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Creating complex spatial objects from a flat sheet of material using origami folding techniques has attracted atten-
tion in science and engineering. In the present work, we use the geometric properties of partially folded zigzag
strips to better describe the kinematics of known zigzag/herringbone-base folded sheet metamaterials such as
Miura-ori. Inspired by the kinematics of a one–degree of freedom zigzag strip, we introduce a class of cellular folded
mechanical metamaterials comprising different scales of zigzag strips. This class of patterns combines origami
folding techniques with kirigami. Using analytical and numerical models, we study the key mechanical properties
of the folded materials. We show that our class of patterns, by expanding on the design space of Miura-ori, is
appropriate for a wide range of applications from mechanical metamaterials to deployable structures at small
and large scales. We further show that, depending on the geometry, these materials exhibit either negative or
positive in-plane Poisson’s ratios. By introducing a class of zigzag-base materials in the current study, we unify
the concept of in-plane Poisson’s ratio for similar materials in the literature and extend it to the class of zigzag-
base folded sheet materials.
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INTRODUCTION

Origami, the art of paper folding, has been a substantial source of in-
spiration for the innovative design of mechanical metamaterials (1–5),
whose material properties arise from their geometry and structural
layout. Kirigami, the art of paper cutting, has been used in combina-
tion with origami to fabricate complex microstructures through mi-
croassembly (6) and to create three-dimensional (3D) core structures
(7–10). Furthermore, rigid origami is a subset of origami structures
where rigid panels (facets) are linked through perfect hinges, leading
to an entirely geometric mechanism. The mathematical theory of rigid
origami has been studied by various researchers (11–15). On the basis
of rigid origami behavior, recent research on Miura-ori (1, 3) has
shown that metamaterial properties arise from its folding geometry.
Miura-ori is a classic origami folding pattern whose main constitu-
ents are parallelogram facets, which are connected along fold lines.
Morphology and/or mechanisms similar to those of Miura-ori natural-
ly arise in insect wings (16), tree leaves (17), and embryonic intestines
(18, 19). Moreover, a self-organized wrinkling pattern of a planar stiff
thin elastic film connected to a soft substrate subjected to biaxial
compression (that is, a herringbone pattern) has similarities to
Miura-ori (20–22), and such a herringbone pattern has been reported
to correspond to the minimum energy configuration (23). Applica-
tions of the Miura-ori pattern range from folding of maps (24) to tech-
nologies such as deployable solar panels (25), foldcore sandwich
panels (26, 27), and metamaterials (1–3).

Motivated by the outstanding properties and broad range of appli-
cations of Miura-ori, we start the present study by raising a question:
Can we design patterns that preserve the remarkable properties of
Miura-ori and expand on its design space? To address this ques-
tion, upon closer inspection of Miura-ori, we associate its kinematics
with that of a one–degree of freedom (DOF) zigzag strip and present a
technique to create zigzag-base mechanical metamaterials, including
various scales of zigzag strips. Our method to create patterns relies on
connecting zigzag strips of parallelogram facets with identical kine-
matics to produce one-DOF mechanism structures. Through this
study, we answer the question affirmatively.

Poisson’s ratio is an important material property used in the present
work to create patterns and to study size changes in folded sheets. It is
defined as the negative ratio of elastic extensional strain in the direc-
tion normal to the applied load to the axial extensional strain in the
direction of the applied load. Most commonly, when a material is
stretched in a given direction, it tends to get narrower in the direction
perpendicular to the applied load. However, when stretched, materials
with negative Poisson’s ratio or auxetic materials expand in the direc-
tion perpendicular to the applied load. Upon bending, anticlastic (saddle-
shaped) and synclastic (spherical) curvatures are observed in materials
with positive and negative Poisson’s ratios, respectively (28, 29). On
the basis of the theory of elasticity, the Poisson’s ratio for thermody-
namically stable isotropic linear elastic materials is bounded between
−1 and 0.5 (30). In contrast to isotropic solids, the Poisson’s ratio in
anisotropic elastic materials is unrestricted (−V < u < V) (31). Folded
sheets are anisotropic materials in which deformation happens as a
result of folding and unfolding. Thus, in folded sheet materials (for
instance in most ranges for geometric parameters of the Miura-ori
folding pattern), the Poisson’s ratio can assume values outside the
bounds of isotropic materials (1, 3).
RESULTS

Creation of patterns
In this section, we look closely at the kinematics of Miura-ori as a zigzag-
base folding pattern, which provides inspiration to create a class of
mechanical metamaterials. A regular Miura-ori sheet contains zigzag
strips of parallelogram facets in which each unit cell can be decom-
posed into two V-shapes (Fig. 1A). Each V-shape includes two rigid paral-
lelogram facets connected via a hinge along joining ridges, as shown in
Fig. 1B. The Poisson’s ratio considering the in-plane kinematics of a
1 of 7

http://advances.sciencemag.org/


R E S EARCH ART I C L E

 on S
eptem

ber 21, 2015
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

one-DOF V-shape (for more details, see the Supplementary Materials)
is given by

ðuwℓÞV ¼ −
eℓv
ewv

¼ −
dℓv=ℓv
dwv=wv

¼ −tan2 ϕ; ð1Þ

where ℓv is the projected length of the edges a in the xy plane and in
the x direction, wv is the width of the semifolded V-shape in the xy plane
and along the y direction, and ϕ is the angle in the xy plane between
the edge b and the x axis. The abovementioned expression shows that
the Poisson’s ratio of a V-shape is only a function of the angle ϕ. In
particular, it shows that, in a unit cell containing two V-shapes arranged
side by side in a crease pattern, we can scale down the length b of
parallelogram facets to 1/n that of the other joining V-shape (where
n is a positive integer) while preserving the capability of folding and un-
folding. Using this insight in our current research, we create a class of
zigzag-base metamaterials in which the unit cell includes two different
scales of V-shapes with equivalent ϕ angles (Fig. 1C). For instance, n
is equal to 2 for the unit cell shown in Fig. 1C. In the case of n = 2
from numerical models and constructed geometry, the ideal unit cell
has only one planar mechanism (see Section 7-1 in the Supplementary
Materials); that is, the geometry of the unit cell properly constrains the
V-shapes to ideally yield a single-DOF planar mechanism. Therefore,
the condition for which we have studied the kinematics of the V-shape
is met.

BCHn zigzag-base patterns
The BCHn (Basic unit Cell with Hole) unit cell introduced in Fig. 1C is
parameterized in Fig. 2A. The unit cell includes two large and 2n small
parallelogram rigid panels joined via fold lines. For example, for the
unit cell shown in Fig. 2A, n is equal to 2. Large values of n, although
theoretically possible, have not been explored. For a large n, a zigzag
strip of small parallelograms approaches a narrow strip. In the current
research, we use only n = 2 and n = 3 in BCH patterns, with em-
phasis on BCH2. We can define the unit cell by the geometry of par-
allelogram facets (with sides a and b and acute angle a ∈ [0, p/2]),
and the angle ϕ ∈ [0, a], which is half the angle between the edges b1
Eidini and Paulino Sci. Adv. 2015;1:e1500224 18 September 2015
in the xy plane. The expressions defining the geometry of BCHn are
given by

w ¼ 2b sinϕ; ℓ ¼ 2a
cos a
cos ϕ

; h ¼ a sina sinq; b1 ¼ b=n; ð2Þ

where ℓ is the projected length of zigzag strips along the x axis in the
xy plane (Fig. 2A). The relationship between the angle ϕ and the fold
angle q is

tanϕ ¼ cosq tana: ð3Þ
The outer dimensions of a regular sheet of BCHn (Fig. 2B) are

given by

W ¼ m2 2b sinϕð Þ; L ¼ m1 2a
cos a
cos ϕ

þ n−1
n

b cosϕ
� �

þ 1

n
b cosϕ : ð4Þ

In the relation given for the length L, the expression in parentheses rep-
resents the length of the repeating unit cell, and the last term (outside
A B C

v

v

α

φ x

y

Fig. 1. FromMiura-ori to zigzag-base foldable metamaterials with different scales of zigzag strips. (A) A Miura-ori unit cell containing two V-shapes
aligned side by side, forming one concave valley and three convex mountain folds (or vice versa if the unit cell is viewed from the opposite side). (B) Top

view of a V-shape fold including two identical parallelogram facets connected along the ridges with length a. Its geometry can be defined by the facet
parameters a, b, and a, and by the angle ϕ ∈ [0, a]. (C) Two different scales of V-shapes, with the same angle ϕ, connected along joining fold lines. The
length b of parallelogram facets in the left zigzag strip of V-shapes is half that of the strip on the right in the unit cell shown.
Fig. 2. Geometry of BCHn pattern. (A) Geometry of the unit cell. The
geometry of a BCH sheet can be parameterized by the geometry of par-
n

allelogram facets (a, b, and a), the half number of small parallelogram
facets (n), and the fold angle ϕ ∈ [0, a], which is the angle between fold
lines b and the x axis. Other important angles in the figure include the fold
angle between the facets and the xy plane (that is, q ∈ [0, p/2]), the angle
between the fold lines a and the x axis (that is, y ∈ [0, a]), and the dihedral
fold angles between parallelograms b1 ∈ [0, p] and b2 ∈ [0, p] joined along
fold lines a and b, respectively. (B) A BCH2 sheet with m1 = 2, m2 = 3, and
outer dimensions L and W.
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parentheses) shows the edge effect. The second term in parentheses is
related to the effect of holes in tessellation.

For rigid panels connected via hinges at fold lines, the BCH with n =
2 has only one independent DOF, on the basis of the geometry of the
unit cell. In general, the number of DOF for each unit cell of BCHn is
2n − 3. Using at least two consecutive rows of small parallelograms, in-
stead of one, in BCHn (fig. S1B) decreases the DOF of BCH to 1, ir-
respective of the number of n (for more details, see fig. S2 and Section
7-1 in the Supplementary Materials). In addition, the patterns are rigid-
and flat-foldable. Moreover, they can be folded from a flat sheet of mate-
rial (that is, they are developable) (movie S1). Figure 3 presents a few
configurations of the patterns.

Mechanical properties of BCHn patterns
In the present research, we obtain the in-plane Poisson’s ratio in two
different ways: (i) by considering the projected lengths of zigzag
strips and (ii) by considering the end-to-end dimensions of a sheet.
Although the first approach is valuable to provide insights on the kin-
ematics of a zigzag-base folded sheet such as Miura-ori and BCH2, the
latter definition can also be relevant depending on the application. To
emphasize these two important concepts in relation to the folded
sheet materials introduced in this work, we designate the value ob-
tained by the first approach as uz and the latter as ue‐e, where the
indices z and e-e stand for zigzag and end-to-end, respectively (see Fig. 4A
and fig. S3). For the sheet of BCH2 shown in Fig. 2B, ℓ and L are used
to obtain uz and ue‐e, respectively. In fact, ℓ for a sheet is the sum of
the projected lengths of zigzag strips in the xy plane and parallel to the
x axis; for a sheet made of tessellations of identical BCH2, ℓ is equal to
m1 times that of a unit cell (Fig. 4A). Alternatively, L is the end-to-end
dimension of the sheet, as shown in Fig. 2B. Because the width of the
sheet along the y axis is always a factor of sin ϕ, we can considerW = w
in both approaches. Hence, uz of the sheet is given by the following
Eidini and Paulino Sci. Adv. 2015;1:e1500224 18 September 2015
relation, which is equal to the kinematics of a V-shape outlined in
previous sections

ðuwℓÞz ¼ −
eℓ
ew

¼ −
dℓ=ℓ

dw=w
¼ −tan2ϕ: ð5Þ

Accordingly, BCH2 and all other combined patterns of BCH with
one-DOF planar mechanisms (for example, patterns shown in Fig. 3)
have uz equal to − tan2ϕ (Fig. 4, A and B). We emphasize that the in-
plane Poisson’s ratio, which is obtained by considering the projected
lengths of zigzag strips in the patterns, also provides an insight that com-
ponents with identical uz can be connected to obtain a material that
can freely fold and unfold (for example, Fig. 3F and movie S1). In addi-
tion, using this insight, we can create numerous configurations of
metamaterials (for more details, see the Supplementary Materials).

For sheets made by tessellations of the same BCHn (for example,
Fig. 3A), ue‐e is given by

ðuWLÞe−e ¼ −
eL
eW

¼ −
dL=L

dW=W
¼ −tan2ϕ

k lcos a − cos2ϕ
k lcos aþ cos2ϕ

; ð6Þ

with

k ¼ 2n ⋅ m1

m1ðn−1Þ þ 1
and l ¼ a=b; ð7Þ

in which n = 2 (n = 1 reduces to the relation for the Miura-ori sheet).
Considering end-to-end dimensions, for a unit cell of BCH2 (m1 = 1),
ue‐e is identical to that of a Miura-ori unit cell (Fig. 4C) and is given by:

ðuWLÞe−e ¼ −tan2ϕ
2lcos a − cos2ϕ
2lcos aþ cos2ϕ

: ð8Þ

Therefore, unlike uz, which is always negative (Fig. 4B), ue‐e can be
positive for some geometric ranges (Fig. 4, C and D). Moreover, uz
A B C

G H

D

E F

Fig. 3. Sample patterns of BCHn and cellular folded metamaterials. (A) A BCH2 sheet. (B) A BCH3 sheet - adding one layer of small parallelograms to
the first row reduces the DOF of the system to 1 for rigid origami behavior. (C) Combination of BCH and layers of large and small parallelograms with the
2

same geometries as the ones used in BCH2. (D) Combination of BCH3 and layers of large and small parallelograms with the same geometries as the ones
used in BCH3. (E) A BCH3 sheet and layers of small parallelograms with the same geometries as the ones used in BCH3. (F) A sheet composed of various
BCHn and Miura-ori cells with the same angle ϕ. (G) A stacked cellular metamaterial made from seven layers of folded sheets of BCH2 with two different
geometries. (H) Cellular metamaterial made from two layers of 3 × 3 sheets of BCH2 of different heights tailored for stacking and bonded along the joining
fold lines. The resulting configuration is flat-foldable in one direction.
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is only a function of the angle ϕ, but ue‐e can be dependent on other
geometric parameters [that is, the geometry of parallelogram facets
(a, b, and a), tessellations (n and m1), and angle ϕ]. The Poisson’s
ratio considering end-to-end dimensions can be positive even for a
Miura-ori unit cell (Fig. 4C). Furthermore, the shift from negative
Poisson’s ratio to positive Poisson’s ratio in Miura-ori is only an effect
of the tail (32), and the difference between two Poisson’s ratios (that is,
uz and ue‐e) vanishes as the length of the Miura-ori sheet approaches
infinity. However, for BCH patterns, the transition to positive Poisson’s
ratio is primarily a result of the effect of holes in the sheets; unlike
Miura-ori, the difference between these two approaches (that is, uz
and ue‐e) does not disappear even for a BCH sheet with an infinite
configuration (Fig. 5). Figure 5 presents the Poisson’s ratio of a repeating
unit cell of BCH2 pattern (in an infinite tessellation) that corresponds
to the following expression:

ðuVÞe−e ¼ −tan2ϕ
4lcosa − cos2ϕ
4lcosaþ cos2ϕ

: ð9Þ

From Eq. 9, (uV)e‐e for the BCH2 sheet is positive if 4l cos a < cos2 ϕ
and negative if 4lcos a > cos2 ϕ.
Eidini and Paulino Sci. Adv. 2015;1:e1500224 18 September 2015
Analogous to the Miura-ori sheet (1), similar BCH sheets having the
same uz can be designed for stacking and attached together along joining
fold lines to form cellular folded metamaterials capable of folding freely
(Fig. 3, G and H, and movie S2). The BCH sheets tailored for stacking
have identical ue‐e (for more details, see the Supplementary Materials).

Considering that the facets are rigid and connected via elastic ro-
tational springs along the fold lines, we obtain measures of the planar
stretching stiffness of BCH2 in the x and y directions (fig. S5) and com-
pare the results with their corresponding values for the Miura-ori cell.
From Fig. 6, we infer that, depending on the geometry and considering
the same amount of material (compare Fig. 2A with fig. S4), BCH2

can be stiffer or more flexible than its corresponding Miura-ori cell
(for more details, see the Supplementary Materials).

Simple experimental observations show that these folded sheets ex-
hibit, similarly to the Miura-ori pattern, an anticlastic (saddle-shaped)
curvature upon bending (Fig. 7A, figs. S6 to S8, and movie S3), which
is a curvature adopted by conventional materials with positive out-of-
plane Poisson’s ratio (29). This positional semiauxetic behavior has
been observed in “antitrichiral” honeycomb (33), auxetic composite lam-
inates (34), and other patterns of folded sheets made of conventional
materials (1, 3, 28).
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α=65; BCH2 (m1 = 5)
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Fig. 4. In-plane Poisson’s ratios of finite configurations of metamaterials. (A) A 5 × 4 (m1 = 5 and m2 = 4) BCH2 sheet (left) and its corresponding
Miura-ori sheet (right) with the same basic geometry and same amount of material. Projected lengths of zigzag strips along the x′–x′ line parallel to the

x axis are used to obtain uz, and L is used to obtain ue‐e. Both sheets have identical uz but have different ue‐e. (B) In-plane kinematics (uz) of the class of
metamaterials. (C) In-plane Poisson’s ratio considering the end-to-end dimensions (ue‐e) of a single unit cell of Miura-ori and BCH2 patterns with a = b. (D) In-
plane Poisson’s ratio considering the end-to-end dimensions (ue‐e) of sheets of Miura-ori and BCH2 with m1 = 5 and a = b.
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We also investigate the effects of geometry and material properties
on the global behavior of folded sheets using the bar-framework nu-
merical approach described by Schenk and Guest (1). By considering
the bending stiffness of the facets and fold lines (Kfacet and Kfold, re-
spectively), we study the modal responses of folded shells by changing
the ratio of Kfacet to Kfold. For the BCH2 pattern shown in Fig. 7,
twisting and bending modes are the predominant behaviors over a
range of Kfacet/Kfold and associated geometries (Fig. 7, B and C), simi-
lar to a regular Miura-ori sheet (28). Furthermore, the saddle-shaped
bending mode obtained from an eigenvalue analysis of the patterns
further confirms that Poisson’s ratio becomes positive upon bending
(29). The results show that for large values of Kfacet/Kfold, the first
softest eigenmode represents a rigid origami behavior (Fig. 7D). The
results of the stiffness analysis of several other patterns from the class
of metamaterials show similar behaviors (figs. S6 to S8).
Eidini and Paulino Sci. Adv. 2015;1:e1500224 18 September 2015
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DISCUSSION

Most research studies on origami-inspired materials rely on known
patterns, especially on Miura-ori (that is, a classic origami pattern with
outstanding properties and a wide range of applications). In this study,
we have created the BCH2 pattern among other combined patterns
and have shown that the pattern has properties as remarkable as those
of Miura-ori. We summarize the significant outcomes of the current
research in Fig. 8 and discuss in the following section.

We have used the concept of the in-plane Poisson’s ratio, a keymaterial
property in the present study, in two different contexts (see table S1):

• First, to describe the kinematics of and to create a class of one-
DOF zigzag-base mechanical metamaterials: Poisson’s ratio is ob-
tained by considering the projected lengths of zigzag strips (that is
uz), and the value is always equal to −tan2 ϕ. The value obtained this
way is an inherent property of the class of one-DOF zigzag-base folded
sheets and is related to the foldability of the class of metamaterials.
Hence, the concept provides insight into the creation of zigzag-base
foldable materials. The value (that is, −tan2 ϕ) has been associated with
the Poisson’s ratio of the Miura-ori sheet (1) to describe the stacking
of Miura-ori in the literature (1). However, in the present work, after
explicitly associating the value with that of a one-DOF zigzag strip
(Fig. 1), we have scaled down the width of one joining zigzag strip
in the unit cell and have created BCH patterns containing various
scales of zigzag strips. Accordingly, the present study extends the kin-
ematics of Miura-ori to that of a class of one-DOF zigzag-base folded
sheet metamaterials. In other words, our work shows that all one-
DOF zigzag-base folded metamaterials (Fig. 3) have identical kinemat-
ics when the angle ϕ is the same.

• Second, to study size changes in the folded metamaterials intro-
duced in this work: Poisson’s ratio is obtained by considering the
end-to-end dimensions of a sheet, ue‐e. This definition captures size
changes in a finite sheet (Fig. 4) and in a repeating unit cell (in an infinite
configuration) of a regular sheet (for example, regular BCH2; Fig. 5).
Moreover, it is applicable to irregular sheets, such as that shown in
Fig. 3F.

Because the recent literature on the topic had differing evaluations of
Poisson’s ratio (1, 3, 32), this study further clarifies the issue and unifies
the concepts by introducing a class of zigzag-base folded sheet materials.
For the Miura-ori sheet, the Poisson’s ratio of a repeating unit cell is
equal to uz. Hence, the value given in (1, 3) presents the kinematics
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Fig. 5. In-plane Poisson’s ratio of a BCH2 sheet with infinite configu-
ration. Poisson’s ratio obtained by considering the projected length of zig-

zag strips uz versus Poisson’s ratio considering the end-to-end dimensions
of the sheet when the sheet size approaches infinity, ue‐e (a = b andm1 → V).
The latter is equivalent to the Poisson’s ratio of a repeating unit cell of BCH2

in an infinite tessellation. Contrary to Miura-ori, the transition to a positive
Poisson’s ratio is present with an infinite configuration of the BCH2 sheet.
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of the Miura-ori sheet and the size changes in a repeating unit cell of
Miura-ori. Thus, considering the end-to-end dimensions of a finite
Miura-ori sheet is simply capturing the edge effect (32) (that is, the
last term given in Eq. 4 for L). However, for the BCH2 pattern, the
Poisson’s ratio of a repeating unit cell is not equal to uz and assumes
negative and positive values because of the presence of holes in the pat-
tern (Fig. 5). Therefore, our study shows that considering the end-to-
end configurations of the BCH2 pattern is mainly capturing the effect
of holes on Poisson’s ratio (that is, the second term in parentheses in
Eq. 4 for L).

We have also shown that the BCHn and combined patterns intro-
duced in this work have metamaterial properties arising from their tun-
able geometric configurations. An appealing feature of these patterns
is that they display properties similar to those of Miura-ori; however,
the presence of different scales of zigzag strips and the existence of
holes make the BCHn patterns unique (for example, Fig. 4A). In ad-
dition, the fact that the mechanical properties of BCHn differ from those
Eidini and Paulino Sci. Adv. 2015;1:e1500224 18 September 2015
of Miura-ori (for example, Figs. 4D, 5, and 6) offers avenues to explore
alternative materials and structures for specific performance/applications
of the Miura-ori pattern, for which there is a surge of research interest.
On the other hand, the present technology requires lighter and more
customizable structures and materials. Combining cellular BCHn pat-
terns with Miura-ori provides an augmented design space for tailored
engineering design of materials and structures. Consequently, the avail-
ability of large design motifs can be advantageous, for instance, in dy-
namic architectural façades where the placement of holes in patterns
can be controlled to either allow light in the interior of buildings or
promote shading when desirable.

In summary, the remarkable properties of the patterns (specifically
of the BCH2 pattern), such as rigid foldability, flat foldability, and sin-
gle DOF, as well as numerous possible combinations of the patterns,
make them well suited for a broad range of applications, including
kinetic and deployable structures [for example, solar sails (25)],
light cellular foldcore sandwich panels (26, 27), 3D tunable folded
B C D

A

Fig. 7. Behavior of a BCH2 sheet upon bending and results of the eigenvalue analysis of a 3 × 3 BCH2 pattern. (A) A BCH2 sheet deforms into a
saddle shape upon bending (that is, a typical behavior seen in materials with a positive out-of-plane Poisson’s ratio). (B) Twisting deformation, (C) saddle-

shaped deformation, and (D) rigid origami behavior (planar mechanism) of a 3 × 3 pattern of BCH2 (a = 1, b = 2, and a = 60°). Twisting and saddle-shaped
deformations are the softest modes observed for a wide range of material properties and geometries. For large values of Kfacet/Kfold, rigid origami behavior
(planar mechanism) is simulated.
Fig. 8. Outcomes of the current study. Inspired by Miura-ori to create BCHn zigzag-base patterns with a broad range of applications.
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cellular metamaterials (1, 5, 35), energy-absorbing devices (36), fold-
able robots (37), and auxetic materials (29, 30). In all these applica-
tions, scalability is an attractive feature of the BCHn pattern and of
other combined patterns because of their inherent geometric properties.
D
ow

nloaded fr
MATERIALS AND METHODS

To experimentally assess the mechanical behavior of origami-inspired
patterns, we fabricated samples from various types of materials, includ-
ing paper (20, 24, and 28 lb), construction paper (76 lb), and cardstock
(110 lb). To create holes and pattern creases, we used an electronic
cutter. We first designed the patterns and then converted them into
a vector format appropriate for electronic cutting. The crease lines
were perforated using a dash-and-gap style. After patterning, we man-
ually folded the sheets along the fold lines constituting the mountains
and valleys of folded sheets. We numerically verified the observed be-
havior of the materials using stiffness analysis over a broad range of
materials, including rigid panels connected via frictionless hinges.
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