðdÞ
�

ð16Þ

As an example, for the linearized buckling problem, the objec-
tive function can be written as follows:

F½d;uðdÞ� ¼ 1

Pcr
¼ λmax ð17Þ

The generalized eigenvalue problem given in Eq. (3)

ϕTKgðu;dÞϕ ¼ −λmaxϕTKðdÞϕ ð18Þ

can be substituted into Eq. (17) to provide

© ASCE 04014207-4 J. Struct. Eng.
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F½d;uðdÞ� ¼ 1

Pcr
¼ λmax ¼ −ϕTKgϕ

ϕTKϕ
ð19Þ

Differentiating Eq. (18), one obtains the following relationship:

ϕT ∂Kgðu;dÞ
∂di ϕþ λmaxϕT ∂KðdÞ

∂di ϕ − ∂λmax

∂di ϕTKðdÞϕ ¼ 0 ð20Þ

Rearranging terms and normalizing the stiffness matrix, such
that ϕTKðdÞϕ ¼ 1, one obtains

∂λmax

∂di ¼
�
ϕT ∂Kgðu;dÞ

∂di ϕþ λmaxϕT ∂KðdÞ
∂di ϕ

�

¼ ϕT

�∂Kgðu;dÞ
∂di þ 1

Pcr

∂KðdÞ
∂di

�
ϕ ð21Þ

The adjoint problem for buckling as an objective function thus
becomes

KðdÞua ¼ ∇uF½d;uðdÞ� ¼
∂F½d;uðdÞ�

∂u ¼ −ϕT ∂Kg½d;uðdÞ�
∂u ϕ

ð22Þ
where

∂Kg½d;uðdÞ�
∂ui ¼

� ∂s
∂ui 0

0 ∂s
∂ui

�
ð23Þ

Assuming plane stress, the authors obtain

∂s
∂ui ¼

E0

1 − ν2

" ∂Ni∂x ð1−ν
2
Þ ∂Ni∂y

ð1−ν
2
Þ ∂Ni∂y ν ∂Ni∂x

#
ð24Þ

Finally, the authors arrive at the following expression for the
sensitivities of the design variables with respect to the critical buck-
ling load:

∂Fr

∂di ¼ ϕT

�∂KgðdÞ
∂di þ 1

Pcr

∂KðdÞ
∂di

�
ϕ − ua

∂KðdÞ
∂di uðdÞ ð25Þ

For other objective functions, a procedure can be followed sim-
ilar to that of Eqs. (17)–(25).

Sensitivities of the Discrete Elements

The combination of discrete and continuum elements to overcome
the shortcomings associated with the accumulation of material
observed in the analysis with only continuum elements was
introduced in Stromberg et al. (2012). Here, the same approach
is utilized, but the areas of the discrete elements are included in
the optimization problem. To this end, the sensitivities are calcu-
lated starting from Eq. (16), which provides a general expression
for any objective. In this case, the authors select di as the cross-
sectional area of the ith discrete member. For the case of compli-
ance minimization, p is independent of d and ∇uF½d;uðdÞ� ¼ p so
ua ¼ uðdÞ, simplifying the sensitivity expression to

∂Fr

∂di ¼ −uðdÞT ∂KðdÞ
∂di uðdÞ ð26Þ

For buckling optimization, Eq. (25) remains the same as before,
but for the discrete element, the contribution from the axial stress is

∂s
∂ui ¼

E0

L
ð27Þ

Computational Framework

The computational framework developed in this research was based
on a combination of polygonal finite elements (Talischi et al. 2012a,
b) and discrete (truss) finite elements. In Fig. 2, the types of elements
used in this study are shown, which include one-dimensional (1D)
discrete truss elements and two-dimensional (2D) polygonal ele-
ments, ranging from 3-gons to n-gons. Two discrete truss elements
were used to model the columns to eliminate several issues encoun-
tered with the high-rise problem, such as unrealistic flexural stiffness
associated with continuum elements used to model the columns, in-
ability to identify the resulting locations of the connections and
working points, formation of incomplete bracing systems, etc. These
issues are described in detail in Stromberg et al. (2012).

The polygonal finite elements were used in this framework to
model the continuum subdomain, in which the bracing system
could form, as shown in Fig. 2. The polygonal elements were se-
lected due to their ability to naturally eliminate unstable checker-
board patterns and one-node connections, often present with
traditional triangular or quadrilateral finite-element meshes, caused
by their artificial stiffness in the finite-element approximation
(Talischi et al. 2010). Additionally, it has been shown in Talischi
et al. (2010) that the choice of polygonal finite elements allows
unstructured meshes to be easily generated using Voronoi tessella-
tions, which can also be used to eliminate bias in the orientation of
the resulting members, as typical triangles and quadrilaterals often
constrain these orientations with the geometry of the mesh, often
resulting in mesh-dependent suboptimal designs.

Numerical Examples

As described extensively in Stromberg et al. (2012), in the high-rise
problem using only continuum elements, material tends to concen-
trate at the ends of the design domain to resist the overturning mo-
ment, generating thick bands of material representing the columns.
Such bands introduce unrealistic bending stiffness and require the
use of discrete elements to accurately capture the behavior of the
structure. In addition, discrete elements have the advantage of mak-
ing the working points easy to identify. On the other hand, the dis-
advantage of using discrete elements is that the number of members
and the connectivity must be known a priori to carry out the

3-gon

1D Discrete

2D Polygonal

Truss

4-gon 5-gon 6-gon

...

n-gon

Fig. 2. Elements investigated in this research and discretization of
design domain using these elements
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optimization, unless other techniques, such as ground structures
[see Chapter 4 of Bendsoe and Sigmund (2002) and Chapter 5
of Christensen and Klarbring (2008)], are used. The continuum ap-
proach has the advantage that the layout of the structure is free to
form within the whole domain. The discrete/continuum framework
here is the best compromise for the high-rise problem because the
discrete members are located where the columns are typically lo-
cated (at the corners on the perimeter of the building), whereas the
continuum is available to form the optimal layout of the diagonals.

As an extension to the methodology introduced in Stromberg et al.
(2012), the cross-sectional areas of the discrete members can be in-
corporated in the optimization problem, in addition to the element
densities of the continuum elements, to further streamline the design
process. In this case, the method of moving asymptotes (Svanberg
1987) is selected as the optimization engine due to its flexibility
in incorporating several optimization objectives and constraints.

To establish a benchmark for the optimization solution, several
single-objective (i.e., compliance, buckling) studies are conducted
next, first using discrete elements only, and then using the proposed
integrated discrete/continuum framework.

Discrete Studies: Comparison of Objective Functions

Minimum Compliance
Revisiting the one-story braced frame from Stromberg et al. (2012),
Fig. 3(a) shows the problem statement for minimum compliance as
the objective function, in which the total volume is V̄ ¼ 1 m3; the
height, H ¼ 48 m; the width; 2B ¼ 41.5 m; and the applied lateral

loads, Ptotal ¼ 2 MN (1 MN applied at each tip). The problem
statement is given, using a nested formulation (Christensen and
Klarbring 2008) as described previously, as follows:

min
d;u

fðd;uÞ ¼ uTKðdÞu
s:t: g1½d;uðdÞ� ¼ VðdÞ − V̄

0 ≤ di ≤ 1

ð28Þ

In the following discrete examples, the design variables, d, are
selected as the cross-sectional areas of the members. The numerical
optimization is then conducted using MATLAB’s fmincon for the
simple purely discrete benchmark study, which finds the minimum
of a constrained multivariable function.

On the right of Fig. 3(a), the total minimum compliance, c, us-
ing the cross-sectional areas as the design variables for various el-
evations of the bracing point ratio, z=H, is shown. At the optimum,
z ¼ 36 m, c ¼ 1,538 kN-m, and the corresponding optimal cross-
sectional areas are reported in Table 2. The authors note here
that the stress is constant within all members, σ ¼ 555 MPa.
Analyzing the optimal structure for the gravity load case shown in
Fig. 3(b), the critical buckling load factor computed using these
cross-sectional areas is Pcr ¼ 104.1.

Maximization of Critical Buckling Load
For the same problem given in the previous section, the critical
buckling load is now maximized for the gravity load case shown
in Fig. 3(b) using the problem statement given in Fig. 3(b) and
Eq. (8). Fig. 3(b) shows a similar trend in regards to the behavior
of the compliance problem, and remarkably, the optimal bracing
point occurs at the same location: z ¼ 36 m. This can be explained
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Fig. 3. Problem statement, deflected or mode shape, and convergence of the following optimization problems to find the location of the bracing
point ratio, z=H, and cross-sectional areas, Ai, for a fixed volume, V̄ ¼ 1 m3 with P ¼ 1 MN: (a) minimum compliance of the wind load case;
(b) maximization of minimum critical buckling load for gravity load case
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by the similarities between the critical buckling mode of the gravity
load case and the deflected shape of the wind load case. At the
optimum, the critical buckling load factor, Pcr ¼ 111.5, is higher
than that of the minimum compliance problem, as expected. A sum-
mary of the corresponding cross-sectional areas is given in Table 2.
The authors note that if the compliance is computed for the lateral
load case of Fig. 3(a) using the optimal cross-sectional areas of the
buckling problem, c ¼ 1,593 kN-m is obtained—slightly higher
(worse) than that with minimum compliance as the objective.

Note that the buckled shape in Fig. 3(b) resembles the deformed
wind shape because truss elements were used. If beam elements
were used, other buckled shapes with a lower eigenvalue could con-
trol the design. However, columns are typically designed to resist
buckling, and here the focus is on a system level buckling neglect-
ing local phenomena.

The results presented in Fig. 3(a) follow the analytical approach
described in Stromberg et al. (2012) for the case of lateral loads.

In compliance/tip deflection minimization, each cross-sectional
area is sized proportionally to the strain energy in each member.
In the buckling optimization illustrated in Fig. 3(b), the stiffness
of the lateral systems is still maximized [similarly to the problem
in Fig. 3(a)], but the strain energy in the columns is higher due to
the vertical loads, thus some material is shed from the diagonals to
the columns as described in Table 2.

Combined Discrete/Continuum Element Studies

The cases analyzed in the previous section are now solved using a
discretization of 5,000 polygonal finite elements (Talischi et al.
2012a, b) for the continuum (braces) and two truss elements for
the columns with the method of moving asymptotes (Svanberg
1987) for the optimization, as described previously. The thickness
of the continuum is selected as t ¼ 0.002 m. The topology optimi-
zation is run until convergence for p ¼ 1 to determine the optimal
member sizes so as not to bias the stiffness of the discrete elements
based on their cross-sectional areas with the penalization of the
stiffness in the continuum formulation. The resulting sizes are then
used with continuation for p ¼ 1 to 4 to determine the final top-
ology of the diagonal members. For the minimum compliance of
the lateral load case [Fig. 4(a)], c ¼ 1,586 kN-m, A ¼
0.0020 m2, and Pcr ¼ 75.9. The contribution from the continuum
is c ¼ 1,338 kN-m and c ¼ 248 kN-m from the discrete elements.

For the minimum compliance problem, it has been shown that
the optimal solution is a fully stressed design. Thus, for comparison
purposes, the authors analyze the stress in each of the members.
For the columns, the stress can be computed as σcol ¼ Pcol=
Acol ¼ 513 MPa. However, because the continuum members are

Table 2. Comparison of Objectives and Cross-Sectional Areas for the
Problems in Fig. 3

Variable

Objective

Compliance Buckling

z (m) 36 36
c (kN-m) 1,538 1,593
Pcr 104.1 111.5
A1 (m2) 0.0021 0.0030
A2 (m2) 0.0072 0.0064
A3 (m2) 0.0042 0.0037

B

P

H
A1

B
0 50 100 150 200

0

0.5

1

1.5

2

2.5

3
Normalized Compliance vs. Iteration

Iter

N
or

m
al

iz
ed

 C
om

pl
ia

nc
e

(a)

P

B

H
A1

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
or

m
al

iz
ed

 P
cr

Normalized Buckling Load vs. Iteration

Iter(b)

Fig. 4. Problem statement for the discrete/continuum implementation to find optimal geometry and cross-sectional area with V̄ ¼ 1 m3: (a) minimum
compliance problem; (b) maximization of critical buckling mode
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not as clearly defined as a truss is, the following equivalent quantity
can be used:

σcont ¼
�
E
ccontinuum
Vcontinuum

�
1=2

¼
�ð200,000 MPaÞð1.338 MN-mÞ

0.81 m3

�
1=2

¼ 575 MPa ð29Þ

where ccontinuum represents the contribution of the continuum ele-
ments to the overall compliance of the system. Comparing the
stress in the columns with that in the braces, it can be seen that
the values are roughly constant, thus showing that the solution
is a fully stressed design.

It should be noted that, for the buckling problem, several issues
are encountered in regards to localized buckling modes. To elimi-
nate these modes, the geometric stiffness matrix, Kg, can be com-
puted using modified element densities, where the geometric
stiffness is modified for element densities less than 10%, as sug-
gested by Olhoff and Du (2012), following the equation below:

d ¼
�
d6 for 0 < d < 0.1
dp for 0.1 ≤ d ≤ 1

ð30Þ

with p ¼ 6 for the SIMP penalization parameter on the geometric
stiffness given in Eq. (5).

In addition to the presence of localized modes, the occurrence of
mode switching is quite common in topology optimization prob-
lems of a dynamic nature (see Fig. 5, for example) (Olhoff and
Du 2012). To avoid this issue, in the proposed framework, the first
mode (i.e., the one that is to be optimized) is selected from the first
10 eigenmodes based on an overall system (sidesway) buckled
shape. At each subsequent iteration, the new eigenmodes are nor-
malized and compared against the previous buckling mode, and the
mode in which the norm of the difference is nearly zero is selected
as the new mode to be optimized. This ensured that the topology
optimization was performed for a global (sidesway) buckling mode
throughout.

If the same problem is analyzed with the objective of maximiz-
ing the critical buckling factor, the final optimal geometry gives

Pcr ¼ 111.5, and the cross-sectional area of the columns is
A ¼ 0.0030 m2, which matches exactly with the discrete study
given earlier. If this structure is then analyzed for compliance,
the geometry produces c ¼ 1,613 kN-m. The authors also note
that, for the case in which the objective is to maximize the mini-
mum critical buckling load, the assumption of constant stress does
not hold.

From these examples, one can conclude that if a structure is
optimized for compliance using the lateral load case, the final
geometry (topology) will also be optimal for maximization of
the critical buckling load; however, the column sizes will be differ-
ent. Thus, from the compliance optimization, the optimal topology
of the structure can be determined, which can then be sized
for buckling using energy methods (Baker 1992; Stromberg et al.
2012).

Optimal Bracing Systems: Six-Story Building

The six-module bracing study originally presented in Stromberg
et al. (2012) as the prototypical high-rise building problem is re-
visited here using the proposed framework. The overall dimen-
sions of the structure are H ¼ 288 m by 2B ¼ 41.5 m by
t ¼ 0.036 m, with an applied loading of P ¼ 2,000 kN at each
mega-story and a minimum member size of rmin ¼ 3. The allow-
able volume of material is constrained to V̄ ¼ 240 m3, and the
material is assumed to be steel (E ¼ 200 GPa). This example
is analyzed for the cases of single-objective optimization using
compliance and buckling, and for the combination of the two.
The problem consists of a six-module portal frame with six dis-
crete (truss) elements equally spaced along the height. The authors
note that the discrete elements could alternatively use beam finite
elements instead of trusses; however, this would only increase the
computational time without adding significant information to the
problem because it would only enable the column buckling to be
captured, which is typically not a concern after proper structural
sizing.

Discrete Study to Benchmark Objectives
Fig. 6(a) shows the results for the optimal geometry using discrete
members only. As shown in the previous section, the compliance of
the wind load case and the buckling of the gravity load case result in
the same optimal geometry in terms of the frame layout, but differ-
ent cross-sectional areas of the members (Table 3). Thus, the initial
topology of the structure could be determined using compliance
optimization of the wind load case, where the members are sized
later in the process to incorporate buckling effects due to the gravity
loading.

Combined Discrete/Continuum Approach for Minimum
Compliance
Next, in Fig. 6(b), the results are shown using the discrete/con-
tinuum implementation proposed here; the associated column sizes
are given in Table 3. These results confirm those of Fig. 29 in
Stromberg et al. (2012) when the cross-sectional areas are added
to the optimization problem. Moreover, the resulting column sizes
are very close to the case of constant stress, as expected.

Combined Discrete/Continuum Approach for Maximization
of Critical Buckling Load
When these applied loads are inverted from horizontal (lateral wind
load) to vertical (gravity load), the results of Fig. 6(c) are produced
with the associated optimal member sizes given in Table 3.
Fig. 6(d) shows the corresponding final critical buckling load. The
authors note here that the buckling objective function also takes

Convergence of First 3 Modes

P
cr

Iter

Mode 1

Mode 2

Mode 3

Fig. 5. Example of mode switching (common in dynamic optimization
problems)
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more iterations for the optimal geometry to converge than that of
compliance.

Concluding Remarks and Extensions

The methodology presented here is useful in determining the opti-
mal geometry of structural systems for high-rise building design,
which includes the sizing of the columns throughout the procedure.
This approach can be generalized for several other objectives, in-
cluding compliance, deflection, eigenfrequency, etc. In particular,
this work investigated linearized buckling as an objective for the
optimization of high-rise buildings. The discrete/continuum frame-
work, originally presented in Stromberg et al. (2012), was extended
to simultaneously optimize the cross-sectional areas of the discrete
elements and the densities of the continuum (polygonal) elements.
As an extension of the work presented here, the incorporation of
other objective functions, such as natural frequency, deflection,
stress levels, etc., in addition to nonlinearities associated with

the buckling problem (i.e., incorporating P-δ and second-order
effects) is currently under investigation by the authors.
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