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Supplementary Text 

1- Geometry, pattern tessellation and combination  

The geometry of BCHn (Basic unit Cell with Hole) is described in the main text and is 

shown in Fig. 2A. By combining BCHn with row/rows of small and/or large parallelograms 

with the same angle , we can obtain numerous unit cells. A few configurations are 

presented in Fig. S1. The tessellations or/and combinations of tessellation of these cells 

having the same angle   can result in a new metamaterial. For example, the patterns shown 

in Fig. 3 C and D are obtained by tessellations of the unit cells presented in Fig. S1D.  

 

 

         

Fig. S1. BCH2, BCH3, and their combinations with rows of small and/or large 

parallelograms. (A) A BCH2 and a BCH3. (B) A BCH2 and a BCH3 combined with a row 

of small parallelograms with the same geometry as the one used in the corresponding BCH. 

(C) A BCH2 and a BCH3 combined with a row of large parallelograms with the same 

geometry as the one used in their corresponding BCH. (D) A BCH2 and a BCH3 combined 

with rows of small and large parallelograms with the same geometry as the one used in 

their corresponding BCH.  

 

2- Kinematics of a folded one-DOF zigzag strip  

A one-DOF zigzag strip of parallelogram facets can be decomposed into V-shapes. We 

show that the kinematics of a properly constrained V-shape (see Fig. 1B), as described 

below, is a function of an angle in the horizontal xy-plane. The constraints on the V-shape 

(Fig. 1B) are applied to simulate similar conditions to those of the V-shapes in the Miura-

ori sheet, i.e., to create a one-DOF planar mechanism. Hence, to remove the rigid body 

motions associated with the translational and rotational DOFs, we constrain all 

translational DOFs of the point A and assume that the edges AB and BC of the facets move 

in the xy-plane, and that the projected length of the edge AD in the xy-plane remains along 

the x-axis (i.e., point D moves in the xz-plane). With this set up, the V-shape has only one 

planar DOF. The expressions defining the geometry of the V-shape are given by 
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where vl  is the projected length of the edges a in the xy-plane and in the x direction; vw  is 
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in the xy-plane between the edge b and the x-axis (see Fig. 1B). The in-plane Poisson’s 

ratio of the system is given by  
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3- Number of degrees of freedom of the patterns  

For the case of n=2, i.e., for the unit cell of BCH2 pattern shown in Fig. 2A, and for a given 

geometry of the facet, the geometry of the unit cell implies that it can be defined based on 

only one fold angle (i.e., similarly to Miura-ori (1), we can write the relations between all 

degrees of freedom (DOFs) based on only one fold angle, e.g., the angle  ). Hence, the 

unit cell of BCH2 has only one DOF. On the other hand, implicit formation of the structure 

of the Miura-ori unit cell with one DOF mechanism between two adjoining unit cells, as 

shown in Fig. S2A, imposes the whole pattern to have only one DOF. The conclusion is 

further verified using numerical calculation of the number of DOFs as described in Section 

(7-1).  

 

 

Fig. S2. Constrained DOF by implicit formation of the structure of the Miura-ori unit 

cell between adjoining unit cells of BCH2 and BCH3 in the pattern. (A) The Miura-ori 

unit cell structure formed implicitly in the tessellation makes the whole BCH2 pattern fold 

with one-DOF planar mechanism. (B) In the symmetric tessellation of identical BCH3, 

except for the small parallelogram facets of the first row, all other independent DOFs in 

the unit cell of BCH3 are constrained by the structure of the Miura-ori cell formed between 

two adjoining unit cells.  

 

In general, from the numerical model described in Section (7-1) and for rigid origami 

behavior, the unit cell of BCHn (Fig. S1A) has 2n-3 DOFs. However, adding one row of 

small parallelogram facets to the BCHn (e.g., Fig. S1B), i.e., creating a complete row of 

Miura-ori unit cells with the small parallelogram facets, reduces the DOFs of the cell to 1 

irrespective of the number of n. Hence, tessellation of the unit cells shown in Fig. S1B can 

create patterns with one DOF planar mechanism (e.g., Fig. 3E).  
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For the symmetric tessellation of BCH3, as presented in Fig. S2B, except for the first row 

of small parallelogram facets, all other independent DOFs in the unit cell of BCH3 are 

constrained by the implicit formation of the structure of Miura-ori cell between two 

adjoining unit cells. Hence, the pattern of BCH3, shown in Fig. S2B, due to existence of 

unconstrained DOFs in the first row of small parallelogram facets, has more than one DOF. 

However, adding one row of small parallelogram facets and, accordingly, creating the row 

of Miura-ori cells with small parallelogram facts can reduce the DOF of the whole system 

to one (e.g., Fig. 3B).   

 

4- In-plane stretching response of BCHn sheets 

4-1- Poisson’s ratio  

A 5x4 sheet of BCH2 along with its corresponding Miura-ori sheet containing the same 

geometry of facets and fold angle (a, b,  and   are identical in both models) is shown in 

Fig. 4A. The Poisson’s ratio 
z  for both sheets can be obtained from the following relation 
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in which l  is the projected length of the zigzag strips in the xy-plane and parallel to the 

x-axis (i.e., the projected lengths of the zigzag strips along any arbitrary lines of x’-x’ in 

the xy plane and parallel to the x-axis intersecting a complete tessellation). Hence, for a 

sheet with m1 rows, l  is equal to m1 times the projected lengths of the strips in the unit 

cell shown in Fig. 2A. From Fig. 4A, the importance of considering the end-to-end 

dimensions to obtain the Poisson’s ratio for folded sheets is more pronounced in sheets 

with holes because both sheets have the same 
z  despite having different lengths along the 

x-axis. Another example, showing the relevance of the end-to-end dimensions to obtain 

Poisson’s ratio of folded sheets is presented in Fig. S3, where two identical 2x2 Miura-ori 

sheets are shown. Moreover, 2 rows of small Miura-ori cells with equal 
z  are also attached 

to the left-hand sample as shown in the figure. Therefore, from the figure, considering the 

end-to-end dimensions to obtain Poisson’s ratio in the left system is obvious. For the limit 

cases of very large number of small cells, as well as very small length of a for small cells, 

i.e., n   and 0sa   (See Fig. S4 for the geometry of Miura-ori cell), the rows of small 

Miura-ori cells approach the lines defining the end-to-end dimension for the 2x2 Miura-ori 

sheet shown on the right-hand image. 

 

 



 

 

 

Fig. S3. Concept of Poisson’s ratio considering end-to-end dimensions. Figure shows 

two identical 2x2 Miura-ori tessellations. The 2 rows of small Mira-ori cells with the same 

z as that of the 2x2 sheet are attached to the left sample. Length b of the small cells are 

1/5 of that of the large cells (i.e., the number of small cells per each large cell is 5 (n=5)). 

 

 
Fig. S4. Geometry of a Miura-ori cell. 

 

The Poisson’s ratio of a BCHn sheet, using the end-to-end dimensions, is given in 

expression (6) of the main text. From the relation, when
2cos cos     , e e   is positive 

and for
2cos cos     , e e  is negative. Moreover, for a Miura-ori (n=1) sheet, we 

have 
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Hence, for a Miura-ori sheet, if 1m  , then e e   approaches z  (i.e.,
2tan  ). Notice 

that from the relation above, even a Miura-ori unit cell (i.e., 1 1m  ) can have positive 

Poisson’s ratio for some ranges.  
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For a sheet of BCH2, we have 
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From the relation above, for a sheet of BCH2, while comparing z  with e e  , the shift 

towards positive Poisson’s ratio in e e  is mainly the effect of the holes, and thus the 

difference between z  and e e   does not disappear (see Fig. 5) when the length of the sheet 

approaches infinity ( 1m  ). Table S1 summarizes the main points on the in-plane 

Poisson’s ratio of the class of zigzag-base folded materials. 

 

Table S1. Main points of the in-plane Poisson’s ratio of the class of zigzag-base folded 

metamaterials. 

 

 

4-2- Stretching stiffness  
4-2-1- BCH2  

In this section, we derive the in-plane stiffness of the BCH2 in the x and y directions. For 

this purpose, an alternative parameterization for BCH2 (the unit cell is shown in Fig. 2A) 

based on the dihedral angles between the rigid facets is used, which is similar to the 

equations of reference (3) for Miura-ori cell. To better compare the results, we keep the 

same symbols as those given for Miura-ori (3), provided that they are consistent with the 

symbols used in this work. Therefore,  

Using projected length of the zigzag strips

 

Using the end-to-end dimensions of a sheet
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v By introducing BCHn patterns, our work shows 
that the value is an inherent property of the 
class of one-DOF zigzag-base folded materials, 
and is always negative and is a function of the 
angle    .

v Provides insight on the kinematics and thus on 
how to create zigzag-base foldable 
metamaterials.

v It has been used in the literature (1) as the 
Poisson s ratio of the Miura-ori, to describe the 
stacking of the Miura-ori sheets.

v By explicitly associating the value to each zigzag, 
and thus by changing the scale of the zigzags in 
the patterns, we have created the BCHn 
patterns.

v The value captures the size change of the 
sheets, and is a function of the geometry of the 
facets, tessellation, and the angle    . It can be 
positive depending on the geometry. 

v For an infinite tessellation of a regular sheet, it 
captures the Poisson s ratio of a repeating unit 
cell.

v The in-plane Poisson s ratio of a repeating unit 
cell of the Miura-ori sheet, obtained in this way, 
is equal to      .

v For the Miura-ori, considering the end-to-end is 
to simply capture the edge effect (32). However, 
for the BCHn patterns, it is to capture the effect 
of the holes in the patterns.
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The potential energy of a BCH2 (see Fig. 2A), subjected to uniaxial force in the x direction, 

can be obtained from 

H U                                                        (8) 

in which U and   are elastic energy and potential of the applied load, respectively that are 

given by 
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where k is the rotational hinge spring constant per unit length (k=Kfold). Setting the condition

1/ 0H    , the external force at equilibrium xf  can be obtained from 
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Notice that xK is obtained from the following expression 
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where  
00 1,    . The contour plot of the stiffness ratio in the x direction (Kx/k) is 

shown in Fig. S5A for a unit cell with a=b=1, in terms of the facet angle   and fold angle

1 .  

Similarly, for the y direction: 
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The contour plot of the stiffness in the y direction is shown in Fig. S5B for a unit cell with 

a=b=1 in terms of the facet and fold angles,   and 1 , respectively.  

 

 

Fig. S5. In-plane stiffness for BCH2 with a = b = 1. (A) Kx/k. (B) Ky/k. 

 

Note that to compare the in-plane stiffness results with those of the Miura-ori, we 

considered a measure of the in-plane stiffness of the BCH2 which is equivalent to the load 

making the unit displacement in the zigzag strips of the unit cell (i.e., the length of the 

zigzag strips are used in the derivations). 

 

4-2-2- Classical Miura-ori  

The in-plane stretching stiffness in the x direction for Miura-ori cell is obtained by equation 

(12), which results in  
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The second term within brackets is missing in Ref. (3). Similarly, the stretching stiffness 

in the y direction is obtained by equation (15), which results in 
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Notice that Kx/k and Ky/k are not dimensionless, and thus Kx and Ky have dimension of in-

plane stretching stiffness (38). 

 

4-2-3- In-plane stiffness of BCH2 compared with its corresponding Miura-ori cell  

Figure 5 shows the ratio of the in-plane stiffness of the Miura-ori cell in the x and y 

directions to those of the BCH2, for various ratios of a/b. The ratio is equal for both x and 

y directions because only the numerators of the first term in the planar stiffness relations 

change from BCH2 to Miura-ori cell, and the numerators are equal in both planar rigidities 

of x and y directions for a specific unit cell. 

 

5- BCHn-based cellular folded metamaterial  
Similar sheets with different heights, while possessing the same z , can be stacked and 

attached together along joining fold lines to make a cellular folded metamaterials (see Fig. 

3 G and H and and movie S2). The fold geometry can change from layer to layer, but 

assuming stacking of the patterns using 2 layers of A and B (1), and by equating the external 

dimensions as well as z for both layers of A and B, respectively, we have 
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where the geometry of the layer B can be obtained based on that of the layer A. It is worth 

noting that meeting the above equations, for the stacking of the layers, results in the sheets 

possessing identical e e  , as shown by the following relations: 
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This result further emphasizes the relevance of defining the end-to-end Poisson’s ratio for 

the zigzag-base folded sheet metamaterials. 

The angle   for the stacked samples shown in Fig. 3G is positive for both sheets, i.e.

, [0, / 2]A B   . This form of stacking may be applied as impact absorbing devices (36). 

Considering the angle   for one alternating layer being negative, i.e. [ / 2, 0]A   results 

in a new metamaterial in which the layers can be connected along joining fold lines using 

adhesive (Fig. 3H). In this way of stacking, the heights for two successive layers can be 



 

 

identical. 

 

6- Experimental Responses of the Patterns 

6-1- In-plane behavior 

Under in-plane extension, the patterns, for large geometric ranges (see the analytical model 

in the main text), exhibit negative Poisson’s ratios. Simple in-plane experimental tests 

confirm that, for most geometric ranges, the patterns exhibit negative Poisson’s ratio 

(movie S1).     

 

6-2- Out-of-plane behavior 

Under bending, this class of patterns folded from various types of papers exhibit anticlastic 

(saddle-shaped) curvature (see Fig. 7A, Fig. S6A, Fig. S7A, Fig. S8A and movie S3) which 

is an adopted curvature by conventional materials with positive Poisson’s ratio (25). 

 

7- Numerical investigation of patterns behavior 

To capture the effect of geometry and material properties on global behavior of a folded 

shell system, a stiffness analysis can be carried out and the structure can be simulated using 

a Finite Element Analysis (FEA). Depending on the application, either a constrained bar-

framework origami modeling approach (1, 28) or a modeling scheme using nonlinear shell 

elements can be used at this stage. To model folded shell structures, we used the pin-jointed 

bar framework approach proposed by Schenk and Guest (1, 28). In this modeling scheme, 

fold lines and vertices are modeled with bars and frictionless joints, respectively. To 

stabilize each facet and to model the bending of the facets for stiffness analysis, the facets 

are triangulated, and additional members are added to each facet. Placing of additional 

members is based on observations from physical models, stabilization of the facets, and 

energetic consideration in facet bending (1). This model accounts for bending of the facets 

and the effect of out-of-plane kinematics of the sheets, and therefore is not restricted to 

rigid origami.  

By varying the ratio of the bending stiffness of the facets and fold lines (Kfacet/Kfold), we 

performed stiffness analysis for 3x3 patterns of BCH2 and BCH3, and 2x3 patterns of the 

unit cells shown in Fig. S1D with =60 degrees, a=1 and b=2. The stiffness analysis of 

the patterns reveals that twisting and bending modes are predominant behavior of the 

patterns over a large range of Kfacet/Kfold and geometries (Fig. S6-Fig. S8, A and B). The 

modal shapes corresponding to the lowest eigen-value of the sheets show that for large 

values of Kfacet/Kfold, the first softest deformation mode represents a rigid origami behavior 

(Fig. S6-Fig. S8, C). 

 

7-1- Numerical calculation of the number of DOFs of the patterns  

In the bar-framework analysis, compatibility equation is to relate the nodal displacements 

d to the bar extensions e via compatibility matrix C as follows 



 

 

Cd e                                                            (22) 

From the above equation, the nullspace of the compatibility matrix provides the solution 

in which the bars do not extend. To model rigid origami behavior, we need to add an 

angular constraint to the compatibility matrix whose nullspace can provide the nodal 

displacements d for which the facets do not bend either. The angular constraint can be 

written in terms of the dihedral fold angles between triangulated facets connected by added 

fold lines (1, 28). Hence,  

facet dJ d                                                        (23) 

where  is the dihedral fold angle between two adjoining triangulated facets and facetJ  is 

the Jacobian of the angular constraint considered for the triangulated facets intersecting by 

added fold lines. Therefore, the augmented compatibility matrix is as follows 

facet

 
  
 

C
C

J
                                                             (24) 

Accordingly, the number of internal infinitesimal mechanisms (i.e., the number of 

independent DOFs) can be obtained from the expression 

3 ( ) 6m j rank  C                                                    (25) 

in which  j is the number of joints (i.e., the number of vertices). In the relation above, the 

6 DOFs related to the rigid-body motions of 3D structures are excluded.  

We use the above relation to obtain the number of DOFs for the patterns considering rigid 

origami behavior. The results are justified based on the geometry of the patterns as well as 

existence of the implicit formation of the structure of the Miura-ori cells with one-DOF 

mechanism as described in Section (3).   

 

  



 

 

 

 

 

    

 

 

Fig. S6. Behavior of a BCH3 sheet upon bending and results of the eigenvalue analysis 

of a 3  3 pattern of BCH3. (A) Sheet of BCH3 deforms into a saddle-shaped under 

bending which is typical behavior for materials having a positive Poisson’s ratio. (B) 

Twisting, (C) saddle-shaped and (D) rigid origami behavior (planar mechanism) of a 3 by 

3 pattern of BCH3 (with a=1; b=2; 60  ).  

 

  

B 

C 

D 

A 



 

 

 

  

 

 

 

 

 

Fig. S7. Behavior of a sheet of the pattern shown in Fig. 3C upon bending and results 

of eigenvalue analysis of a 2  3 sheet of the pattern. (A) The sheet deforms into a saddle-

shaped under bending (i.e., typical behavior seen in materials having a positive Poisson’s 

ratio). (B) Twisting, (C) saddle-shaped from two different views and (D) rigid origami 

behavior (planar mechanism) of a 2 by 3 pattern shown in Fig. 3C (with a=1; b=2;  = 

60). 
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Fig. S8. Behavior of a sheet of the pattern shown in Fig. 3D upon bending and results 

of eigenvalue analysis of a 2  3 sheet of the pattern. (A) The sheet deforms into a saddle-

shaped under bending, i.e. a typical behavior seen in materials having a positive Poisson’s 

ratio. (B) Twisting, (C) saddle-shaped from two different views and (D) rigid origami 

behavior (planar mechanism) of a 2 by 3 pattern shown in Fig. 3D (with a=1; b=2;  = 

60). 
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Movie S1 

In-plane behavior of the patterns. The patterns are developable, flat-foldable and rigid-

foldable. For most geometric ranges, they exhibit negative Poisson’s ratio under extension. 

 

Movie S2 

A cellular folded metamaterial made from stacking seven layers of 33 sheet of BCH2 

pattern with two different geometries.  

 

Movie S3 

Out-of-plane behavior of the patterns. Under bending, the patterns deform into saddle-

shaped.  

 

 

 

 




