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Abstract Since its introduction, the ground structure
method has been used in the derivation of closed–form
analytical solutions for optimal structures, as well as pro-
viding information on the optimal load–paths. Despite its
long history, the method has seen little use in three–
dimensional problems or in problems with non–orthogonal
domains, mainly due to computational implementation dif-
ficulties. This work presents a methodology for ground
structure based topology optimization in arbitrary three–
dimensional (3D) domains. The proposed approach is able
to address concave domains and with the possibility of
holes. In addition, an easy–to–use implementation of the
proposed algorithm for the optimization of least–weight
trusses is described in detail. The method is verified against
three–dimensional closed–form solutions available in the
literature. By means of examples, various features of the 3D
ground structure approach are assessed, including the abil-
ity of the method to provide solutions with different levels
of detail. The source code for a MATLAB implementa-
tion of the method, named GRAND3 — GRound structure
ANalysis and Design in 3D, is available in the (electronic)
Supplementary Material accompanying this publication.
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1 Introduction

The ground structure method (Dorn et al. 1964), is a discrete
element topology optimization approach that can address
relatively large problems on standard computers. Using a
reduced (finite) number of discrete elements, the method
can provide an approximation to the optimal Michell struc-
ture (Michell 1904; Hemp 1973), composed of an infinite
number of members. The limited computational capability
and lack of flexibility in current methods are to blame for the
decreased interest in three–dimensional topology optimiza-
tion. The problem of finding the least–weight (least volume)
truss for a single load case, under elastic and linear condi-
tions, subjected to stress constraints can be posed as a linear
programming problem (Ohsaki 2010), and is the base of
the method’s efficiency. The ground structure method tack-
les the topology optimization problem (sizing and geom-
etry), as a sizing–only optimization problem for a highly
interconnected and redundant truss, i.e. the ground structure.

The authors’ previous work (Zegard and Paulino 2014) in
2D, generates the ground structure using linear algebra oper-
ations. Members generated in concave regions or holes are
detected and removed using collision tests, in an approach
derived from the video–game and ray–tracing literature. In
the present work, it will be shown that this approach can
successfully scale to three–dimensional space, provided that
the 3D analogues to the two–dimensional collision tests are
developed. The algorithms are described in detail, and a
MATLAB implementation of the method is provided, which
is also used to provide examples and show the capabilities
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and limitations of the proposed method. Before addressing
problems for which the solution is not known, the proposed
method is verified against known solutions available in the
literature.

Three–dimensional ground structure analysis has been
successfully performed in the past (Gerdes 1994; Smith
1998; Gilbert et al. 2005; Tyas et al. 2006). Unfortu-
nately, most of these works are restricted to structured and
orthogonal discretizations. The interest in unstructured non–
orthogonal domains is reasonable considering that applied
engineering problems are often not boxes and may include
geometrical constraints such as holes. The method does
require the domain to be discretized, and as a consequence,
the boundary is represented in a piecewise linear fashion.

Michell (1904) derived closed–form optimal structures
for a variety of two–dimensional problems, with a single
three–dimensional problem: The optimal structure to trans-
fer a moment pair distributed over small circumferences
with no constraint on the domain size (Fig. 1a). Michell’s
derivations did not include details, and the solution was later
re–derived by Hemp (1973) and Lewiński (2004). The opti-
mal solution resembles a hollow ball with curved mutually–
orthogonal members on its surface as shown in Fig. 1b. The
proposed method’s capability to address unstructured non–
orthogonal domains offers a reasonable numerical approx-
imation to the analytical closed–form solution. The result
obtained with the proposed algorithm is shown in Fig. 1c for
comparison.

The limitations and assumptions of the present imple-
mentation are:

– single static load case scenario;
– constant forces (design independent);
– small deformations.

It can, however, address different limits in tension σT and
compression σC (Sokół 2011).

Throughout this manuscript, the terms truss member
and bar are used interchangeably. The manuscript is orga-
nized as follows: Section 2 briefly reviews the formulation
used and its extension to three–dimensions. Section 3 pro-
vides details on the implementation of the method. The
method and its implementation are verified against closed–
form solutions in Section 4. Selected examples and their
convergence are analyzed in Section 5. Conclusions and
findings are summarized in Section 6. Appendix A has the
nomenclature and symbols used in the manuscript. Finally,
the derivations for the three–dimensional collision tests are
given in Appendix B.

2 Formulations

This section briefly reviews the ground structure formula-
tion based on plastic analysis. The reader can refer to Hemp

φF

M

M
(a)

(b)

(c)

Fig. 1 Optimal structure to transfer a moment pair. a Domain and
loads: The moments are distributed on equal rings at a latitude φF .
b Analytical closed–form solution adapted from Michell (1904). c
Numerical approximation obtained with GRAND3
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(1973), Ohsaki (2010), Christensen and Klarbring (2009),
and Gilbert and Tyas (2003) for additional details on the
plastic and elastic versions of the method.

Consider a stable truss (no mechanisms), with Ndof

nodal forces f (excluding the components with supports),
and assume that the supports are sufficient to prevent rigid

(a)

(b)

(c)

Fig. 2 Ground structure generation algorithm based on element con-
nectivities. Base mesh composed of a single hexahedron and a wedge.
b Ground structure for level 1 connectivity: all nodes within an ele-
ment are interconnected with bars. c Ground structure for level 2
connectivity: the new bars added at level 2 are plotted with solid lines

body motions. The minimum volume truss that satisfies
the force equilibrium equations (plastic analysis) is (Hemp
1973; Ohsaki 2010):

min
a

V = lT a

s.t. BT n = f
−σCai ≤ ni ≤ σT ai i = 1, 2 . . . Nb ,

(1)

with V the truss’ volume, ai , li and σi the cross–sectional
area, length and stress of the ith truss member (for all Nb

members in the truss). The matrix BT is the nodal equilib-
rium matrix of size Ndof × Nb, built from the directional
cosines of the members, and n is a vector with the internal
(axial) force for all members in the ground structure. The-
oretically, a member is absent (removed) from the truss if
ai = 0. The redundancy of the ground structure is Nb−Ndof

and should be greater than zero to provide multiple lay-
out options. This formulation, based on plastic analysis,
only enforces force equilibrium, i.e. the compatibility or
stress-strain relations are not included (Kirsch 1993).

The stress constraint, either in tension or compression,
must be active for all members at the optimum. This can
be proven intuitively: if the ith member has ni < σT ai

and ni > −σCai , then ai can be reduced (reducing the
total volume) without violating the constraints. Incorporat-
ing slack variables s+ and s− in the stress constraints (Hemp
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Fig. 3 Elements supported by GRAND3 and their corresponding node
numbering scheme. a Volumetric elements: Hexahedron (8-nodes),
Prism (6-nodes), Pyramid (5-nodes) and Tetrahedron (4-nodes). b Sur-
face elements: Quadrangle (4-nodes), Triangle (3-nodes) and Segment
(2-nodes)
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1973; Achtziger 2007), the inequalities can be converted
into equalities, and the optimization problem in (1) becomes
a linear programming problem as:

min
s+,s−

V = lT
(
s+

σT

+ s−

σC

)

s.t. BT
(
s+ − s−

) = f
s+
i , s−

i ≥ 0 ,

(2)

with ai = s+
i /σT + s−

i /σC and ni = s+
i − s−

i . Note that
for any active member, only one of s+

i and s−
i is non–zero.

The member is in tension if s+
i > 0, and in compres-

sion if s−
i > 0. If the truss structure is stable and has no

repeated or overlapping members, then the rank of matrix
BT is Ndof (i.e. the solution lies on a corner of the feasi-
ble domain). The solution of the linear program in (2) yields
at most Ndof non–zero basic variables, with the remainder
non–basic variables absent from the optimal structure (i.e.
ai = 0). Therefore, the optimal truss is statically determi-
nate and the solution is also globally optimal (Sved 1954;
Kicher 1966): The optimal solution will automatically sat-
isfy the kinematic compatibility and stress–strain relations
(Dorn et al. 1964; Hemp 1973).

Table 1 Domain definition (base mesh) input requirements for
GRAND; the provided implementation of the method

Variable Type Description

Name & Size

NODE array Each row p has the nodal coordi-

Nn × 3 nates x, y and z for node p.

ELEM struct Structure with fields V and/or S for

volumetric and surface elements respectively.

The numbering scheme is given in Fig. 3.

ELEM.V cell Entries are row vectors containing

Nve × 1 the node numbers for each particular volumetric

element. The total number of volumetric

elements is Nve.

ELEM.S cell Entries are row vectors containing

Nse × 1 the node numbers for each particular surface

element. The total number of surface elements

is Nse.

SUPP array Each row consists of a node number,

Nf × 4 fixity x, fixity in y and fixity in z.

Any value other than NaN specifies fixity.

The total number of specified fixities is Nsup .

LOAD array Each row consists of a node number,

Nl × 4 load in x, load in y and load in z. A

zero or NaN specify no force in that direction.

Defining the stress limits ratio as κ = σT /σC and using
matrix notation, (2) can be rewritten as :

min
s+,s−

V � = V

σT

=
{
lT κ lT

}
1×2Nb

{
s+
s−

}

2Nb × 1

s.t.

[
BT − BT

]
Ndof × 2Nb

{
s+
s−

}

2Nb × 1
= f

Ndof ×1

s+
i , s−

i ≥ 0 (3)

The number of degrees–of–freedom (DOFs) is Ndof =
3Nn − Nsup, with Nn the number of nodes in the ground
structure and Nsup the number of fixed (supported) degrees
of freedom. The optimal volume V � is calculated for σT =
1, and should be scaled by 1/σT for values other than unity.
Equation (3) highlights the sizes of the variables involved.
By introducing slack variables, the number of design vari-
ables in (3) is doubled compared to the number of design
variables in (1). However, while (1) is a nonlinear program,
(3) is a linear program and can be solved more efficiently

R

R - tol
tol

Detail

(a)

tol

(b)

Fig. 4 Restriction zone setback: this user–defined setback is a margin
of comparatively small size tol in order to ensure that the domain’s
nodes remain outside the restriction zones. a Example of the restriction
zone for a domain with a circular concavity. The concavity radius is R,
however the actual restriction zone applied is R − tol. b Detail of the
restriction zone setback: the nodes on the domain’s concave boundary
(shown in the Figure) must remain clear of the restriction primitive
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Fig. 5 Torsion cylinder
problem. a Domain definition,
loading and supports. b Sample
mesh for H = 11, r = 3
discretized with Nz = 11,
Nr = 6 and Nθ = 18. c
Axisymmetric plot of the sample
mesh with H = 11, r = 3,
Nz = 11 and Nr = 6. d Solution
obtained for Nb = 152, 795,
generated from a cylindrical
domain with Ne = 1, 188,
Nn = 1, 308 and Lvl = 3
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r
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using the interior-point algorithm (Karmarkar 1984; Wright
2004). Problems with solutions that lie on a facet (or edge)
of the feasible domain are called degenerate, and tend to be
computationally more difficult to solve.

3 Implementation

The implementation is an extension of the two–dimensional
GRAND (Zegard and Paulino 2014). The concepts and
algorithms from the previous two–dimensional implemen-
tation are directly extended with a few exceptions that are
detailed here.

3.1 Domain definition — Base mesh

The ground structure generation algorithm requires a base
mesh from where to generate the nodal connectivity matrix.
No edge, facet or volume information is needed from this
base mesh—it is strictly used to obtain nodal connectiv-
ity information. The ground structure generation process
begins by connecting all nodes within an element: this is
referred as level 1 connectivity. Take the 2 element mesh in

Table 2 Convergence for a cylinder under torsion with M = 5, H =
11 and r = 3

Nz Nr Nθ Ne Nn Nb Volume V

7 4 12 336 392 32,911 37.9628

9 5 15 675 760 78,954 37.4937

11 6 18 1,188 1,308 152,795 37.2637

13 7 22 2,002 2,170 278,467 37.0453

15 8 26 3,120 3,344 458,811 36.9395

17 9 29 4,437 4,716 677,370 36.8830

19 10 32 6,080 6,420 950,419 36.8486

Ground structures are generated with Lvl = 3. The optimal volume is
Vopt = 36.6667

Fig. 2a for example (a hexahedron and a wedge element);
the ground structure with a level 1 connectivity will gen-
erate bars between all the nodes belonging to an element,
as shown in Fig. 2b. These nodes are direct neighbors of
each other based on the element connectivity provided by
the mesh. At level 2, the proposed method will generate
bars up to the neighbors or my neighbors, therefore includ-
ing level 1 bars. The (new) bars at level 2, will traverse 2
elements in the base mesh as shown in Fig. 2c. The gen-
erated ground structure will become more redundant and
dense with each connectivity level. The method can use
any base mesh provided that it is built from convex poly-
topes; this because at level 1, all nodes within an element are
connected regardless. While the elements in the base mesh
need to be convex, the mesh itself does not. This and other
details on the ground structure generation are addressed in
Section 3.2.

The fact that no edge or facet information is provided can
prove to be challenging for plotting routines if complicated
convex polytopes are given. In addition, the maturity of 3D
polytope meshing algorithms (Barber et al. 1996; Herceg
et al. 2013; Rycroft 2014) is lagging behind that of more
traditional meshing algorithms based on standard elements

Fig. 6 Convergence for the cylinder problem with base mesh
refinement
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Fig. 7 Torsion cone problem. a
Domain definition, loading and
supports. b Sample mesh for
H = 10, rL = 7 and rU = 2
discretized with Nz = 9,
Nr = 5, Nθ = 20 and
λ = 0.870058. c Axisymmetric
plot of the sample mesh with
H = 10, rL = 7, rU = 2,
Nz = 9, Nr = 5 and
λ = 0.870058. d Solution
obtained for Nb = 115, 789,
generated using a discretization
in cylindrical coordinates with
Ne = 900, Nn = 1, 010 and
Lvl = 3
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Table 3 Convergence for a capped cone under torsion with M = 3,
H = 10, rL = 7 and rU = 2

Nz Nθ λ Ne Nn Nb Volume V

5 9 0.778371 225 276 22,532 18.2822

6 12 0.811563 360 427 38,946 17.5218

7 15 0.836134 525 608 61,072 17.2178

8 17 0.855050 680 774 82,849 17.1354

9 20 0.870058 900 1,010 115,789 17.0310

10 22 0.882253 1,100 1,221 147,058 16.9935

11 25 0.892358 1,375 1,512 193,686 16.9526

12 27 0.900868 1,620 1,768 235,938 16.9300

13 30 0.908131 1,950 2,114 296,383 16.9146

14 32 0.914404 2,240 2,415 350,830 16.8982

15 35 0.919875 2,625 2,816 429,220 16.8947

16 37 0.924689 2,960 3,162 497,407 16.8813

17 40 0.928958 3,400 3,618 592,377 16.8837

18 42 0.932769 3,780 4,009 675,462 16.8720

19 45 0.936192 4,275 4,520 792,874 16.8776

20 47 0.939283 4,700 4,956 892,456 16.8670

Ground structures are generated with Nr = 5 and Lvl = 3. The
optimal volume is Vopt = 16.8076

(hedrahedra, tetrahedra, wedges, etc). Therefore, while the
algorithm for ground structure generation and analysis can
address any element type in the base mesh, for practical
purposes, the current implementation is limited to 7 simple
elements: 4 volumetric and 3 surface elements (the seg-
ment, although not flat, is grouped with surface elements).
The 7 elements supported in the current implementation are
illustrated in Fig. 3.

These elements have a unique topology (facets and
edges), provided that they are numbered properly. The
surface elements are not two–dimensional, but three–
dimensional entities that can be used to define shells, domes
and membranes for example. The segment element is spe-
cial: it can be used to fine–tune the nodal connectivity
matrix by allowing two non–neighboring nodes to share
level 1 connectivity.

The input specification for the base mesh, supports
and loads for the provided implementation, is detailed in
Table 1. The ELEM variable is a structure (or struct) with
fields V and S for volumetric and surface elements respec-
tively. The analysis can comprise volumetric, surface or a
combination of elements in the base mesh. In other words,
at least one field in ELEM must be defined (V or S). The total
number of volumetric and surface elements are Nve and Nse

respectively. Therefore, the total number of elements in the
base mesh is Ne = Nve + Nse.
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M

Fig. 8 Convergence for the cone problem with base mesh refinement

3.2 Ground structure generation

The ground structure generation follows the procedure
outlined in the two–dimensional implementation (Zegard
and Paulino 2014). The connectivity level parameter (Lvl)
indirectly controls the level of redundancy, or inter–
connectedness, of the initial ground structure (refer to
Fig. 2). Two nodes are considered neighbors and share level
1 connectivity if they belong to the same element in the base
mesh. From this idea of neighbors, the connectivity level
can be explained as follows:

– Level 1 connectivity will generate members between all
neighboring nodes.

– Level 2 connectivity will generate members up to the
neighbors of the neighbors.

– Level 3 connectivity will generate members up to the
neighbors of the neighbors of the neighbors.

This process scales rapidly and only decelerates when the
member generation is reaching full connectivity throughout
the domain. The nodal connectivity matrix for level 1, A1,
is built from the base mesh and is defined as follows:

[A1]p,q =
{

1 or true if nodes p, q share an element
0 or false otherwise or if p = q

,

(4)

resulting in a symmetric A1, i.e. bi–directional.
The second level connectivity can be obtained as A2 =

A1A1 = [
A2

1

]
. However, some entries may well be > 1 and

have values other than zero in the diagonal. Therefore, the
nodal connectivity matrix for levels n > 1 is then:

[An]p,q =
{

0 or false if
[
An

1

]
p,q

= 0 or if p = q

1 or false if
[
An

1

]
p,q

> 0 and p �= q
(5)

The new bars for level n can be obtained as:

Gn = An − An−1 , (6)

Fig. 9 Torsion ball problem
modeled using an orthogonal
domain. a Domain definition,
loading and supports. b Sample
mesh with N = 5. c Optimal
structure obtained with N = 5,
Lvl = 4 and Nb = 15, 980. d
Optimal solution obtained with
N = 13, Lvl = 4 and
Nb = 475, 996

L

L

L

M

(a) (b)

(c) (d)
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Table 4 Convergence for a regular orthogonal domain of side L = 1 under torsion with M = 1

Base mesh N Ne Nn R φF Lvl Nb Vopt Volume V

very coarse 5 125 216 0.5196 1.2952

2 5,540

7.9017

9.6571

3 11,372 9.6571

4 15,980 9.6571

5 19,508 9.6571

coarse 7 343 512 0.5101 1.3714

2 15,652

9.2101

10.8069

3 35,932 10.8069

4 56,668 10.8069

5 82,804 10.8069

mid-coarse 9 729 1,000 0.5061 1.4149

2 33,804

10.1997

11.8774

3 82,356 11.8615

4 137,652 11.8615

5 218,652 11.8615

mid-fine 11 1,331 1,728 0.5041 1.4429

2 62,348

10.9943

12.6330

3 157,604 12.6252

4 272,804 12.6252

5 454,748 12.6252

fine 13 2,197 2,744 0.5029 1.4624

2 103,636

11.6579

13.3360

3 268,636 13.3041

4 475,996 13.3015

5 818,788 13.3015

very fine 15 3,375 4,096 0.5022 1.4768

2 160,,020

12.2274

13.9097

3 422,412 13.8713

4 761,100 13.8649

5 1,338,468 13.8642

where Gn has non–zero entries for the bars generated at
level n (note that G1 = A1). The new bars obtained from
Gn are considered candidate bars: they still need to pass
the collinearity and restriction zone checks (Sections 3.3
and 3.4 respectively) to be included in the final ground
structure.

The number of bars, and therefore the number of vari-
ables in the optimization problem, grow rapidly with an
increase of the connectivity level. In general, it is not rec-
ommended to use high values for the connectivity level; i.e.
connect nodes that are far away from each other. The analyt-
ical closed–form solutions are typically composed of curved
members (Michell 1904; Lewiński 2004). The method can
better approximate these curved–member solutions with
many short bars in a piecewise fashion, as opposed to the
long members that result from a high connectivity level.

3.3 Collinearity check

The collinearity (or overlapping) member check assumes
the following:

1. New bars added at level n are deleted if found collinear
with bars from previous levels.

2. New bars added at level n are assumed not to be
collinear between them. They are only checked for

M

Fig. 10 Convergence to the optimal solution of increasingly refined
regular orthogonal base meshes under torsion. For this problem,
increasing the ground structure connectivity level does have much
impact on the quality of the solution
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Fig. 11 Sources of poor accuracy and convergence for the torsion
ball problem approximated with a regular structured–orthogonal cube
mesh of dimension L. a A cube domain is not able to accommodate
the optimal solution. The radius of the (optimal) sphere R is larger
than half of the domain’s width L/2 (refer to (13)). b Polar view of the
analytical closed–form solution for the torsion ball problem. A ficti-
tious regular discretization with some members is shown to highlight
the inability of higher level members to approximate the solution

collinearity against previously generated bars (not to
each other).

In general, new bars are longer than those generated at lower
connectivity levels, thus justifying the decision to elimi-
nate the newly generated bar as opposed to the previously
accepted one. The second assumption may be violated if
the base mesh has elements that are not strictly convex,
although most meshing algorithms will generate meshes
with strictly convex elements. More uncommonly, as the
ground structure for higher levels is generated, the algorithm
expansion may reach two collinear nodes at a single step:
this unlikely situation may occur in domains that curl or spi-
ral around themselves and is generally not a concern within
the scope of this work.

The length of a member spanning between nodes p and
q with coordinates

{
xp, yp, zp

}
and

{
xq, yq, zq

}
is defined

as:

Lp,q =
√

(xq − xp)2 + (yq − yp)2 + (zq − zp)2 (7)

The directional cosines vector for the bar between nodes p

and q is d̂p,q :

d̂p,q =
{
xq − xp, yq − yp, zq − zp

}
Lp,q

(8)

Note that the bar length and directional cosines are also
used in the formulation of the ground structure optimization
problem (3).

Once Gn is obtained, the new (candidate) bars must be
checked not to be collinear with members already in the
ground structure. A candidate bar pq is rejected due to
collinearity if it has a small–enough angle with a previously

L

L

(a)
L

L

(b)
L

L

(c)

Fig. 12 Top view of the orthogonal domains used in approximat-
ing the torsion ball problem, while maintaining a constant angle φF .
a Domain discretized into N = 5 elements in each direction. b

Domain discretized into N = 10 elements in each direction. c Domain
discretized into N = 15 elements in each direction
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Table 5 Convergence for the torsion ball problem in an orthogonal
domain, with constant moment application latitude φF

N Ne Nn Nb V

5 125 216 11,372 9.6571

10 1,000 1,331 115,942 8.9952

15 3,375 4,096 422,412 8.7077

20 8,000 9,261 1,039,532 8.6064

The solution is approximated with a cube domain of size L = 1,
partitioned into N × N × N elements, using Lvl = 3, loaded (and
supported) at 4 points near the poles, with M = 1, φF = 1.2952,
R = 0.5196 and Vopt = 7.9017

accepted bar in the ground structure. The angle between bars
is checked using the dot product of the directional cosines1:

{
accept bar pq if d̂p,q · d̂p,i < ColT ol ∀ i

reject bar pq otherwise
(9)

The user–defined ColT ol � 1 controls the admissible
collinearity between members: the minimum angle between
generated bars is α ≥ acos (ColT ol). Additional details
(with examples) on the collinearity check can be found in
Zegard and Paulino (2014).

3.4 Restriction zones

Analogous to the two–dimensional implementation of the
method, the restriction zone idea is inspired by known col-
lision detection algorithms used in video–games and in
computational geometry (Ericson 2004).

The domain may have concave regions or holes that no
bar should intersect. To prevent the ground structure genera-
tion algorithm from laying out members in these regions, the
user defines restriction zones (i.e. hitboxes): geometric enti-
ties that no bar should intersect. The current implementation
of GRAND3 provides the following restriction primitives:

– box
– cylinder
– disc
– quadrangle (flat)
– rod (finite cylinder)
– sphere
– triangle (flat)
– surface2

1A directional cosine vector has a norm of unity by definition, and thus
the dot product of directional cosines vectors is equal to the cosine of
the angle between them.
2This collision primitive is built from multiple calls to the triangle and
quad collision primitives.

These primitives can be combined to create complicated
regions or boundaries, and the user can easily implement
new collision primitives in GRAND3. The derivation and
details on these primitives are given in Appendix B.

Nodes in the base mesh must not intersect the restriction
zones nor its boundary. If this happens, then all bars orig-
inating from such node will be flagged for removal during
the restriction zone check. Thus, a small reduction in size of
the restriction primitives is advised. This setback (or mar-
gin) is in the form of a small tolerance tol as shown in Fig. 4.
The setback distance tol is defined by the user when defin-
ing the restriction zones, and should be relative to the scale
of the problem.

The ground structure generation, after the collinearity
and restriction zone checks, returns a list of (accepted)
bars (or members). This process operates over symmetric
(or bi–directional) matrices. However, to prevent duplicate
members, only bars pq with p < q are reported.

4 Verification

The following examples aim to verify GRAND3 by approx-
imating optimal closed–form solutions. Members with
cross–sectional area ai < (Cutoff ) max (a) are not plotted.
Unless otherwise stated, the stress limit ratio is κ = 1.0 with
σT = 1, the collinear tolerance is ColTol = 0.999999 and
the plotting cutoff is Cutoff = 0.005.

4.1 Torsion cylinder

A cylindrical domain of radius r and height H is subjected
to an end moment distributed over the outer ring of the upper
end cap (Fig. 5a). The domain is fully supported on the bot-
tom end cap. This problem is of interest since the analytical
volume for the theoretical optimal structure can be derived.

M

const.
φF

Fig. 13 Convergence to the optimal solution of increasingly refined
regular orthogonal base meshes under torsion, while maintaining the
moment application latitude φF constant
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A moment pair causes a pure–shear condition on the cylin-
der surface. Therefore, the principal stress lines are oriented
at ±π/4. The members in the optimal solution must follow
the lines of principal stresses (Michell 1904; Hencky 1923;
Hemp 1973). A single fiber following a principal stress line
has a length lf = √

2H . The force in the fiber due to the
moment pair is nf = √

2M/4πr2 for tension, and −nf for
compression. Finally, the volume of the optimal cylinder in
torsion is:

Vopt =
[(

nf

) (
lf

)
σT

−
(−nf

) (
lf

)
σC

]
(2πr)

=
(√

2M

4πr2

) (√
2H

) [
1

σT

+ 1

σC

]
(2πr)

= MH

r

[
1

σT

+ 1

σC

]
(10)

Using cylindrical coordinates, the model is discretized in
Nz × Nr × Nθ elements corresponding to the z, r and θ

coordinate axes respectively. The problem is analyzed for
the specific case where H = 11, r = 3 and M = 5. A
sample mesh discretized with {Nz, Nr, Nθ } = {12, 6, 16}
is shown in Fig. 5b. An axisymmetrical plot of this mesh
is given in Fig. 5c. One of the solutions obtained with the
proposed method is plotted in Fig. 5d as an example. The
convergence of the ground structure method with refinement
of the base mesh is given in Table 2 and Fig. 6. There is a
convergence towards the optimal volume Vopt = 36.6667.

4.2 Torsion cone

A capped cone domain of height H = 10 with lower and
upper radius rL = 7 and rU = 2 respectively, is subjected
to an end moment M = 3 distributed over the outer ring at
the upper end cap (Fig. 7a). The analytical solution for this

problem was derived by Lewiński (2004), by constraining
the solution to exist in the cone’s surface:

Vopt = M

√
H 2 + (rL − rU )2

rL − rU
log

(
rL

rU

)[
1

σT

+ 1

σC

]
,

(11)

that for the specific geometry and loads being considered
results in Vopt = 16.8076.

Using cylindrical coordinates, the model is discretized
in Nz × Nr × Nθ elements corresponding to the z, r and
θ coordinate axes respectively. An axisymmetrical plot of
this mesh is given in Fig. 7c. In an effort to preserve the
aspect ratio of the elements in the mesh, the spacing in
the z direction is such that 
hi+1/
hi = λ, with λ being
constant. A sample mesh discretized with {Nz, Nr, Nθ } =
{9, 5, 20} and λ = 0.87006 is shown in Fig. 7b. One of
the solutions obtained with the proposed method is plotted
in Fig. 7d as an example. The convergence of the ground
structure method with refinement of the base mesh is given
in Table 3 and Fig. 8. The increasingly refined solutions
converge smoothly toward the optimum, with a relatively
small oscillation appearing when the number of bars is
Nb > 400, 000. The reason behind this oscillation being
that the node positions do not precisely match the loca-
tions dictated by the analytical closed–form solution; i.e. the
height is not a multiple of π . The quality of the approxima-
tion will therefore depend on the aspect ratio of the elements
in the base mesh, as defined by Nz, Nθ and λ. However,
the overall trend does converge to the analytical optimum as
expected.

4.3 Torsion ball (orthogonal domain)

The optimal structure for transmitting a torsion pair is a
ball, provided that the domain is large enough to allow the
full solution to develop (Fig. 1b). In contrast, the torsion
cylinder (Section 4.1) addresses a similar problem but with
a constrained domain. With no previous knowledge of the

Fig. 14 Torsion ball problem. a
Domain definition, loading and
supports. b Sample mesh with
ri = 2.9, rm = 3 and ro = 3.1
discretized with Nθ = 30,
Nφ = 14 and Nr = 2. c
Axisymmetric plot of the
sample mesh with
π/2 − φF = π/10, ri = 2.9,
rm = 3 and ro = 3.1 discretized
with Nφ = 14 and Nr = 2

rm

ri

ro

M

(a) (b)

x

z
φ

r

φF

- φF2
π_

(c)
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Table 6 Convergence for a
hollow spherical domain with
M = 7, ri = 2.9, rm = 3.0 and
ro = 3.1

Nθ Nφ Ne Nn Nb φF Vopt Volume V

16 8 256 342 4,308 1.1781 45.2170 48.5088

24 12 576 798 21,076 1.3090 56.7725 60.2254

32 16 1,024 1,446 59,780 1.3744 64.8980 67.9621

40 20 1,600 2,286 121,244 1.4137 71.1785 74.0993

48 24 2,304 3,318 202,036 1.4399 76.3012 78.9887

56 28 3,136 4,542 308,844 1.4586 80.6280 83.4937

64 32 4,096 5,958 425,284 1.4726 84.3738 87.6053

72 36 5,184 7,566 575,932 1.4835 87.6764 91.4038

The discretization in φ is constant; i.e. the angle φF (and the volume Vopt ) increases with refinement. Ground
structures are generated with Nr = 2 and Lvl = 3

optimal solution, it is reasonable to use a regular and orthog-
onal base mesh. The moment (and support) is applied at
the four nodes closest to the poles, as shown in Fig. 9a
and b.

The optimal volume for this problem was obtained by
Michell (1904), but a detailed derivation was not given. The
solution for the torsion ball was later re–derived (Hemp
1973; Lewiński 2004) and confirmed.3 The optimal volume
of the torsion ball is:

Vopt = 2M log

(
tan

{
π

4
+ φF

2

})[
1

σT

+ 1

σC

]
, (12)

where φF is the latitude of the small rings where the
moment is applied (Fig. 14a). It should be noted that the
optimal volume is independent of the sphere’s radius R.
Nonetheless, the domain must be large enough to allow the
solution’s sphere with radius R to develop.

The problem domain considered has L = 1 and M = 1,
and is discretized regularly into N ×N ×N elements. Sam-
ple solutions obtained for two different discretizations are
shown in Fig. 9c and d. The convergence of the ground
structure method for increasingly refined base meshes is
given in Table 4 and Fig. 10. Because the problem consid-
ers applying the loads and supports at the four nodes closest
to the poles, this distance will decrease with refinement, i.e.
the angle φF will increase as the element size in the base
mesh decreases (Fig. 14c). Thus, the optimal volume Vopt

3Michell’s formula matches the subsequent work provided that the
quantity L in Michell (1904) is taken to be equal to Mr . Whether
Michell meant this to be the real meaning of the quantity L, or not, is
unclear.

changes with the discretization. For a regular structured–
orthogonal cube mesh of dimension L, discretized with N

elements in each direction (Fig. 9), the angle φF is:

dx = L

N

rF = 1

2

√
dx2 + dx2 =

√
2L

2N

φF = atan

(
L/2

rF

)
= atan

(√
2N

2

)

R =
√(

L

2

)2

+ r2
F = L

2N

√
N2 + 2 , (13)

where dx is the dimension of a single hexahedral element in
the base mesh, rF is the distance from the pole to the loaded
nodes (radius of the moment application ring), and R is the
radius of the (optimal) sphere.

The poor convergence rate observed with mesh refine-
ment, and even worse with connectivity level, is attributed
to a number of reasons:

– This is a particularly unfavourable scenario for the
method: approximating a sphere with a box.

– The load and supports are applied at four discrete
locations as opposed to continuously throughout the
ring.

– Increasing φF (equivalent to reducing the radius of the
ring where the moment is applied), makes the prob-
lem more difficult to approximate numerically. Truss
elements, cannot equilibrate a moment applied at a sin-
gle point, and thus as φF ≈ π/2 the optimal volume
Vopt → ∞ (refer to (12)).

– The radius of the (optimal) sphere R (13), exceeds the
boundaries of the domain4, i.e. 2R > L = 1. Thus, the
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domain does not fully accommodate the optimal analyt-
ical solution (refer to the values of R given in Table 4).
This situation, however, improves with mesh refinement
due to an increase in φF (see Fig. 11a).

– For this problem in particular, the theoretical optimal
solution is comprised solely of curved members. A high
connectivity level will generate longer straight mem-
bers, which do not improve the approximation for this
analytical solution. Figure 11b shows the analytical
solution viewed from the poles, along with a fictitious
discretization illustrating some members at different
connectivity levels: lower level members (shorter) have
a better chance at approximating the solution.

– The method is discrete, and therefore sensitive to the
shape and level of the discretization.

– Finite computational precision, inherent nature of a
numerical optimizer, and tolerance parameters used.

4.4 Torsion ball (orthogonal domain) with constant
moment latitude φF

Again using and orthogonal box domain as in the previous
example, the error coming from an increase in φF can be
eliminated. Starting with a domain discretized as in Fig. 12a,
the mesh can be refined while keeping the locations of the
loads and supports fixed as shown in Fig. 12b and c. For a
level 3 connectivity, the convergence in this case is shown
in Table 5 and Fig. 13. While there is an improvement in the
results, these are not yet satisfactory: the optimal solution, a
sphere, is discretized and approximated by a box, is a naı̈ve
initial guess for this problem, but likely to be made with no
a priori knowledge of the solution.

4.5 Torsion ball (spherical domain)

Once knowledge is gained that the solution lies in a close–
to–spherical domain, the base mesh can be modified to
provide a better approximation. The base mesh in this case
is a thick hollow sphere. This is not a shell, for it allows the
solution to modify its radii if needed. The load is applied at
an intermediate radius rm between the inner and outer radii
of the hollow sphere, ri and ro respectively, as shown in
Fig. 14a. The domain is represented using spherical coor-
dinates, and is discretized in the θ , φ and r directions
using Nθ , Nφ and Nr elements respectively. A sample mesh

4This could be solved by making the domain wider than it is taller
(Lx = Ly > R), but that would imply a priori knowledge of the
solution.

Table 7 Convergence for a hollow spherical domain with M = 7,
ri = 2.9, rm = 3.0 and ro = 3.1

Nθ Nφ Ne Nn Nb Volume V

20 10 400 546 10,564 54.9909

30 14 840 1,176 38,734 53.6278

40 18 1,440 2,046 96,484 52.8693

50 22 2,200 3,156 178,804 52.4600

60 26 3,120 4,506 283,444 52.2877

70 30 4,200 6,096 415,664 52.1777

The discretization in φ makes the first and last 
φ equal to π/10, with
the remaining elements evenly distributed; i.e. the angle φF is constant
and equal to φF = π/2 − π/10 for all discretizations. Ground struc-
tures are generated with Nr = 2 and Lvl = 3. The optimal volume is
Vopt = 51.5964

discretized with
{
Nθ, Nφ, Nr

} = {30, 14, 2} is shown in
Fig. 14b, with an axisymmetrical plot given in Fig. 14c. The
sphere is hollow, and thus a spherical restriction zone with
radius ri is used.

If the domain is discretized with a constant spacing on φ,
then the angle φF of the applied force is:

φF = π

2

Nφ − 2

Nφ

(14)

The optimal volume, given by (12), will increase with
refinement on the base mesh due to an increase in φF .
Optimal volumes for increasingly refined base meshes with
constant spacing in φ are given in Table 6.

In order to fix the latitude of the applied loads φF , the
size of the first and last element on the φ partition are fixed,
and the remaining elements are evenly distributed. Thus
making φF constant for all discretizations (Fig. 14c), and
consequently Vopt constant regardless of the refinement in

 

φ
F
 increasing

φ
F
 = π /2 − π /10

1.1781
φF

 =
1.3090

φ F
 =

1.
37

44
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 = 1.
41

37
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 = 1.
43

99

φ F
 =

1.4586
φ

F  =
1.4726

φ
F  =

1.4835
φ

F  =

φF

M

Fig. 15 Convergence to the optimal solution of increasingly refined
spherical base meshes. The case where φF increases with refinement
begins to diverge as φF ≈ π/2. The case where φF is constant
converges as expected
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Fig. 16 Edge–supported double
cantilever problem. a Domain
with loads, boundary conditions
and dimensions. b Base mesh
used to generate a coarse ground
structure: Lx = 3, Ly = Lz = 1
and P = 1, discretized with
Nx = 6 and Ny = Nz = 2,
resulting in Ne = 24 and
Nn = 63. c Base mesh used to
generate a fine ground structure:
Lx = 3, Ly = Lz = 1 and
P = 1, discretized with
Nx = 30 and Ny = Nz = 10,
resulting in Ne = 3, 000 and
Nn = 3, 751. d Solution for a
coarse base mesh with Lvl = 2
and Nb = 962. e Solution for a
fine base mesh with Lvl = 6
and Nb = 1, 474, 218

P

Lx

Ly

Lz

(a)

(b) (c)

(d) (e)

the base mesh. Taking π/2 − φF = π/10, the analytical
optimal volume is Vopt = 51.5964. The optimized volumes
for increasingly refined base meshes are given in Table 7,
with one of these solutions previously shown in Fig. 1c.

Making φF constant ensures that the refinement is
approximating the same boundary value problem, and thus a
smooth convergence to the analytical closed–form solution

is obtained. If φF is variable, then the method is approx-
imating a different problem with each discretization, and
thus convergence is not guaranteed. The torsion ball prob-
lem becomes more difficult to approximate numerically if
the radius where the moment couple is applied is small
(large φF ). Convergence curves for both cases, variable and
constant φF , are shown in Fig. 15.

Fig. 17 Edge–supported double
cantilever problem with
improved base mesh
discretization. a Base mesh used
to generate the ground structure:
discretized with Nx = 5 and
Ny = Nz = 10, resulting in
Ne = 1, 000 and Nn = 726. b
Solution using the improved
base mesh with Lvl = 6 and
Nb = 137, 877. The resulting
optimal volume is V = 14.2725

(a) (b)
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Table 8 Convergence for the three–dimensional double cantilever
beam with Lx = 3, Ly = Lz = 1 and P = 1, approximated using a
regular–orthogonal mesh

Nx Ny, Nz Ne Nn Lvl Nb Volume V

6 2 24 63 2 962 15.2500

12 4 192 325 3 17,604 14.6806

18 6 648 931 4 112,374 14.4585

24 8 1,536 2,025 5 499,112 14.2555

30 10 3,000 3,751 6 1,474,218 14.1236

36 12 5,184 6,253 7 4,078,236 14.0543

5 Examples

The following problems were selected to showcase fea-
tures and issues of the method and its implementation
(named GRAND3, and provided as ESM accompanying
this publication). Members with cross–sectional area ai <

(Cutoff ) max (a) are not plotted. Unless otherwise stated,
the stress limit ratio is κ = 1.0 with σT = 1, the collinear
tolerance is ColTol = 0.999999 and the plotting cutoff is
Cutoff = 0.005.

5.1 Edge–supported (double) cantilever beam

This problem consists of a three–dimensional box domain,
fixed at one end on two (opposite) vertical edges, and
loaded at the center of the other end (Fig. 16a). The
domain has dimensions Lx = 3 and Ly = Lz = 1,
is loaded with P = 1, and is discretized with a regu-
lar partition in all three dimensions. Examples for a coarse
and a fine base mesh are given in Fig. 16b and c. The
optimal volumes obtained from a series of increasingly
refined meshes exhibit convergence to a unique value as
expected.

P

Fig. 18 Convergence of the optimal volume for the edge–supported
double cantilever problem, for a set of increasingly refined ground
structures

Two sample solutions obtained for the coarse and a fine
base meshes are shown in Fig. 16d and e. These results hint
that the optimal closed–form solution consists of two flat
cantilever beams (as in Lewiński et al. (1994)), meeting at
the load application point. With this assumption, a new base
mesh is created for the problem: this (improved) base mesh
allows for perfectly flat cantilevers to develop if the opti-
mal structure requires it, as shown in Fig. 17a. The optimal
structure obtained for this new base mesh can be seen in
Fig. 17b, and confirms the flat cantilever hypothesis.

The optimal volumes obtained using regular base meshes
show convergence to an absolute optimal in the vicin-
ity of Vopt ≈ 13.93: this value was obtained using the
two–dimensional implementation described in Zegard and
Paulino (2014). Convergence data and plots are shown in
Table 8 and Fig. 18 respectively.

1

1

0.8

3

0.01

(a) (b)

r
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30.01

0.8

(c) (d)

Fig. 19 Diamond problem: Vertically loaded cylinder with a coin–
shaped discontinuity. a Half–domain with loads, boundary conditions
and dimensions. b Base mesh used to generate the ground structure:
Nz = 12, Nθ = 16 and Nr = 5. c Axisymmetric plot of the base mesh
with Nz = 12 and Nr = 5. d Optimal solution obtained with Lvl = 3
and Nb = 109, 820
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P

1

0.7
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(a) (b)
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z

(c)

(d) (e)

Fig. 20 Vertically loaded inverted cup problem. a Half–domain with
loads, boundary conditions and dimensions. b Base mesh used to gen-
erate the ground structure. c Axisymmetric plot of the base mesh.

d Optimal structure generated with Lvl = 3 and Nb = 168, 436,
resulting in an optimal volume of V = 2.9384. e Detail of the optimal
structure

5.2 Diamond problem

The diamond problem is a cylindrical domain with a coin–
shaped (or disc) discontinuity in the middle. This problem
shows the capability of the method to find optimal load
paths for problems that include discontinuities, imperfec-
tions or barriers in their structure. The domain has a vertical
load along it’s z axis, as shown in Fig. 19a. The domain is
meshed as in Fig. 19b and c. The ground structure is gener-
ated for a Lvl = 3 connectivity, resulting in Nb = 109, 820.
The restriction zone is a disc primitive in the coin–shaped
discontinuity. The resulting optimal structure resembles a
diamond: the members fan away from the axis to evade
the discontinuity. At the point of maximum width, it cre-
ates a strong ring with the purpose of shifting the member
orientation back into the support as shown in Fig. 19d.

5.3 Cup problem (spider)

This problem consists of an inverted cup–shaped domain,
loaded vertically in the interior. Figure 20a shows the half–
domain with loads, boundary conditions and dimensions.
The domain is discretized using cylindrical coordinates, and
the restriction zone is a single rod primitive in the interior
of the cup. The resulting mesh is shown in Fig. 20b, with
a axisymmetric view given in Fig. 20c. The solution to this
problem is shown in Fig. 20d.

Inspecting the top part of the solution (Fig. 20e), it can
be seen that this problem is degenerate; the solution lies
on a facet of the feasible domain. This is not an issue of

P

PP

(a)

P

PP

(b)

P

PP

(c)

P

PP

(d)

Fig. 21 Structural optimization problem with a non–unique (degener-
ate) solution: a, b, c and d are all optimal topologies
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the ground structure method, but rather a characteristic of
the problem: it does not have a unique solution (Rozvany
1997). This situation can be better understood with a simple
3 force problem (Mazurek et al. 2011): the optimal struc-
ture to carry 3 radial forces evenly distributed on a circle of
radius R is not unique, as shown in Fig. 21. For the topology
in Fig. 21a, the force in each member is Ni = P , and the
length of the members is Li = R. Thus, the optimal volume
is:

Vopt1 = 3

(
P

σT

)
(R) = 3

PR

σT

Repeating the analysis for the topology in Fig. 21b, the force
in each member is Ni = P/

√
3, and the member’s length is

Li = √
3R. Thus, the optimal volume is:

Vopt2 = 3

(
P/

√
3

σT

)(√
3R

)
= 3

PR

σT

In fact, any combination of the previous two cases, as in
Fig. 21c and d for example, will result in the same optimal
volume. In practice, when facing an optimal structure with a
degenerate solution like in Fig. 20d, the engineer can decide
the final topology. Figure 22a and b are examples of possible
optimal topologies for the problem in Fig. 20e.

(a)

(b)

Fig. 22 Options of topologies for a degenerate problem: a Spoke and
hub option. b Slab option

5.4 Crane problem

The crane (or tower) problem was introduced by Smith
(1998), in whose work the domain had to be partitioned into
regions in a specialized CAD system. A three–dimensional
ground structure was then generated within these regions.

The approach presented here, requires no subdivision of
the domain, but does require the definition of restriction
zones. Domains are often procedurally generated using geo-
metric primitives. Because the restriction zone is typically
a subset of the primitives used to construct the domain, the
additional work required is comparatively small.

The domain in Fig. 23a is discretized with two different
degrees of refinement as in Fig. 23b and c. The restriction
zone is the union of two boxes under both of the tower’s

P
P

P
P

2

6
62

2 10

(a)

(b) (c)

(d) (e)

Fig. 23 Crane problem: Tower with arms loaded at four points. a
Domain with loads, boundary conditions and dimensions. b Base mesh
used to generate a coarse ground structure: Ne = 10 and Nn = 38.
c Base mesh used to generate a fine ground structure: Ne = 768 and
Nn = 935. d Solution for the coarse base mesh: Lvl = 3 and Nb =
315. e Solution for the fine base mesh: Lvl = 3 and Nb = 47, 076; the
plotting cutoff is Cutoff = 0.002 to prevent members from ending
mid–air
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Fig. 24 Lotte tower problem: a
Rendering of the Lotte tower [©
Skidmore, Owings & Merrill
LLP]. b Domain definition,
loading and boundary conditions
for the laterally loaded tower. c
Domain definition, loading and
boundary conditions for the
torsionally loaded tower. d Base
mesh for the ground structure
generation, with the restriction
surface also shown

(a)

2r

H

2a
(b)

2r

H

2a
(c) (d)

arms. The optimized ground structures for each case are
shown in Fig. 23d and e. This example showcases the
capability of the method (and implementation) to provide
solutions with different levels of detail. Highly detailed
solutions provide information into the optimal load trans-
fer mechanism, while coarse solutions are more likely to be
developed into real structures.

5.5 Lotte tower (Seoul, South Korea)

The Lotte tower is a shell–like domain (no thickness) that
is square at the base and circular at the top. This problem
was inspired by the design competition of the same name by
Skidmore, Owings & Merill LLP (Fig. 24a), and has been
previously optimized using a density–based optimization

Fig. 25 Lotte tower problem: a
Optimized ground structure for
a lateral loading at the top. b
Optimized ground structure for
a torsional load at the top

(a) (b)
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approach by Stromberg et al. (2010). In the present example,
the domain is optimized for two loading scenarios: lateral
load at the tip acting at 4 points (Fig. 24b), and a torsional
load distributed over the top circumference (Fig. 24c).

The domain’s height is H = 80, the square at the
base has sides 2a = 10, and the circle at the top has
a diameter of 2r = 10. The domain is discretized using
quadrangular surface elements; partitioned into Nz = 12
elements along its height, and Nθ = 16 elements around,
resulting in Ne = 192 and Nn = 208. The restriction zone is
a surface primitive set–back from the interior of the domain
by a small spacing, as shown in Fig. 24d.

The ground structure is generated for a Lvl = 5 con-
nectivity, resulting in Nb = 4, 100 potential members.
The optimized ground structures for the lateral loading
and torsional loading cases are shown in Fig. 25a and b
respectively.

The lateral loading causes part of the resulting topology
to work as a web (front view in Fig. 25a); developing an
arrangement similar to an optimal cantilever, and analogous
to optimal flat cantilever beams (Lewiński et al. 1994). The
other side of the solution (side view in Fig. 25a) acts as a
flange, transferring the load in tension/compression away
from the web and to the foundation supports. On the other
hand, the problem optimized for torsion results in a diagrid
pattern, similar to those used in high–rise buildings.

6 Conclusions

The ground structure generation and analysis methodol-
ogy presented in Zegard and Paulino (2014) is success-
fully extended to three–dimensional space. Concavities and
holes in the domain are addressed using three–dimensional
collision primitives—an extension of the two–dimensional
approach. Collision primitives for a variety of shapes are
developed, among which the surface primitive offers a
viable alternative in the eventual case that no other primitive
is adequate.

The method is verified and benchmarked using three
problems for which the solutions are known, with the
method converging to the analytical solution. Features and
details of the convergence process are explored in detail.
Additional problems showcase the capability of the method
to address complicated domains, and to generate structures
with various levels of detail. The ability to handle domains
other than boxes has resulted in innovative bio–inspired and
natural designs, as is the case with the “Diamond prob-
lem” and the “Cup domain or spider” (Figs. 19b and 20d
respectively).

The rapid scaling of the complexity in three–dimensional
space, make it necessary for the user to employ engineering

judgement in order to obtain reasonably good solutions
for applied problems. A good solution is such that it can
be obtained within reasonable computer time, is detailed
enough, and can be manufactured. The “Lotte tower” prob-
lem loaded under torsion (Section 5.5), for example, results
in a diagrid structure that is both; attractive and feasible.
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Appendix A: – Nomenclature

A Connectivity matrix
a Cross–sectional areas vector
BT Force equilibrium (geometric) matrix
ColTol Tolerance in the collinearity check
d̂ Member’s directional cosines vector
f Nodal load vector
G Candidate member matrix
l Member’s length vector
Lvl Ground structure connectivity level
n Internal (axial) forces vector
Nb Number of bars (truss members)
Ndof Number of degrees–of–freedom of the structure
Ne Number of elements in the base mesh
Nf Number of nodes with fixities
Nl Number of nodes with loads
Nn Number of nodes in the domain
Nsup Number of fixed nodal components (or DOFs)
s+, s− Stress constraint (positive) slack variables
V Volume
κ Tension to compression stress limit ratio
σ Member’s (axial) stresses vector
σT , σC Stress limits in tension and compression
φF Latitude of the the moment application ring for the

torsion ball problem

Appendix B: – Collision (intersection) tests

The collision (or intersection) tests are quite common in
the the video–game industry and in the field of computa-
tional geometry. While not constituting a new development,
these derivations are given here for the sake of complete-
ness. The collision primitives for the box, triangle, quad-
rangle and cylinder follow procedures outlined in Ericson
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P

Q

Amin

Amax

Q’
P’

Fig. 26 Collision test between a box and a segment

(2004) with some modifications. The sphere, disc and rod5

were developed specifically for GRAND3, although simi-
lar procedures are likely to be found in literature given the
relatively simple nature of the problem.

The surface primitive, built from the triangle and quad-
rangle primitives, is special; a complicated restriction vol-
ume can be translated into testing the collision on its
surface. This allows the method to address complicated vol-
umes that would be difficult to represent with the already
available primitives.

B.1 Box primitive

The box primitive is defined by the coordinates of the two
extreme vertices; Amin = {xmin , ymin , zmin} and Amax =
{xmax , ymax , zmax}. Given a segment PQ, the segment’s
directional vector is d = −→

PQ = Q − P , and any point X

in the segment is defined as X = P + td, with 0 ≤ t ≤ 1.
The segment collides with the box if there is a sub–segment
within PQ contained inside the box, as shown in Fig. 26.

Defining the sub–segment P ′Q′, with P ′ = P + tmind
and Q′ = P +tmaxd, the sub–segment is valid if 0 ≤ tmin ≤
tmax ≤ 1. Initially tmin = 0 and tmax = 1, positioning nodes
P ′ and Q′ at P and Q respectively. The sub–segment is then
clipped by the box’s 6 planes, corresponding to xmin, xmax ,
ymin, ymax , zmin and zmax . If the sub–segment is still valid
after the clipping has been done, then the sub–segment is
inside the box.

Defining a unit vector in the x direction ê1 = {1 , 0 , 0},
the procedure for clipping on the x plane is as follows:

t1 = Amin · ê1 − P · ê1

d · ê1
t2 = Amax · ê1 − P · ê1

d · ê1
(15)

5Ericson (2004) outlined a procedure for the finite cylinder. However,
his derivation is flawed. The book’s errata attempts to fix this, but with
no success.

Depending on the orientation of PQ, it could occur that
t1 > t2, and in such case their values are switched; t1 ← t2
and t2 ← t1. Finally, the clipping process is simply:

tmin ← max (tmin , t1) tmax ← min (tmax , t2) (16)

The process is then repeated for the y plane with ê2 =
{0 , 1 , 0}, and finally the z plane with ê3 = {0 , 0 , 1}.
The segment collides with the box if tmin ≤ tmax after all
the clipping has been carried out. Incidentally, this proce-
dure can address the accidental case where Amin and Amax

are reversed.

B.2 Triangle primitive

Given a segment PQ, intersecting the plane defined by
points A, B and C in space at a point W (Fig. 27). The seg-
ment intersects the triangle �ABC if point W lies inside the
triangle.

One possible solution is to find the point W , and then
check if such point is inside the triangle. Assuming the tri-
angle is defined counterclockwise: point W is inside the
triangle if it is located to the left for all edges. Extending to
any triangle arrangement (clockwise or counterclockwise):
point W is inside the triangle if it is located to the same side
for all edges. Based on this idea, the volumes of the three
distinct tetrahedra can be defined by segment PQ, and each
one of the triangle’s edges. These volumes can be computed
by triple products, with the sign of these triple products
depending on the manifold orientation of the three vectors
defining the tetrahedron. If point W is found to the same
side of all edges, then the sign of these volume calculations
(triple products) is the same.

Defining the segment’s directional vector as d = −→
PQ =

Q − P , then any point X within the segment is defined as
X = P + td, with 0 ≤ t ≤ 1. The normal to the triangle’s
plane is n = −→

AB×−→
AC. The intersection point with the plane

of the triangle W is defined as W = P + twd, with:

tw =
−→
PA · n
d · n . (17)

A

B

C

W

P

Q

Fig. 27 Collision test between a triangle and a segment
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The triple products are defined as:

V1 =
[
d

−→
PC

−→
PB

]

V2 =
[
d

−→
PA

−→
PC

]

V3 =
[
d

−→
PB

−→
PA

]
(18)

Finally, the segment PQ intersects the triangle �ABC if
and only if:

0 ≤ tw ≤ 1 and sign (V1) = sign (V2) = sign (V3)

(19)

B.3 Quadrangle primitive

Splitting the quadrangle into two triangles, the quadran-
gle is really an extension of the triangle primitive case. It
is assumed that the quadrangle is flat and all 4 points lie
(approximately) in the same plane. Compared to two com-
plete triangle tests, there is a potential computational saving
if one of the two triangles is chosen early in the calculations
(triangles �AB1C and �ACB2 in Fig. 28).

Defining the segment’s directional vector as d = −→
PQ =

Q − P , then any point X within the segment is defined as
X = P +td, with 0 ≤ t ≤ 1. The normal to the quadrangle’s
plane is n = −−→

AB1 × −−→
AB2. The intersection point with the

plane of the quadrangle is defined as W = P + twd, with:

tw =
−→
PA · n
d · n . (20)

The triple products are defined as:

Va =
[
d

−→
PC

−−→
PB1

]
= e1 · −−→

PB1

Vb =
[
d

−→
PC

−−→
PB2

]
= e1 · −−→

PB2

V2 = −
[
d

−→
PC

−→
PA

]
= −e1 · −→

PA , (21)

with e1 = d × −→
PC. If the segment collides with a triangle,

then all triple products must have the same sign. Thus, the

A

C

W

P

Q

B1

B2

Fig. 28 Collision test between a quadrangle and a segment

correct triangle can be chosen at this stage, and the third
(and last) triple product can be computed:

e2 =
{
d × −−→

PB1 if sign (Va) = sign (V2)

d × −−→
PB2 if sign (Vb) = sign (V2)

V3 = e2 · −→
PA (22)

The segment collides with the quadrangle �AB1CB2 if and
only if:

0 ≤ tw ≤ 1 and sign (V2) = sign (V3) (23)

B.4 Sphere primitive

Defining the segment’s directional vector as d = −→
PQ =

Q − P , then any point X in the segment is defined as X =
P + td, with 0 ≤ t ≤ 1. The segment intersects the sphere
if any of the following three criteria is met (Fig. 29):

1. Point P is inside the sphere.
2. Point Q is inside the sphere.
3. The point in the segment that is closest to the sphere’s

center is between P and Q and inside the sphere.

Defining a vector v = C − P , then there is collision
according to the first criteria if:

v · v ≤ r2 (24)

Similarly, there is collision according to the second criteria
if:

(v − d) · (v − d) = v · v − 2v · d + d · d ≤ r2 (25)

The closest point in the line defined by P and Q to the
sphere’s center, measured from point P is:

w = v · d
d · dd (26)

This point is inside the sphere if:

(v − w) · (v − w) ≤ r2(
v − v · d

d · dd
)

·
(
v − v · d

d · dd
)

≤ r2 , (27)

with this point inside the segment PQ if and only if 0 ≤
w ·d ≤ d ·d, which is an equivalent expression to 0 ≤ t ≤ 1.

C

r

v-wv
Q

P

Fig. 29 Collision test between a sphere and a segment



1182 T. Zegard, G.H. Paulino

B.5 Disc primitive

Defining the segment’s directional vector as d = −→
PQ =

Q − P , then any point X in the segment is defined as X =
P + td, with 0 ≤ t ≤ 1.

The disc is centered at point A, and the normal points
towards a point B as in Fig. 30. The normal to the plane of
the disc is n = B − A. Defining v = −→

AP = P − A, the
intersection with the disc’s plane is found at a point W =
P + twd:

tw = −v · n
d · n (28)

The segment collides with the disc if the distance between
point W and the disc’s center A is less than or equal to the
disc’s radius:
−−→
AW = W − A = P − A + twd = v − v · n

d · nd (29)

Finally, the segment collides with the disc if and only if:

−−→
AW · −−→

AW =
(
v − v · n

d · n
)

·
(
v − v · n

d · n
)

≤ r2 , (30)

with 0 ≤ tw ≤ 1.

B.6 Cylinder primitive (infinite cylinder)

Defining the segment’s directional vector as d = −→
PQ =

Q − P , then any point X in the segment is defined as X =
P + td, with 0 ≤ t ≤ 1. The segment is found to collide
with the (infinite) cylinder if:

1. The segment collides with the cylinder’s surface.
2. The segment is completely contained within the cylin-

der.

The cylinder’s axis is defined by n = B − A as in Fig.
31. The intersection with the cylinder’s surface is found at
points W = P + twd. Defining the radial vector of length r

from the cylinder’s axis to point W as m, then:

0 = m · m − r2

0 =
(

−−→
AW −

−−→
AW · n
n · n n

)
·
(

−−→
AW −

−−→
AW · n
n · n n

)
− r2 (31)

P

Q

r

A
W

B

Fig. 30 Collision test between a disc and a segment

Defining v = −→
AP = P −A, and expanding

−−→
AW in terms of

v, d and tw:

0 =
(

(v + twd) −
[
(v + twd) · n

n · n
]
n
)

·
(

(v + twd) −
[
(v + twd) · n

n · n
]
n
)

− r2 , (32)

where terms can be ordered to obtain a quadratic equation
for tw:

0 =
[
d · d − (d · n)2

n · n

]
t2
w +

2

[
v · d − (d · n) (v · n)

n · n
]

tw +

(v · v) − (v · n)2

n · n − r2 (33)

Multiplying by n · n, the quadratic equation becomes:

0 = at2
w + btw + c

a = (n · n) (d · d) − (d · n)2

b

2
= (n · n) (v · d) − (d · n) (v · n)

c = (n · n)
[
(v · v) − r2

]
− (v · n)2 , (34)

with solutions given by:

tw = −b ± √
b2 − 4ac

2a
=

− b
2 ±

√(
b

2

)2

− ac

a
(35)

The (infinite) line defined by the segment does not inter-
sect the cylinder if the discriminant in (35) is negative (i.e.
(b/2)2 − ac < 0). If the discriminant is positive, then an
additional check must be made to ensure the intersection
point is within the segment PQ. The segment collides with
the cylinder if 0 ≤ tw ≤ 1 for any of the two roots (points
W and W ′ in Fig. 31).

W’
n

A

r
P

Q

B

v

m W

Fig. 31 Collision test between a cylinder (infinite length) and a
segment
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Finally, the segment is completely contained inside the
cylinder, if the distance from the cylinder’s axis to point P

is less than or equal to the radius r:

(
v − v · n

n · nn
)

·
(
v − v · n

n · nn
)

≤ r2 (36)

B.7 Rod primitive

The rod primitive is a combination of the infinite cylin-
der and disc primitives with some minor modifications. The
segment collides with the rod if any of the following 4
situations occur:

– The segment collides with the finite cylinder’s
surface.

– The segment collides with the A endcap (disc).
– The segment collides with the B endcap (disc).
– The segment is fully contained within the rod.

The collision with the finite cylinder’s surface begins
from the test primitive for the infinite cylinder outlined in
(34) and (35). In addition, the intersection points W and W ′
(Fig. 32) must be in the surface between the endcaps. Thus,
an additional check is required; the segment collides with
the finite cylinder’s surface if:

0 ≤ w · n ≤ n · n
0 ≤ (v + twd) · n ≤ n · n (37)

for any of the two roots of tw from (35), with 0 ≤ tw ≤ 1.
The collision with the endcaps A and B follow the proce-

dure for the disc primitive. Equation (30) can be used with
no modification to test the collision against endcap A. The

n

B

A
r

P

Q

v

W

W’

w

Fig. 32 Collision test between a rod (finite cylinder with endcaps) and
a segment

B endcap is analogous to the endcap A; the segment collides
with endcap B if:

−−→
BW · −−→

BW ≤ r2(
v + n · n − v · n

d · n
)

·
(
v + n · n − v · n

d · n
)

≤ r2 , (38)

with:

0 ≤
(

tw = n · n − v · n
d · n

)
≤ 1 (39)

Finally, if the segment is completely contained in the rod,
then point P must be inside the rod. In other words, if the
distance from point P to the cylinder’s axis is less than or
equal to r:(
v − v · n

n · nn
)

·
(
v − v · n

n · nn
)

≤ r2 , (40)

with an additional check to verify point A is between the
endcaps:

0 ≤ v · n
n · n ≤ 1 (41)

B.8 Surface primitive

The surface primitive builds from the base of the triangle
and quadrangle primitives. The surface primitive can han-
dle any surface provided that it is tessellated (discretized)
and the points in each facet lie (approximately) in the same
plane. In addition, it is assumed that all facets are convex
in their own plane. An example of a tessellated surface is
shown in Fig. 33: the surface was tessellated using triangles
and quadrangles. The inputs for this collision primitive are:

– A matrix of nodes RNODE of size Nrn × 3, where Nrn

is the number of nodes in the collision surface.
– A list (cell) with facet connectivity RFACE of size

Nrf × 1, where Nrf is the number of facets in the colli-
sion surface. Each entry in RFACE is a row vector with
nodal connectivity (based on RNODE).

The surface collision primitive can address facets with
more than 4 nodes (flat polygons), provided that all the
nodes lie in (approximately) the same plane. This polygon
will be subdivided into triangles and evaluated sequentially.

Fig. 33 Collision surface example: Surface is tessellated into triangles
and quadrangles
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Fig. 34 User interface for live
testing and debugging the disc
collision primitive

B.9 Development & debugging of collision tests

Algorithms for additional intersection tests can be found in
literature or derived. It is strongly recommended however,
to test and debug new collision primitives thoroughly. In
the present work for example, simple game–like user inter-
faces were used for live testing the collision primitives (see
Fig. 34 for an example).
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sitĺat Essen

Gilbert M, Darwich W, Tyas A, Shepherd P (2005) Application of
large-scale layout optimization techniques in structural engineer-
ing practice. In: 6th world congress of structural and multidisci-
plinary optimizartion, June:1–10

Gilbert M, Tyas A (2003) Layout optimization of large-scale pin-
jointed frames. Eng Comput 20(8):1044–1064

Hemp WS (1973) Optimum structures, 1st edn. Oxford University
Press, Oxford
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