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Abstract The geometric shape of an element plays a key
role in computational methods. Triangular and quadrilat-
eral shaped elements are utilized by standard finite element
methods. The pioneering work of Wachspress laid the foun-
dation for polygonal interpolants which introduced polyg-
onal elements. Tessellations may be considered as the next
stage of element shape evolution. In this work, we investi-
gate the topology optimization of tessellations as a means
to coalesce art and engineering. We mainly focus on M.C.
Escher’s tessellations using recognizable figures. To solve
the state equation, we utilize a Mimetic Finite Difference
inspired approach, known as the Virtual Element Method.
In this approach, the stiffness matrix is constructed in such
a way that the displacement patch test is passed exactly in
order to ensure optimum numerical convergence rates. Prior
to exploring the artistic aspects of topology optimization
designs, numerical verification studies such as the displace-
ment patch test and shear loaded cantilever beam bending
problem are conducted to demonstrate the accuracy of the
present approach in two-dimensions.
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1 Introduction

Finite element analysis (FEA), in two-dimensions, typically
utilize triangular and quadrilateral elements (Cook et al.
2002). However, recently polygonal elements, which are
inspired from nature, have grown in stature. Such inspiration
from nature is illustrated by Fig. 1, which shows that carbon
allotropes, salt and basalt crystals are all polygonal (Fig. 1a).
Organic cells, for instance the cells of the moss Plagiom-
nium affine, posses polygonal geometry (Fig. 1b). Beehives
(Fig. 1c), pattern on the skins of tropical fish and giraffe
(Fig. 1d) are also inherently polygonal in shape. Polygo-
nal elements have been used in a wide variety of fields
such as fracture mechanics (Bolander and Saito 1998;
Bolander and Sukumar 2005; Bishop 2009), topology
optimization (Talischi et al. 2010, 2012; Gain and
Paulino 2012), micromechanical analysis (Ghosh 2011),
computer graphics and image processing (Floater 2003;
Hormann and Tarini 2004; Hormann and Sukumar 2008).
Having explored the utility of polygonal elements in diverse
fields, researchers have often pondered where do we go
next? What is the next evolutionary stage of element geome-
tries? One potential direction consists of exploring tessel-
lations. A tessellation refers to the arrangement of one or
more geometric shapes to completely cover the plane, with-
out overlaps and gaps. Tessellations have the potential to
bridge diverse fields such as engineering, art, mathematics
and mechanics, which is the focus of investigation of the
current work.

Tessellations are divisions of a plane using closed reg-
ular as well as irregular shapes. There have been many
pioneers in this field. Dutch graphic artist Maurits Cornelis
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(c)(a) (b) (d)

Fig. 1 Motivation behind polygonal elements. (a) Carbon allotropes (www.chemicool.com). (b) Cells of the moss Plagiomnium affine (http://
forum.mikroscopia.com). (c) Beehive (http://openbydesign.wpmued.org). (d) Giraffe skin (www.wikipedia.org)

Escher was a prolific creator of visual riddles, impossible
structures, tessellations and patterns (Escher ; Bool et al.
1992; Schattschneider 2004; Emmer and Schattschneider
2005). He is well known for his, often mathematically
inspired, lithographs and woodcuts. Some of his famous
works include impossible constructions and art works such
as Waterfall and Hand with Reflecting Sphere. Electrical
engineer Robert Fathauer is another well-known tessella-
tion artist. He is one of the first artists who used computers
to generate tessellations. He is well-known for his artwork
involving fractals, knots and links (Fathauer 2010, 2011).
Mathematics professor Roger Penrose is an expert in recre-
ational math and has made significant contributions in the
field of geometric puzzles and tessellations. Penrose tiles
are one of his pioneering works (1979a, b). Penrose tiles are
self-similar quasicrystals which possess reflective and rota-
tional symmetry but lack translational symmetry (Fig. 2).

In order to numerically solve governing partial differen-
tial equations (PDEs) on arbitrary polygonal meshes, spe-
cialized approaches are available. The finite element method

using polygonal shape functions is one such approach. The
work of Wachspress (1975) on rational polygonal inter-
polants laid the foundations for future research in the
field of polygonal interpolants (Warren 1996; Sukumar et
al. 2001; Floater 2003; Floater et al. 2004; Sukumar and
Tabarraei 2004; Sukumar 2004). Natural neighbor shape
functions are another popular class of polygonal inter-
polants which can be further subcategorized as Sibson coor-
dinates (Sibson 1980) and Non-Sibson coordinates (Belikov
et al. 1997; Hiyoshi and Sugihara 1999; Christ et al.
1982; Sukumar et al. 2001; Sukumar and Tabarraei 2004).
Wachspress and natural neighbor shape functions are lim-
ited to convex polygons only. The mean value coordinates
developed by Floater (2003), and subsequently extended
to three-dimensions (Floater et al. 2005), are well-defined
for concave polygons, however they can be non-positive
(Hormann and Sukumar 2008). Sukumar (2004) and Arroyo
and Ortiz (2006) developed maximum entropy shape func-
tions based on the Jaynes’s principle of maximum entropy
for convex polytopes. Later, Hormann and Sukumar (2008)

(c)(a) (b) (d)

Fig. 2 Artworks of well-known artists. M.C. Escher’s (a)Waterfall, (b) Hand with Reflecting Sphere (www.wikipedia.org). (c) Robert Fathauer’s
fractal tree (http://mathartfun.com). (d) Roger Penrose’s penrose tiling (www.wikipedia.org)

www.chemicool.com
http://forum.mikroscopia.com
http://forum.mikroscopia.com
http://openbydesign.wpmued.org
www.wikipedia.org
www.wikipedia.org
http://mathartfun.com
www.wikipedia.org
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extended the maximum entropy shape functions to arbitrary
polytopes using prior functions. For an overview of the main
developments in the field of conforming polygonal inter-
polants, we direct the reader to reference (Sukumar and
Malsch 2006).

Polygonal shape functions-based finite element analysis
typically involves transferring the weak form integration to
a reference domain and using either specialized integration
schemes (Natarajan et al. 2009) or subdividing the polygons
in triangles/quads and using usual quadrature rules for the
subdomains. Due to inexact numerical integration of weak
form integrals consisting of non-polynomial shape func-
tions, the patch test is not passed which may lead to a decay
in the numerical solution convergence rate. A high-order
quadrature rule is required for numerical accuracy, which is
computationally inefficient and undesirable, especially for
tessellations which contain large number of vertices. In this
case, the numerical simulations can become cumbersome.
The recently proposed approach, known as the Virtual Ele-
ment Method (VEM), addresses the issue of both accuracy
as well as efficiency of the underlying numerical method.

The VEM has its roots in Mimetic Finite Difference
(MFD) methods. Unlike the standard finite element method
(FEM), MFDs do not use explicitly defined shape functions
associated with the discrete degrees of freedom. The con-
tinuous differential operators such as the div, grad and curl,
are mimicked by their discrete counterparts that utilize the
discrete quantities defined at the degrees of freedom. This
feature provides great flexibility in the choice of the geomet-
ric shapes of the admissible elements. Thus, generic shaped
elements based on Escher’s motifs are all admissible. The
distinguishing feature of VEM is that the stiffness matrix is
computed directly using the projection map, which kinemat-
ically decomposes element deformation space into linear
and higher-order modes. The patch test is passed because
the projection map captures the linear deformation modes
exactly. The VEM has been explored for two-dimensional
Laplace’s and Poisson’s (Beirão Da Veiga et al. 2013a,
c); diffusion (Beirão Da Veiga and Manzini 2013); two-
dimensional (Beirão Da Veiga et al. 2013b), and three-
dimensional elasticity problems (Gain et al. 2013, 2014);
and plate bending problems (Brezzi and Marini 2013).
Indeed, VEM provides an elegant way to handle non self-
intersecting closed polygons. In this work, we use the VEM
to solve the elasticity state equation for topology optimiza-
tion simulations. Topology optimization aims to obtain an
optimal material distribution in a domain in order to sat-
isfy certain prescribed design objectives. Since the early
works of Bendsøe and Kikuchi (1988), Suzuki and Kikuchi
(1991), Bendsøe (1989), and Rozvany et al. (1992), the field
of topology optimization has rapidly grown (Hassani and
Hinton 1999; Bendsøe and Sigmund 2003; Christensen and
Klarbring 2008; Ohsaki 2010).

Tessellations have been explored in computational
mechanics in the past in the form of tilings. The terms
tiling and tessellation are often used interchangeably. Tiling
refers to patterns of polygons with straight boundaries.
Tilings, such as the pinwheel, have been used in frac-
ture mechanics (Papoulia et al. 2006; Paulino et al. 2010)
because pinwheel tiling produces tiles in infinitely many
orientations which is of advantage for crack propaga-
tion. In this work, we investigate topology optimization
on tessellated meshes as a means to coalesce engineering
and art.

The remainder of this paper is organized as follows. In
Section 2, we discuss the generation of tessellations using
basic two-dimensional shapes such as triangles and quadri-
laterals. In Section 3, we briefly discuss the VEM to solve
two-dimensional linear elasticity on meshes with arbitrar-
ily shaped elements. The problem formulation of topology
optimization is presented in Section 4. In Section 5, we
conduct some numerical verification studies to illustrate the
accuracy of the numerical approach. Section 6 shows some
artistic topology optimization designs. Finally, we conclude
with some remarks in Section 7.

2 Tessellation generation

In this section, we discuss the generation of tessellations
which we use to explore art in engineering. All the tessel-
lations discussed here make use of basic two-dimensional
shapes – triangles and quadrilaterals – as the initial back-
ground shape which is then modified to obtain the motifs1

used to generate the tessellations. These tessellations are
created using basic concepts of translation and rotation. The
tessellations discussed in this work are divided into two
categories. The first category of tessellations are created
by minor modifications of the basic shapes. The second
category of tessellations are based on recognizable figures
such as images of birds, animals, people and other day-to-
day objects, which one could relate to. These tessellations
use motifs with very intricate straight/curved lines drawn to
resemble recognizable objects. Because M.C. Escher was
a great exponent of such tessellations, we employ some of
his designs based on the concepts discussed in reference
(Schattschneider 2004).

2.1 Tessellations of simple polygons

Starting with the triangle as the building block and using
translation and rotation operations, we create four sets of

1M.C. Escher defines motif as a certain polygonal form that repeats
itself in congruent shapes to form a tessellation (Schattschneider
2004).
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Fig. 3 The sequence of steps to
create a triangle based
tessellation. (a) The red dashed
line a1 is first transformed into
piecewise the blue solid line. (b)
The blue solid line is rotated by
180◦ about 1 to obtain solid line
ab. Finally, ab is then rotated by
±60◦ counter-clockwise and
clockwise directions to obtain
solid lines ac and bc,
respectively. (c) Node
numbering of the resulting
element

a 1

(a)

a b

c

1

23

(b) (c)

1

2
3

4
5

6

7

8

9

tessellations. Figure 3 illustrates the sequence of steps to
create triangle based tessellations. We start with the red
dashed line a1 and bend it into the blue solid line. The bent
blue line a1 is rotated by 180◦ about 1 to obtain the solid
line ab, which is then rotated by ±60◦ in counter-clockwise
and clockwise direction to obtain solid lines ac and bc,
respectively.

By horizontally and vertically translating the patches
created using the technique illustrated in Fig. 3, the tes-
sellations in Fig. 4 are created. Each patch/element in
tessellations Tess T1 (Fig. 4a), Tess T2 (Fig. 4b), Tess
T3 (Fig. 4c), Tess T4 (Fig. 4d) contains 9, 15, 15 and

27 nodes, respectively. The nodes in each element are
numbered counterclockwise and we conduct checks to
ensure that there are no duplicate nodes in the resulting
mesh.

Next, we create a few tessellations starting with quadri-
laterals. The sequence of steps to generate these tessella-
tions is similar to that for the triangular base ones discussed
previously. We start from the red dashed line a1 and bend
it into the piecewise blue solid line. The bent line a1 is
rotated by 180◦ about 1 to obtain solid line ab, which
is then rotated by 90◦ to obtain solid line ad. The bent
blue solid lines ab and ad are translated vertically and

Fig. 4 Triangle-based
tessellations generated using the
patches shown in the
corresponding insets at the left
hand side of each figure. (a)
Tess T1 (9 corners). (b) Tess T2
(15 corners). (c) Tess T3 (15
corners). (d) Tess T4 (27
corners)

(a) (b)

(c) (d)
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Fig. 5 Quadrilateral based tessellation generation sequence. (a) The
red dashed line a1 is first bend it into the piecewise blue solid line.
(b) The blue solid line is rotated by 180◦ about 1 to obtain the piece-
wise solid line ab. Line ab is then rotated by 90◦ to obtain solid line

ad. Finally, the bent blue solid lines ab and ad are translated vertically
and horizontally to obtain solid lines dc and bc, respectively. (c) Node
numbering for the resulting element

horizontally to obtain solid lines dc and bc, respectively
(Fig. 5).

The tessellations in Fig. 6 are created using the technique
illustrated in Fig. 5. Each patch in the tessellations shown in
Fig. 6a and b contain 12 and 20 nodes, respectively.

2.2 Tessellations of recognizable figures

Dutch artist M.C. Escher pioneered the creation of tessel-
lations using recognizable figures such as birds, horses,
fishes and lizards (Schattschneider 2004). Escher classi-
fied his tessellations into quadrilateral systems and tri-
angle systems. In his work, quadrilateral-based tessel-
lations are more common as they are easier to work
with. He further sub-categorizes his quadrilateral systems
depending on two characteristics: the type of underlying
polygon and the symmetry present in the motif. The type
of the polygons are represented by letters A, B, C, D
and E, denoting parallelogram, rhombus, rectangle, square
and isosceles right triangle, respectively. And the Roman
numerals I through X represent various symmetry types
obtained by different combinations of translations, rotations

and glide-reflections (reflection followed by translation)
(for more details refer to Schattschneider (2004)). In this
work, we will explore a few tessellations of type ID , VC and
IVB .

We start with the Pegasus and Bird tessellation which
belong to the system of type ID . Class ID tessellations use
a square as the underlying polygon (square abcd in Figs. 7
and 8) and use translation in both transversal directions and
diagonal directions. Straight edges dc and da are replaced
by the curved lines as shown in insets of Figs. 7 and 8.
Then curved lines dc and da are translated vertically and
horizontally to ab and cb to complete the motif. In our tes-
sellations, we use a total of 66 and 52 nodes per Pegasus
and Bird motif, respectively. Final tessellations are created
by simply translating the motifs, obtained earlier, vertically
and horizontally.

The Bulldog is a type V tessellation. To create the motifs,
parallelogram abcd (Fig. 9) is used as the initial background
shape. Straight edge dc represented by the red dashed
line is deformed into a curved line (green colored) and is
then glide-reflected (translation of the reflected image) to
the bottom edge ba. The Bulldog motif is completed by

Fig. 6 Quad-based tessellations
generated using the patches
shown in the corresponding
insets at the left hand side of
each figure. (a) Tess Q1 (12
corners). (b) Tess Q2 (20
corners)

(a) (b)
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a b

d c

Fig. 7 The 66-corner Pegasus - Escher’s tessellation of type ID

translating the blue curved edge da horizontally to edge cb.
By repeating identical copies of this motif horizontally and
alternating the mirror copies vertically, the Bulldog tessel-
lation can be obtained. Escher classified this design as type
VC (Schattschneider 2004). We have 72 nodes per Bulldog
element.

As an example of type IVB , we look at the Winged
Lion tessellation (Fig. 10). A quadrilateral shaped like a
dart or kite is used as the starting polygon. Deformed edges
dc and ad are glide-reflected to edges cb and ba, respec-
tively to create the motifs. Each Winged Lion motif has 76
nodes.

3 On the Virtual Element Method (VEM)
for two-dimensional elasticity

Current work focuses on a linearized elastic system under
small deformations subjected to surface tractions t . The
elasticity problem is expressed as, find u:

a(u, v) = f (v), ∀u, v ∈ V (1)

a b

d c

Fig. 8 The 52-corner - Escher’s tessellation of type ID

a b

d c

Fig. 9 The 72-corner Bulldog - Escher’s tessellation of type VC

where

a(u, v) =
∫

�

Cε(u) : ε(v) dx, f (v) =
∫

�t

t · v ds(2)

V =
{
v ∈ H 1 (�)2 : v|�u = 0

}

where ε(u) is the second-order linearized strain tensor
(symmetric part of the gradient of u) and C is the elas-
ticity tensor. For the topology optimization problem, we
define the design domain, �, to contain all admissible
shapes ω, i.e., ω ⊆ �. Its boundary ∂� consists of three
disjoint segments, ∂� = �u ∪ �t0 ∪ �t , where �u, �t0,
and �t represent displacement, homogeneous traction, and
non-homogeneous traction boundary conditions (t �= 0),
respectively. Also, the design ω, with boundary ∂ω = γu ∪
γt0∪γt , is constrained to satisfy γu ⊆ �u and γt = �t . Here,
γu, γt0, and γt correspond to the boundaries of ω with dis-
placement, homogeneous traction, and non-homogeneous
traction boundary conditions, respectively (c.f. Fig 11). The
body forces are ignored. In this work, we shall denote the
components of vectors, matrices and tensors in the canoni-
cal Euclidean basis with subscripts inside parentheses (e.g.
u(i) or ε(ij)) in order to make a distinction with indexed
quantities.

In order to numerically solve the governing elasticity
(1) for topology optimization, we use the Virtual Element
Method (VEM) (Beirão Da Veiga et al. 2013b; Gain et

a

b

d

c

Fig. 10 The 76-corner Winged Lion - Escher’s tessellation of type
IVB



Bridging art and engineering using Escher-based virtual elements 873

t
Γt

γu

γt0ω

Γu

Γ 0t

Ω

γt

Fig. 11 Illustration of the design domain, �. Its boundary, ∂�, con-
tains three disjoint segments, ∂� = �u ∪ �t0 ∪ �t , corresponding to
displacement, homogeneous traction, and non-homogeneous traction
boundary conditions, respectively. Any design ω ⊆ �, with boundary
∂ω = γu ∪ γt0 ∪ γt , is constrained to satisfy γu ⊆ �u and γt = �t .
Boundaries γu, γt0, and γt correspond to displacement, homogeneous
traction, and non-homogeneous traction boundary conditions on ∂ω,
respectively

al. 2013, 2014). Here, we discuss the method for two-
dimensional linear elasticity. We begin with partitioning
the design domain � into disjoint non-overlapping generic
polygons, e, of maximum diameter h. The Galerkin approx-
imation uh of u belongs to the conforming discrete space
Vh ⊆ V which consists of continuous displacement
fields whose restriction to polygon e belongs to the finite-
dimensional space of smooth functions W . Space W
contains all the deformation states of element e - linear
deformations and higher-order modes. The continuous (a)
and discrete bilinear form (ah) can be expressed as the
corresponding sums of element contributions due to the
conformity of Vh as:

a(u, v) =
∑

e

ae(u, v), ah(u, v) =
∑

e

ae
h(u, v) (3)

To construct the spaceW two degrees of freedom are asso-
ciated with each vertex of a polygon. Therefore, we consider
the canonical basis ϕ1, . . . , ϕ2n of the form

ϕ2i−1 = [ϕi, 0]T , ϕ2i = [0, ϕi]
T , i = 1, . . . , n (4)

where ϕ1, . . . , ϕn are a set of barycentric coordinates
(Wachspress 1975; Sukumar et al. 2001; Floater 2003),
which satisfy all the desired properties of a conforming
interpolants such as partition of unity, linear completeness,
Kronecker-delta and piece-wise linear (C0 function) along
the edges of e. As we shall see later, the VEM concerns
only with the behavior of W along the boundaries of the
element e.

In VEM, we do not compute the shape functions, rather
the stiffness matrix is constructed directly based on the kine-
matic decomposition of the deformation states of the space
of smooth functions W . To simplify the expressions, the
mean of the values of a function v sampled at the vertices of
e and area average of v are represented by v and 〈v〉, respec-
tively. We define six bases that span the space of linear
deformations, P , over element e as:

p1(x) = [1, 0] , p4(x) = [
(x − x)(2), 0

]
,

p2(x) = [0, 1] , p5(x) = [
0, (x − x)(1)

]
,

p3(x) = [
(x − x)(1), 0

]
, p6(x) = [

0, (x − x)(2)
]
.

(5)

Next, we define a projection map πP : W → P to extract
linear deformations as:

πP v = v + 〈∇v〉(x − x) (6)

We observe that the area integral 〈∇v〉 can be converted to
line integral as follows:

〈∇v〉 = 1

|e|
∫

e

∇v dx = 1

|e|
∫

∂e

v ⊗ n ds, (7)

which can be computed exactly as the function v is assumed
linear along the edges. Also, the linear projection map πP
can be expressed in terms of the bases of P as:

πPv = (v)(1)p1 + (v)(2)p2 + 〈∇v〉(11)p3 (8)

+ 〈∇v〉(12)p4+〈∇v〉(21)p5 + 〈∇v〉(22)p6

Note that in order to ensure consistency of the approach,
πP is defined such that (v − πPv) is energetically orthog-
onal to P, ∀v ∈ W , i.e. ae(p, v − πPv) = 0, ∀p ∈ P .
Finally, any deformation state v ∈ W can be kinematically
decomposed as:

v = πPv + (v − πPv) (9)

where (v−πPv) represents the higher-order component that
belongs to a (2n − 6) dimensional subspace ofW .

Based on the kinematic decomposition of deformation
state and the energy orthogonality property, the continuous
bilinear form can be written as:

ae(u, v) = ae(πPu, πPv) + ae(u − πPu, v − πPv) (10)

The first term corresponds to the constant strain modes and
can be computed exactly by knowing the area of the element
e (note that the arguments of the bilinear term are lin-
ear). This ensures that the engineering patch test is passed.
The second term, corresponding to higher-order deforma-
tion modes, is difficult to compute. We replace this term by
a crude estimate se, which can be conveniently computed,
without affecting the energy associated with the constant
strain modes. Thus, the discrete bilinear form is defined as:

ae(u, v)
.= ae(πPu, πPv) + se(u − πPu, v − πPv) (11)
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where se is any symmetric positive definite bilinear form
chosen such that it has similar energy as the consistency
term, se(·, ·) = ae(·, ·). We make a computationally inex-
pensive choice as Beirão Da Veiga et al. (2013a):

se(u, v) =
n∑

i=1

αeu(xi ) · v(xi ) (12)

where αe is a positive coefficient that ensures correct scaling
of the energies of higher-order modes.

For implementing the above approach, we proceed as
follows. Let PP be the discrete representation of the pro-
jection πP , i.e.,

πPϕj =
2n∑

k=1

(PP )(kj) ϕk (13)

To obtain PP , we use (8) to express πP in terms of the
bases that span the linear deformation space as:

πPϕj =
6∑


=1

(WP )(j
) p
 (14)

where WP is an 2n × 6 matrix whose j th row is given by,

[(ϕj

)
(1)

,
(
ϕj

)
(2)

, 〈∇ϕj 〉(11),
〈∇ϕj 〉(12),〈∇ϕj 〉(21),〈∇ϕj 〉(22)](15)

Using the linear precision property of the canonical basis
functions (4), we express p
 in (14) in terms of its dis-
crete counterpart (bases sampled at the vertices) and upon
simplification, we obtain:

πPϕj =
2n∑

k=1

(
NPW T

P
)

(kj)
ϕk (16)

By comparing (16) with (13), we get PP = NPW T
P ,

where NP , WP ∈ R
2n×6. A block of three rows of

NP , corresponding to ith vertex of element e, is explicitly
expressed as:

(NP )(2i−1:2i,:) =[
1 0 (xi − x)(1) (xi − x)(2) 0 0
0 1 0 0 (xi − x)(1) (xi − x)(2)

]
(17)

and a block of three rows of WP is expressed as:

(WP )(2i−1:2i,:) =[
1/n 0

(
q i

)
(1)

(
qi

)
(2) 0 0

0 1/n 0 0 0
(
qi

)
(1)

(
q i

)
(2)

]
(18)

e

ni
ni-1

xi
i-1

ei

Fig. 12 Illustration of the adjacency information needed in evalua-
tion of line integral in the VEM consistency term for an element e.
Lengths of the sides adjacent to vertex xi are represented by 
i−1, 
i .
The arrows represent the outward pointing normals, ni−1, ni

where the line integral vector q i can be computed exactly as
below (c.f. Fig. 12):

qi = 1

|e|
∫

∂e

ϕinds = 1

|e| (
i−1ni−1 + 
ini) (19)

Using the matrices WP and PP , the element stiffness
matrix Ke can now be computed. From (11) we have,

(Ke)(jk) = ae
h(ϕj , ϕk)

= ae(πPϕj , πPϕk)+se(ϕj −πPϕj ,ϕk−πPϕk) (20)

Utilizing (14), the first term of Ke can be simplified as:

ae(πPϕj , πPϕk) = |e|
(
WPDW T

P
)

(jk)
(21)

where the matrix D is a function of elasticity tensor C and
is given by:

(D)(
m) = 1

|e|a
e(p
, pm) = Cε(p
) : ε(pm),


, m=1,. . . ,6 (22)

Based on the inexpensive choice of se (12), the second term
in the stiffness matrix is written as:

se(ϕj−πPϕj , ϕk−πPϕk) =
[
(I−PP )T Se (I−PP )

]
(jk)

(23)

where
(
Se

)
(jk)

= se(ϕj , ϕk) and corresponds to Se =
αeI 2n. We need to ensure that se(·, ·) is of the same order
of magnitude as ae(·, ·), so an appropriate value of αe is, for
example

αe = ᾱetrace(|e|WPDW T
P ) (24)
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A constant ᾱe is chosen as 1.0. Recommendations on
the optimal choice of ᾱe can be found in reference
(Gain et al. 2014). Finally, the element stiffness matrix
is given by

Ke = |e|WPDW T
P + αe (I − PP )T (I − PP ) (25)

To compute the force vector corresponding to a surface
traction, a first-order accurate scheme, similar to the one
discussed in Gain et al. (2014), can be used. The global stiff-
ness matrix and global force vector are obtain by standard
finite element assembly process (Cook et al. 2002).

4 Topology optimization

Topology optimization on tessellations is our tool for cre-
ating artistic and mechanically sound designs. We uti-
lize topology optimization problem of compliance min-
imization to illustrate the artistic aspects in engineering
designs. Compliance minimization problem refers to find-
ing the stiffest configuration under the applied loads and
boundary conditions. The optimization problem can be
expressed as:

inf
ρ

J (ρ) =
∫

�t

t · u ds =
∫

�

C (ρ) ε(u) : ε(u) dx

s.t: a(u, v) = f (v),

∫
�

ρ(x) dx ≤ Vf |�| (26)

where Vf is the prescribed maximum volume fraction
and |·| denotes the measure of a set (area) as well as
the Euclidean norm of vector. The effective elasticity ten-
sor C for the domain � is a function of density ρ(x)

and, as per the Solid Isotropic Material with Penaliza-
tion (SIMP) model (Bendsøe 1989; Rozvany et al. 1992),
is expressed as:

C (ρ) = [
ε + (1 − ε) ρp

]
C0 (27)

The solid and void regions are filled with material of
elasticity tensor C0 and εC0, respectively, where ε is
chosen as 10−4. The penalization parameter, p, is set to
3. In order to solve (26) numerically, it is discretized
as follows:

inf
ρ

J = F T U

s.t: K(ρ)U = F ,
∑

e |e|ρe ≤ Vf |�| (28)

where K , U and F are the global stiffness matrix, global
nodal displacement vector and global nodal force vector,
respectively.

We use gradient-based optimization algorithm and
employ the Optimality Criteria (OC)2 (Bendsøe and
Sigmund 2003; Talischi et al. 2012) for solving the discrete
problem (28). For our OC implementation we begin by lin-
earizing the objective function in terms of exponential inter-
mediate variables and approximating the constraints linearly
in terms of the design variables. Utilizing the condition
of optimality and subsequently solving the dual problem,
we obtain the updating expression and we use reciprocal
approximation which is generally used for compliance min-
imization (see, for example, Groenwold and Etman (2008)).
Using the adjoint method (Bendsøe and Sigmund 2003) the
sensitivity of J with respect to the design variable (ele-
ment density, ρe), needed in OC, is computed as shown
below:

∂J

∂ρe

= −p(1 − ε)ρ
p−1
e uT

e Keue (29)

Here, ue, Ke are the element displacement vector and ele-
ment stiffness matrix, respectively. Also, the sensitivity
of the volume constraint (shown in (28)) with respect to
element density is the element area |e|.

5 Numerical verification studies

In this section we verify the accuracy of the present numer-
ical approach using the displacement patch test and shear
loaded cantilever beam bending problems. The purpose of
the numerical verification studies is to show that the cur-
rent approach produces numerically convergent and stable
results for tessellations of arbitrary shape including concave
elements. The accuracy and convergence of the numerical
results are verified in terms of two error measures. The rel-
ative displacement error is the first metric and is expressed
as:

eu = |u − uh|
|u| (30)

where u and uh are the exact and VEM solutions, respec-
tively.We also define a discrete error measure for stress field
as follows:

eσ
.= ‖σ (u) − σ h(uh)‖0,�

‖σ (u)‖0,� (31)

2Other mathematical programming algorithms such as, Method of
Moving Asymptotes (MMA) (Svanberg 1987), Sequential Quadratic
Programming (SQP) may also be used.
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Fig. 13 Displacement patch test
on triangle based tessellations
(a) Tess T2, (b) Tess T3. Blue
colored mesh with circular
nodes represents the initial
configuration and red colored
mesh with triangular nodes
represents the deformed
configuration

(a) (b)

where σ h(uh) is the element-wise constant stress (contin-
uous field σ (uh) is not available) and for any v ∈ W is
computed as:

σ h(v)|e = 1

|e|
∫

e

σ (v)dx = σ (πPv)

=
6∑


=1

[W�
Pχ (v)]
σ (p
) (32)

To numerically evaluate the integrals, we triangulate each
element and use a high order quadrature rule of linear trian-
gular elements. In this work, plane stress elasticity model is
used for all the numerical studies.

5.1 Displacement patch test

We conduct the displacement patch tests for all the tessella-
tions shown in Section 2. An arbitrary linear displacement
of the form p ∈ P(�) is applied to the entire bound-
ary ∂� and �t = ∅. The exact solution for the patch
test is u = p. Scaling constant ᾱe ∈ [10−3 − 103]
is investigated. For all tessellations, the relative displace-
ment and stress errors are in the machine precision range
(10−16) indicating that for VEM the displacement patch
test is passed. Our tests indicate that the choice of the
scaling constant has no impact on the patch test results.
Figure 13 illustrates the deformed configurations from the
patch test for the triangle based tessellations Tess T2 and
Tess T3.

(a)

(b)

(c)

Fig. 14 Sample meshes for shear loaded cantilever beam bending problem. (a) Tess Q1, (b) Tess Q2, (c) Pegasus



Bridging art and engineering using Escher-based virtual elements 877

(a) (b)

Fig. 15 Plot of error versus number of degrees of freedom (DoFs) for tessellations Tess Q1, Tess Q2, Pegasus using VEM and uniform quad mesh
using FEM. (a) Displacement error, eu. (b) Stress error, eσ

5.2 Shear loaded cantilever beam bending

Next, we study the performance of the present numerical
approach using the shear loaded cantilever beam bending
problem for different tessellations. Consider a rectangular
beam of dimensions (−1, 1) × (0, L) filled with isotropic
material of Young’s modulus E and Poisson’s ration ν,
subjected to transverse shear load, t = [0, −F ], at end
x(1) = 0. For the current study, L = 20, F = 0.1, E = 1
and ν = 0.3. The expressions for stresses are available in
Timoshenko and Goodier (1970) and Barber (2010) and are
repeated here for completeness.

σ (11) = 3Fx(1)x(2)

2
, σ (22) = 0, σ (12) =

3F
(
1 − x2

(2)

)

4
.

(33)
Using the stress-strain relationships and definitions of dis-
placement gradients, the displacement fields corresponding
to the stresses (33), up to the addition of rigid body motion,
can be computed as:

u(1) = 3Fx2
(1)x(2)

4E
+ 3F(1 + ν)x(2)

2E
− F(2 + ν)x3

(2)

4E
,

u(2) = −3Fνx(1)x
2
(2)

4E
− Fx3

(1)

4E
. (34)

Fig. 16 Bracing system design.
(a) Problem description. (b)
Representative Bulldog
tessellation

FF

(a) (b)
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Fig. 17 Structurally efficient and aesthetically pleasing bracing
design using Bulldog tessellation

We studied the performance of VEM under mesh refine-
ment for different types of tessellations shown in Fig. 14.
Figure 15 shows the results of this study. In the plots, the rel-
ative displacement and stress errors are plotted against total
number of degrees of freedom (DoFs). We see from Fig. 15
that under mesh refinement displacements and stresses con-
verge for different tessellations. This confirms that skewed
and non-convex elements can be accurately handled by
VEM.

6 Generation of optimal and artistic designs

The goal of the current work of topology optimiza-
tion on tessellated meshes is to provide a natural means

Fig. 19 Converged topologies for the cantilever beam with circular
support solved on Bird tessellation. The volume fraction is chosen as
0.3 and no filter is used

to integrate artistic aspects in engineering. We illustrate
this idea using three optimization examples - a bracing
system design, a cantilever beam with circular support and
a bridge problem.Optimization is terminated when either
the maximum of the change in element densities is less
than 0.01 or the maximum number of iterations exceed
150.

6.1 Bracing system design

We start with the design of practical systems, the bracings.
In buildings, they provide lateral resistance to withstand
loadings such as the wind and seismic forces. We consider
a model problem shown in Fig. 16a. Nodes along the bot-
tom edge are fixed and lateral loads are applied at the top

Fig. 18 Cantilever beam with
circular support. (a) Problem
description. (b) Representative
Bird tessellation

F

(a) (b)
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F F

Fig. 20 Problem description for the bridge design

corners. The design domain is discretized using Escher’s
type VC tessellation - Bulldog, consisting of 690 elements
and 25,063 nodes. A linear filter of radius equal to 3 % of
the maximum domain dimension is adopted along with a
volume fraction of 0.3.

As expected, the optimization algorithm produces an
X-bracing system (Fig. 17) to resist lateral loads as one
would expect (Mijar et al. 1998). In this work, we are
more interested in the details around the boundaries of
the members. We can identify the outline of the Bulldogs
and their graded pattern which add an artistic touch to
an otherwise bland engineering design. To design bracing
systems for high-rise buildings, manufacturing and layout
constraints such as pattern repetition and pattern grada-
tion can be employed (Almeida et al. 2010; Beghini et al.
2014). In pattern repetition manufacturing constraint uti-
lizes the same design pattern for multiple stories to help
increase the speed of construction and ensure high qual-
ity. Pattern gradation can be used for a smooth transition
of the design between two dissimilar loading resistance
requirements, such as for tall building where overturning

moments are higher at the bottom and shear is dominant at
the top.

6.2 Cantilever beam with circular support

Next example focuses on the benchmark problem of a can-
tilever beam with circular support (Talischi et al. 2010). The
problem description is shown in Fig. 18a. All the nodes
along the circular segment are fixed and a point load, acting
in the negative x(1)-direction, is applied approximately in
the middle of the right edge. The domain is discretized using
Escher’s type ID tessellations - Bird (Fig. 8). The tessella-
tion contains 1,442 elements (37,261 nodes). The volume
fraction is chosen as 0.3.

First, optimization is performed without using any filters.
As illustrated in Fig. 19 the overall converged topologies are
similar to the ones available in the literature (Talischi et al.
2010). As before, in Fig. 19, outlines of the Bird are clearly
visible and their heads and feet are well defined. Aestheti-
cally, such designs are appealing to the architecture and fine
arts communities.

In the previous designs (Fig. 19), we see that, due to
the absence of filters, the boundaries, in general, are dis-
tinct. Artistically, it would be more attractive if there were
a gradation at the boundaries, with elements of varying
densities. To obtain such a design, we optimize the can-
tilever beam employing a linear filter of radius equal to 3%
of the maximum domain dimension. The other parameters
are kept the same. In the zoomed in section (Fig. 21b) of
the optimized design of Fig. 21a, an elegant design
pattern can be seen. Such designs might not only be
appreciated by an engineer for being structurally optimal
and stable but also by architects due to their aesthetic
appeal.

Fig. 21 Converged design for
cantilever beam problem solved
on Bird tessellation, using a
linear filter of radius 3% of the
maximum domain dimension, is
shown in (a). (b) Zoomed in
section

(a) (b)
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(a)

(b)

Fig. 22 Bridge problem on Winged Lion tessellation. (a) Converged design. (b) Zoomed in section

6.3 Bridge problem

Our final example is the optimization of the bridge shown
in Fig. 20. The locations of the piers are indicated by pin
and roller supports. Two point loads, representing dead
weights, are applied at the locations shown in Fig. 20.
Escher’s type IVB tessellation - Winged Lion, is used to
discretize the design domain. The mesh consists of a total
of 3,200 elements and 121,948 nodes. To obtain a graded
pattern at the design boundaries, a linear filter of radius
equal to 5% of the minimum domain dimension is used.

The other parameters are kept the same as in previous
examples.

The converged design (Fig. 22a) resembles a typical
bridge with two fan like structural segments. Figure 22b
illustrates the captivating design details at the boundaries. In
our opinion, an architect would more often than not choose
this design over ones with zigzag boundaries that are typ-
ically obtained from topology optimization using typical
finite elements such as quadrilaterals. To design bridges
with multiple spans, the previously discussed pattern repe-
tition concept can be adopted.

Fig. 23 Architectural designs
by Bjarke Ingels Group inspired
from the basic shapes such as
circles and Voronoi polygons
(www.big.dk). (a) REN
building. (b) Warsaw museum
of modern art

(b)(a)

www.big.dk
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7 Concluding remarks

In this work, we investigate topology optimization using
tessellations as a means to bridge engineering, art and
mechanics, and possibly architecture. A special numeri-
cal approach is needed to handle tessellations, which can
often be highly skewed, degenerate and non-convex in
nature. The so-called Virtual Element Method, inspired
from the MFD methods, provides an elegant way to han-
dle non self-intersecting closed polygons. This approach
does not use shape functions (as classical FEM). In it
first the approximation space on each element is split
into spaces spanned by linear and higher order polyno-
mials. The discrete bilinear form is constructed to be
continuous, bounded and pass the displacement patch test
exactly.

We discuss the construction of tessellations, includ-
ing the ones created using recognizable figures, which
are used as the background meshes to generate artistic
designs. We make use of compliance minimization topol-
ogy optimization to obtain our artistic designs, however,
other relevant objectives, pertaining to various structural
responses, such as minimization of lateral drift, maximiza-
tion of the fundamental eigenvalue and maximization of
the minimum critical buckling load Bendsøe and Sigmund
2003 may be used and will be the topic of future investiga-
tions.

We obtain optimal designs that might be appreciated by
both engineers, who are concerned with structural stabil-
ity and efficient load transfer, and architects, who focus
on style, aesthetics and appearance. In this context, we
remark that architectural firms such as Bjarke Ingels Group
have been using basic shapes such as circles and Voronoi
polygons (c.f. Fig. 23) in their designs. We hope that our
approach of topology optimization using tessellations acts
as a source of inspiration for architects and engineers alike
who are willing to challenge the status-quo in order to create
new innovative designs.

Nomenclature

� topology optimization design domain
a, ah continuous and discrete bilinear form

f continuous load linear form
V,Vh continuous and conforming discrete solution space

C elasticity tensor
ε(·) symmetric gradient operator

t surface tractions
W space of finite dimensional smooth functions over

element e
ae, ae

h restriction of a, ah to W (element contribution)

se approximate bilinear form for higher-order defor-
mation modes

ϕi generic barycentric coordinates
ϕi canonical basis function
v mean of values of v sampled over the vertices of

element e
〈v〉 area average of v

P space of linear deformation modes
pi bases spanning space P

πP projection map to extract P, πP : W → P
PP matrix representation of πP
WP matrices containing line integration quantities
NP matrices containing rearranged nodal coordinates

of vertices
q i vector of line integration of barycentric coordi-

nates
Ke element stiffness matrix
D material matrix which is function of elasticity

tensor C

I identity matrix
αe positive scaling coefficient for stability term se

J objective function
Vf prescribed volume fraction

ρ, ρe continuous density function and discrete element
density

C0 elasticity tensor of the solid region
K global stiffness matrix
F global force vector
U global displacement vector
|·| measure of a set (area) or Euclidean norm of

vector
E Young’s modulus
ν Poisson’s ratio
σ stress tensor
eu displacement error
eσ stress error
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