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Abstract This paper presents the PolyTop++, an efficient
and modular framework for parallel structural topology
optimization using polygonal meshes. It consists of a C++
and CUDA (a parallel computing model for GPUs) alter-
native implementations of the PolyTop code by Talischi
et al. (Struct Multidiscip Optim 45(3):329–357 2012b).
PolyTop++ was designed to support both CPU and GPU
parallel solutions. The software takes advantage of the C++
programming language and the CUDA model to design
algorithms with efficient memory management, capable of
solving large-scale problems, and uses its object-oriented
flexibility in order to provide a modular scheme. We
describe our implementation of different solvers for the
finite element analysis, including both direct and iterative
solvers, and an iterative ‘matrix-free’ solver; these were all
implemented in serial and parallel modes, including a GPU
version. Finally, we present numerical results for problems
with about 40 million degrees of freedom both in 2D and 3D.
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1 Introduction

Structural topology optimization methods are utilized to
find an ideal material distribution within a given domain that
is subjected to loading and support conditions. Most compu-
tationally oriented papers in topology optimization, that rely
on the finite element method (FEM), employ either triangu-
lar or quadrilateral meshes consisting of linear elements
with constant design variables. However, numerical insta-
bilities such as checkerboard patterns are well-known in
density based methods (Talischi et al. 2010; Rozvany et al.
2003). One can use regularization schemes such as filtering
to suppress such numerical instabilities, but these mea-
sures often involve heuristic parameters that can augment
the optimization problem and lead to significant weight
increases (Sigmund 2001; Andreassen et al. 2010). Recently
polygonal discretizations have been proposed to achieve sta-
ble topology optimization formulations using lower order
elements (degrees of freedom sampled at the nodes and
constant design variable within the element) as reported
in references (Talischi et al. 2010, 2012b, 2014); these
elements are the focus of our present work.

Another important issue in the implementation of topol-
ogy optimization is the ability to extend, develop and
modify the code to solve more complicated and large-scale
problems. For example, by using a modular code it is eas-
ier to replace the current analysis method with a more
suitable analysis package for solving different problems.
The formalism of this modular approach is crucial when
one seeks to improve the analysis routines, including the
compliance equation and its sensitivities, without changing
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the topology optimization formulation, including the mate-
rial interpolation and regularization schemes (e.g. filters and
other manufacturing constraints).

The theory around topology optimization has received
considerable attention when compared to practical chal-
lenges in developing efficient and modular codes, especially
when the goal is to solve complex, large-scale problems
with millions of degrees of freedom (dofs). Some edu-
cational codes, such as the 99-line (Sigmund 2001) and
88-line (Andreassen et al. 2010), serve as a resource to the
community and were developed to solve specific topology
optimization problems, with an implementation that mixes
the analysis routines and the optimization formulation.
Perhaps the main goal in these cases was to keep the code
compact and simple, rather than to achieve the flexibility
required to solve more general problems. Different versions
of these codes are necessary if we need to change, for exam-
ple, the finite element analysis (FEA) to deal with polygonal
meshes, or if we want to change the optimization for-
mulation, e.g. from compliance minimization to compliant
mechanisms (Pereira et al. 2011).

The PolyTop code presented by Talischi et al. (2012b)
features a modular Matlab structure to solve topology opti-
mization problems; much like the 99- and 88-line codes
(Sigmund 2001; Andreassen et al. 2010), the PolyTop
code also has an educational focus. The code is structured to
separate the analysis routine and the optimization algorithm
from the specific choice of the topology optimization for-
mulation. The finite element (FE) model and the topology
optimization parameters are passed to the PolyTop kernel
by a Matlab script, allowing the user to investigate different
problems without changing the basic kernel. The formalism
offered by this decoupling approach provides an easy way to
extend, develop and modify the code to test different topol-
ogy optimization formulations. Moreover, the PolyTop
code addresses practical issues regarding use of polygo-
nal meshes in arbitrary design domains (rather than boxes).
This paper deals with the computational cost associated
with polygonal meshes. Numerical results are presented
using polygonal meshes with up to 120 thousand elements
(Talischi et al. 2012b). However, when using the PolyTop
code to deal with large-scale problems, it is difficult to have
total control of memory allocation in Matlab. Efficient algo-
rithms are necessary to build the filtering sparse matrix,
which is used to link the design variables to the analysis
parameters. The process of building this matrix causes a
memory bottleneck in the current PolyTop code, while a
performance bottleneck occurs because the linear system of
equations within the finite element analysis module have to
be solved.

The number of publications that focus on solving large-
scale problems in topology optimization has increased con-
siderably over the last few years – see, for example, the

review paper by Deaton and Grandhi (2013). In 2012,
Suresh introduced an algorithm for large-scale 3D problems
in topology optimization (Suresh 2012), which is an exten-
sion of the 2D topological-sensitivity based method (Suresh
2010). The 3D model explores the congruence between
hexahedron/brick finite elements and modern multi-core
computer architectures. Suresh presented numerical results
with 700 thousand dofs, which can be solved in 16 minutes
in a CPU and, in 125 seconds in a GPU. He also obtained
results for relativelly large-scale problems with 15 million
dofs, that required 19 hours using the CPU, and in 2 hours
using the GPU. He solved an even greater problem, with 92
million dofs, which took 12 days of processing on the CPU
(no results on the GPU were provided because of memory
problems). However, the current model uses uniform grids
(instead of unstructured meshes), which are susceptible to
checkerboard pattern problems (Talischi et al. 2010), as
mentioned previously. Recently, Aage and Lazarov imple-
mented a parallel framework for topology optimization
using the method of moving asymptotes (Aage and Lazarov
2013). They simulated fluids and solid mechanics problems
with linear scalability up to approximately 800 CPUs on a
Cray XT4/XT5 supercomputer. They presented results for a
3D mesh using linear hexahedral elements with almost 15M
dofs spending approximately 5 minutes for each topology
optimization iteration. Another recent work published by
Amir et al. (2013) presents a computational approach to
reduce the time for solving 3D structural topology optimiza-
tion problems. They obtained performance improvement
by exploiting the specific characteristics of a multigrid
preconditioned conjugate gradient (MGCG) solver.

Despite recent practical results, many improvements are
still required to develop an efficient and modular code,
capable of dealing with different topology optimization
problems. The PolyTop++ code contributes to this effort,
addressing issues pertaining to the use of polygonal meshes
in arbitrary design domains and offering a hierarchical mo-
dular structure that is easier to extend to different finite ele-
ment solvers, different topology optimization formulations,
and different physics.

2 Formulation, optimizer and modular code

The main goal of topology optimization is to find the most
efficient material distribution inside a domain � ⊆ R

N .
Many topology optimization formulations can be defined in
the form:

⎧
⎨

⎩

min f (ρ,u)

s.t. : gi(ρ,u) ≤ 0, i = 1, . . . , Nc

(1)
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where f and gi are, respectively, the objective and con-
straint functions, Nc is the number of constraints, and ρ

represents the density function.
We consider linear elasticity to be the governing state

equation, which is typical in continuum structural optimiza-
tion. The solution u ∈ V satisfies the variational problem

∫

�

mE(ρ)C∇u : ∇vdx =
∫

�N

t · vds, ∀v ∈ V (2)

V = {v ∈ H1(�;Rd) : v|�D = 0} (3)

where mE is a material interpolation function, C is the
stiffness tensor, �N and �D are portions of ∂�, where
the non-zero traction t and the displacements are specified,
respectively.

In this work, as well as in the original PolyTop imple-
mentation (Talischi et al. 2012b), we solve compliance
minimization problems using the following discrete form:
⎧
⎪⎨

⎪⎩

min FT U

s.t. : AT mV (Pz)
AT 1

− v ≤ 0
(4)

where F is the nodal load vector, which is independent of the
design variables z, U is the nodal displacement vector that
arise from the equilibrium equation K (mE (z)))U = F,
and K is the global stiffness matrix. A is the vector of ele-
ment volumes, mV is the volume interpolation function, P is
the matrix that maps the design variables z into the element
variables y by y = Pz, 1 denotes an array consisting of unit
entries, and v is an input parameter that defines the design
volume fraction.

In the so-called SIMP (Solid Isotropic Material with
Penalization) approach (Bendsoe 1989; Deaton and Grandhi
2013; Schmidt and Schulz 2012; Sigmund 2001; Talischi
et al. 2010, 2012b; Andreassen et al. 2010) the element
material properties are considered constant and the element
densities are the design variables of the problem:

mE(ρ) = ε + (1 − ε)ρp, mV (ρ) = ρ (5)

where p is the penalty parameter, and ε the Ersatz param-
eter. The SIMP method is used here because this work
is based on the PolyTop model (Talischi et al. 2012b).
Moreover, this method is very popular and has been used
successfully to solve a variety of problems. However, alter-
native well-known methods can also be found in the lit-
erature, such as the level-set (Deaton and Grandhi 2013;
Gain and Paulino 2013; Osher and Fedkiw 2001; Osher and
Sethian 1988), phase-field (Bourdin and Chambolle 2003;
Deaton and Grandhi 2013; Gain and Paulino 2013), and
topological-sensitivity Pareto-optimal (Suresh 2010, 2012)
based methods.

Figure 1 describes the structure of the topology opti-
mization method implemented in this work to solve the
compliance minimization problem. The boxes inside the
dashed lines in the diagram represent the main steps in the
loop until the change between the element densities in sub-
sequent iterations achieve the specified tolerance level and
the final topology is obtained.

The diagram also shows the decoupling approach
between the FE analysis stage, the constraint stage, and the
interpolations functions chosen for mapping the sensitivities

Fig. 1 Topology optimization
steps for the compliance
minimization problem
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Objective Function
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- Sensitivity Analysis

Constraint Function

Update Design Variables
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to the design variables. The structure of the discrete opti-
mization problem allows separation of the analysis routine
from the particular topology optimization formulation. The
analysis functions do not need to know about the choice
of interpolation functions which corresponds to the choice
of sizing parametrization or the mapping P that places
constraints on the design space. Therefore, a general imple-
mentation of topology optimization in the context of this
discussion must be structured in such a way that the finite
element routines contain no information related to the spe-
cific topology optimization formulation. Because of this, we
define the analysis module as a collection of functions that
compute the objective and constraint functions. This mod-
ule comunicates with the finite element module to access
the mesh information. An advantage of this approach is
that the analysis functions can be extended, developed and
modified independently of any modification to the topology
optimization formulation.

In addition, certain quantities used in the analysis mod-
ule, such as element areas A and local stiffness matrices
Ke, as well as connectivity of the global stiffness matrix
K, need to be computed only once in the course of the
optimization algorithm, as well as the mapping matrix P.
In order to use a gradient-based optimization algorithm for
solving the discrete problem, we must compute the gradi-
ent of the cost functions with respect to the design variables
z. The sensitivity analysis can be separated along the same
lines discussed above. The analysis functions compute the
sensitivities of the cost functions with respect to their own
internal parameters. Note that the analysis functions only
compute the sensitivities of a certain variable gi with respect
to the internal parameters E and V, i.e.:

∂gi

∂z
= ∂E

∂z
∂gi

∂E
+ ∂V

∂z
∂gi

∂V
(6)

In the compliance problem, f = FT U, we have (Talischi
et al. 2012b):

∂f

∂Ee

= −UT ∂K
∂Ee

U = −UT KeU,
∂f

∂Ve

= 0 (7)

This means that the FE function that computes the objec-
tive function also returns the negative of the element strain
energies as the vector of sensitivities ∂f/∂E. The remain-
ing terms in (6) depend on the formulation, i.e., how the
design variables z are related to the analysis parameters.
For example, if E = mE(Pz) and V = mV (Pz) it implies
that:

∂E
∂z

= PT JmE
(Pz),

∂V
∂z

= PT JmV
(Pz) (8)

where JmE
(y) := diag(m′

E(y1), . . . , m
′
E(yN)) is the Jaco-

bian matrix of map mE , and JmV
(y) := diag(m′

V (y1), . . . ,

m′
V (yN)) is the Jacobian matrix of map mV . The evaluation

of expression (6) is carried out outside the analysis routine

and the result, ∂gi/∂z, is passed to the optimizer to update
the values of the design variables.

3 Linear system solvers

The linear solver plays a very important role in topol-
ogy optimization because it is used in each step of the
optimization. Usually, this stage becomes the performance
bottleneck of the simulation. Accordingly, any improve-
ment in solver performance will have a major impact on
the overall performance of the system. For that reason, we
focus on the finite element analysis stage to highlight the
code’s ability to deal with extensions and modifications
by illustrating how to handle different linear solvers. We
will provide a detailed description of the different linear
solvers implemented in this work (for the finite element
analysis).

We address issues concerning the use of polygonal
meshes to develop efficient algorithms for the different
solvers. Since we are solving elasticity problems, the corre-
sponding coefficient matrix of the linear system is symmet-
ric, positive-definite and usually sparse. We employed mod-
ules to handle direct and iterative solvers, assembling the
global stiffness matrix, and also used an iterative ‘matrix-
free’ solver, in which only the local stiffness matrix of each
element is computed. All these solvers were implemented
using serial and parallel computing. Table 1 presents the
solvers used in this work.

3.1 Unsymmetric multifrontal package (UMFPACK)

The UMFPACK is a free package with a set of routines
for solving sparse linear systems using the Unsymmet-
ric MultiFrontal method (Davis and Duff 1997). We use
its C interface to implement our serial direct solver for
the FEA. Our code computes the local stiffness matrix
of each element and then assembles the global stiffness
matrix using the triplet format (Davis 2006). The solver
package requires that the global stiffness matrix is stored
in the compressed-column sparse (CCS) form (Duff et al.
1989); therefore our matrix triplet form is converted to the
compressed-column form fusing the package routine umf-
pack dl triplet to col. Considering that we must update the

Table 1 Linear system solvers in PolyTop++

Solver Type Version

UMFPACK (Davis and Duff 1997) Direct Serial

PCG (Saad 2003) Iterative Serial

EbEPCG (Augarde et al. 2006) Iterative Parallel

PARDISO (Schenk and Gärtner 2004) Direct Parallel
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element stiffness matrices at each iteration of the topology
optimization process, and that the mesh topology remains
unchanged, we use the triplet format as an easy way to store
the global stiffness matrix. The nodal displacements, that
arise from the solution of the linear system of equations
are passed to the next stage of the topology optimization
algorithm.

3.2 Preconditioned conjugate-gradient (PCG)

The preconditioned conjugate-gradient (PCG) solver was
implemented using a Jacobi preconditioner (Saad 2003).
The PCG is an iterative method for solving linear sys-
tems with symmetric and positive-definite matrices. For this
solver, the global stiffness matrix is assembled by using
the local stiffness matrix of the elements, as we did for
the UMFPACK. However, in order to reduce the memory
requirement, we used a different sparse format to store
the global stiffness matrix. The class cCRSMatrix handles
matrices in a compressed-row sparse (CRS) format (Davis
2006). As mentioned previously, since we have to update
the stiffness of the finite elements at each iteration of the
topology optimization looping, the class cCRSMatrix has
auxiliary arrays to find the exact position of an element
inside the sparse matrix in order to avoid rebuilding the
entire matrix.

The Algorithm 1 shows the basic steps of the PCG
method. We note that each step needs one matrix-vector
product and a product between the diagonal of the sparse
matrix and a vector. The cCRSMatrix class holds the matrix-
vector products and its main method Solve implements the
pseudo-code for solving the linear system of equations.

Due to the ill-conditioned nature of the linear system
of equations, this method requires many iterations to con-
verge, as pointed out by Wang et al. (2007). Therefore, the
matrix-vector product becomes the bottleneck in the overall
simulation. However, this problem is overcome by using an
iterative method where the matrix-vector product, which is
the most expensive operation in the solution of the system,
can be easily parallelized. Section 3.3 presents the parallel
matrix-free PCG solver implemented here.

3.3 Element-by-Element PCG (EbEPCG)

One of the main contributions of this work is the efficient
use of polygonal meshes. Our main goal is to enable the
PolyTop framework to handle larger problems compared
to the educational Matlab version. As we mentioned, this
type of mesh is less susceptible to numerical instabilities
such as checkerboard patterns; however, it may increase the
computational cost of the system, which can make the solu-
tion of large-scale problems unfeasible. For this reason, the
use of parallelism becomes indispensable.

Another issue encountered when solving large-scale
problems is the computation of the global stiffness matrix
(K). Assembling K is the main bottleneck of the current
PolyTop system, as presented by Talischi et al. (2012b)
and shown in Table 2. We present a new parallel algorithm
of a ‘matrix-free’ PCG solver using polygonal meshes in
the GPU. We have chosen the ‘matrix-free’ PCG solver pre-
sented by Augarde et al. (2006) because, in this method,
the full matrix K is not required. Instead, only the element
stiffness matrices are used to solve the linear system of
equations. We know that the storage for all the individual
element stiffness matrices will exceed the memory taken
by the global assembled matrix. However, there are issues
to using a global stiffness matrix to solve large scale prob-
lems: Using a direct solver with a global stiffness matrix is
impracticable because of the extra memory space required
for the factorization process (this is shown later in the results
section). The use of an iterative solver with a global stiffness

Table 2 PolyTop code runtime profile for different numbers of ele-
ments. Assembling the global stiffness matrix K is the most expensive
part of the code (Talischi et al. 2012b)

Mesh size 2.7 K 7.5 K 30 K 120 K

Assembling K 37.8 % 41.1 % 37.2 % 28,5 %

Solving KU = F 23.0 % 28.6 % 32.1 % 29.8 %

Mapping z,E and V 6.1 % 6.8 % 6.9 % 20.1 %

Update Design Vars. 1.1 % 2.1 % 2.8 % 1.4 %

Plotting 16.0 % 7.7 % 3.3 % 1.8 %

Others 15.7 % 12.8 % 17.7 % 18.4 %
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matrix would be a valid alternative. In this paper, how-
ever, we have opted to use an element-by-element solver
because of its flexibility and adequacy for an efficient paral-
lel GPU-based algorithm, which is one of the focuses of the
manuscript. It is important to mention that an ideal element-
by-element solution for large problems would be to store
no local stiffness matrix at all, and calculate the required
member of the local matrix at the time it is needed. When
using polygonal elements, the process of calculating the
local stiffness matrix has a high computational cost; how-
ever, identical elements share identical local matrice, which
allows us to simulate large-scale problems with small mem-
ory usage, as long as we can model the domain with multiple
instances of a small set of elements.

Both serial and parallel ‘matrix-free’ PCG solvers for the
FEA were used in the topology optimization algorithm and
employed the same strategy to enable the evaluation and
validation of the results.

3.3.1 Race condition

The race condition issue appears when two different par-
allel threads may need to be written in the same memory
position. In the parallel implementation of the EbEPCG,
the matrix-vector product computed in two different threads
may have to give results in the same dof, as shown in Fig. 2.
In a strategy where each thread is assigned to a finite ele-
ment node, race conditions should never appear. However,
this approach has the following disadvantages: the GPU’s
SIMD architecture cannot be altered because of the vari-
able number of adjacent elements per vertex; the need to
use an adjacency data structure to represent the mesh; the
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Fig. 2 Race condition on the matrix-vector product of two different
elements computed in parallel by two different threads. The elements
share common dofs and may have to write in the same memory
position in array q

impossibileity of having a coalesced memory access for
the local stiffness matrix. To address this problem, we use
an approach based on graph coloring. The idea consists of
computing the matrix-vector product for a set of elements
that do not have any nodes in common. By considering
enough groups (colors), the matrix-vector product required
by the PCG solver can be computed with no race condition.
We employed the greedy coloring algorithm (Gebremedhin
et al. 2005) due to its simplicity and the small increase
required in the preprocessing runtime. Figure 3 shows an
example of a polygonal mesh colored with 6 different col-
ors by the greedy algorithm. We use this algorithm in all
parallel versions of the ‘matrix-free’ PCG solver.

3.3.2 Naive parallel version

The standard approach for computing the matrix-vector
product without assembling the global stiffness matrix is
given by

Unew = KU =
N∑

e=1

KeUe, (9)

where Ke and Ue are, respectively, the stiffness matrix and
the displacement vector of the element e. The element based
approach is attractive because the same instruction can be
used to compute the matrix-vector product of all elements
through multiple threads, which is consistent with the SIMD
(Single Instruction Multiple Data) architecture of CUDA
(Nvidia 2013). We tested this approach for the MBB beam
problem (Messerschmitt-Bolkow-Blohm Olhoff et al. 1991)
with a polygonal mesh with 5K elements and loading and
support conditions as stated in Fig. 4. The computing plat-
form used here is provided in Table 3. Unfortunately, Fig. 8
shows that the standard element approach is unfavorable for
a parallel implementation; the performance of the naive par-
allel version is about 20 % better in the CPU, and about
70 % worse in the GPU, compared to the serial version.

Analysing the results of the naive parallel implementa-
tion, we identified the reason for the low performance of
the parallel version in comparison to the serial one. The
main problem occurs because concurrent threads process a
different number of vertices per polygon, particularly in a

Fig. 3 Polygonal mesh colored by the greedy coloring algorithm
(Gebremedhin et al. 2005) to avoid race condition
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Fig. 4 MBB beam problem statement with its domain geometry,
loading and boundary conditions

GPU that uses SIMD architecture, where concurrent threads
should follow the same line of execution to reach maximum
performance. In this example, we tested a polygonal mesh
with 5K elements, composed of 27 4-gons, 1028 5-gons,
3325 6-gons, and 620 7-gons, where the different sizes of
the stiffness matrices of each element increase the number
of divergent branches in parallel computing. This prob-
lem is more critical in the GPU code, since in the CUDA
model, the group of threads inside a warp must wait for the
other threads that branched off to a different execution path.
Moreover, when using elements with a different number of
vertices, it is more difficult to access memory in an aligned
way, and in a coalesced way, in order to take advantage of
the cache in the CPU, and of the memory bandwidth in the
GPU.

3.3.3 Optimized matrix-vector product

In polygonal meshes, different elements present a differ-
ent number of nodes, which may cause low performance
of parallel implementations due to the high divergency of

Table 3 Computing platform used to obtain the numerical results

Computing Platform

O.S. Windows 64-bit

Language C++

CPU Intel Core i7-2820QM

Clock @2.30GHz

RAM 16.0GBs

Library OpenMP (OpenMP Architecture Review Board 2011)

GPU Nvidia GTX Titan

Clock @837MHz

RAM 6.0GBs

Library CUDA (Nvidia 2013)

branches and cache misses (concurrent threads do not access
contiguous memory space). Therefore, our strategy consists
in creating two main subdivisions of the mesh elements: the
first one subdivides the elements by their colors, and the sec-
ond one subdivides the elements by their number of vertices,
as shown in Fig. 5.

The stiffness matrices of the elements are stored in a 1D
global array, in such a way that all the columns of each
element matrix are serially stored. Because all the element
matrices are symmetric, only their lower triangular parts
need to be stored. Figure 6 presents this special data storage
in memory.

The parallel block execution uses each thread to compute
the product qi = ai,jpj , where, for a given element, ai,j

are the components of the local stiffness matrix, pj are the
components of the local displacement vector, and qi are the
components of the local force vector. Notice that only the
columns of the element matrices are accessed sequentially
to compute the corresponding dofs. Initially, all threads
compute the first column. Then, all threads switch simulta-
neously to the second column, and this procedure continues
until all dofs are computed, as illustrated in Fig. 7.

Figure 8 shows the result of the optimized ‘matrix-free’
PCG solver for the parallel version, after the improvements
presented here for the matrix-vector products. Our parallel
algorithm implemented in the CPU is almost 1.8 times faster
than the equivalent serial code, and 1.14 times faster than
our naive parallel code (presented in a previous section),
while the GPU version is approximately 20 times faster than
the equivalent serial code in the CPU, and about 33 times
faster than the naive parallel code implemented in GPU.
We realize that comparing a serial code in the CPU with a

Fig. 5 Subdivision of elements by their colors and their number of
vertices to optimize matrix-vector products
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Fig. 6 Rearrangement of the
stiffness matrices of the
elements in a 1D global array to
optimize access

parallel code in the GPU is not completely fair; however,
it does show the performance gains that can be obtained
when engineering applications move from the traditional
serial paradigm to parallel computing. Because of this, we
also compare our optimized parallel GPU code with parallel
codes in the CPU and GPU (even with a naive approach),
and the relative increase in speed is within the expected
range based on similar works (Suresh 2013, 2012; Zegard
and Paulino 2013; Papadrakakis 2011).

3.4 PARDISO

PARDISO (Schenk and Gärtner 2004) is a shared-memory
multiprocessing parallel direct solver package. We use it as
a parallel direct solver in the PolyTop++ code. The package
can be used to solve large sparse symmetric and unsymmet-
ric linear systems of equations. In this work, we have used
it for solving sparse symmetric positive-definite matrices in
the FEA, performed in each topology optimization iteration.

As in the PCG Solver, described in Section 3.2, this
algorithm uses the class cCRSMatrix to store the sparse
symmetric matrix in a compressed-row format. Again, we
use the auxiliary arrays of the sparse matrix class to update
the stiffness of the finite elements before running the FEA.
The connectivity sparse matrix and its auxiliary arrays are
computed from the global stiffness matrix stored in the
triplet format, which is constructed just once before the
topology optimization loop.

Considering that PCG is an iterative solver and PARDISO
is a direct solver, we employ the modular feature of Poly-
Top++ to reuse code from one solver to the other. Thus we

took advantage of the object-oriented C++ language to reuse
the features already available in the PCG solver.

4 Results

This section presents the numerical results obtained by
the PolyTop++ code using different types of meshes with
different sizes, and is organized as follows:

• Validation results with respect to the Matlab code con-
sidering the compliance curves and the final optimal
topologies for the MBB beam problem;

• Code profiling to check the performance bottlenecks;
• Performance results of the entire optimization process

compared with the Matlab version;
• Performance of the different solvers, using meshes with

more than 1 million polygonal elements;
• Optimal layout results for non-cartesian domains, com-

paring performance between GPU and CPU solvers;
• Results for the 3D Cantilever Beam problem using

polyhedral and brick elements. For the latter, the same
local stiffness matrix is shared among all elements to
handle examples with 36M dofs in a single GPU.

For all examples presented here, we used the computing
platform described in Table 3, while the finite element mesh
is given by an input neutral file generated by PolyMesher
Talischi et al. (2012a), a companion paper of the PolyTop
(Talischi et al. 2012b). However, any other application could
be used to generate the input data file for our C++ code.
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Fig. 7 The parallel block execution sequence. a All threads computing the first column. b All threads computing the second column. c All threads
computing the third column. d All threads computing the fourth column

Fig. 8 Speedup values considering the serial, the naive parallel and
the optimized parallel versions of the EbEPCG solver implemented in
the CPU with OpenMP, and in the GPU with CUDA

4.1 Validation

We validated the code with the PolyTop results by com-
paring the compliance minimization curves and the final
optimal topologies for the MBB beam problem defined in

Fig. 9 Compliance minimization curves for the MBB beam problem
by all PolyTop++ solvers and PolyTop (Talischi et al. 2012b)
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Fig. 10 MBB beam problem results. a Final topologies using a mesh
with 50K polygonal elements for both PolyTop and PolyTop++. b
Mesh composition for 50K and 1.5M polygonal elements

Fig. 4. For this problem we use the same configuration
parameters used by PolyTop, in the example described
in Section 5 of Talischi et al. (2012b), except for the
SIMP penalty parameter p and for the maximum number of
iterations, set here as 3 and 200, respectively.

We used the MBB beam problem with a mesh com-
posed by 50K polygonal elements using all the available
solvers in the PolyTop++ code and the PolyTop code. The
EbEPCG solver was implemented in parallel as described
in Section 3.3 using the OpenMP library (OpenMP Archi-
tecture Review Board 2011). In Fig. 9 we observe that
the compliance curves for all types of solvers are exactly
the same as the PolyTop curve, as expected. In addi-
tion, the final topologies obtained by all PolyTop++ solvers
are exactly alike if compared with PolyTop. Figure 10a
shows the topology result, and Fig. 10b shows how het-
erogeneous our polygonal mesh is, composed mostly of
6-gons, 5-gons, and 7-gons. In Fig. 10b, we observe that the

Table 5 Speedup between PolyTop and PolyTop++ (PARDISO)

Overall time (seconds) - 200 iterations

Mesh size 5 K 50 K 100 K 200 K

PolyTop++ 8.8 176.9 466.9 1382.7

PolyTop (Talischi et al. 2012b) 50.7 628.1 1448.4 3413.6

Speedup 5.7 3.6 3.1 2.5

Code runtime for the MBB beam problem for 200 iterations.

mesh composition distribution is almost equal, for the 50K
element mesh and the 1.5M element mesh.

4.2 Code profile

Analysing the performance results, we compared the run-
time of the algorithm’s main steps. This is important to
identify the code bottleneck changes from the PolyTop
runtime profile. Table 4 shows the PolyTop++ code runtime
profile using the PARDISO solver for different mesh sizes.
We chose this solver because it has similar properties to the
Matlab solver, as both are parallel direct solvers.

Table 2 shows the PolyTop runtime code profile pre-
sented by Talischi et al. (2012b). We can observe that the
main bottleneck of the PolyTop code is assembling the
global matrix K (more than 35 % of the runtime). Com-
paring these results to Table 4, we notice that this is not
the case in the C++ code due to the strategy adopted for
computing auxiliary arrays to store the connectivity of the
global stiffness matrix in a sparse level. Considering that
the mesh connectivity remains intact during the entire sim-
ulation, we update the stiffness of the elements directly in
the sparse matrix structure, avoiding rebuilding the global
matrix in each iteration. As a result, the K matrix is assem-
bled just once, together with the triplets computation, before
the topology optimization loop.

Table 4 Polytop++ code runtime profile for different number of polygonal elements using PARDISO (cf. Table 2)

Mesh size 5 K 50 K 100 K 200 K

time (s) % time (s) % time (s) % time (s) %

Computing P 0.1 1.2 10.5 5.9 42.4 9.1 191.1 13.8

Assembling K 0.9 10.6 11.5 6.5 24.2 5.2 50.9 3.7

Solving KU = F 6.1 68.6 127.2 71.9 324.7 69.5 904.6 65.4

Update Design Vars. 1.1 12.3 11.1 6.3 21.6 4.6 45.7 3.3

Compliance sensitivity 0.5 5.5 12.0 6.8 38.4 8.2 131.5 9.5

Mapping z,E and V 0.07 0.8 3.88 2.2 14.0 3.0 55.8 4.0

Others 0.09 1.0 0.7 0.4 1.5 0.4 3.2 0.3

Total time 8.9 176.9 466.8 1382.8
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Table 6 Solver runtime for the MBB beam problem considering large meshes

Solver time (seconds)

Mesh size UMFPACK PCG EbEPCG GPU EbEPCG PARDISO

100K 117.3 124.0 94.3 10.7 4.1

200K 370.7 362.2 316.8 27.7 8.4

400K 1191.7 1022.5 901.2 75.0 20.3

500K 2106.2 1416.8 1260.0 114.6 26.5

1,000K 5760.3 4680.1 5760.0 372.6 234.2

1,500K − − 6840.4 534.5 −

The parallel direct solver (PARDISO) is much faster than the others. The direct solvers do not have enough memory for solving the linear system
and the iterative PCG solver could not allocate the global stiffness matrix. The EbEPCG solver is the only option for large-scale problems.)

Fig. 11 PolyTop++ solving the
Michell cantilever problem
(Talischi et al. 2010) and the
Hook problem (Talischi et al.
2012b) with their final optimal
layouts and meshes
composition. aMichell
cantilever problem. b Hook
problem. c Michell optimal
layout. d Hook optimal layout. e
Michell mesh composition. f
Hook mesh composition
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Table 7 Solver runtime for the Michell cantilever problem (Talischi
et al. 2010) considering large meshes

Solver time (seconds)

Mesh size EbEPCG GPU EbEPCG PARDISO

1M ( 4M dofs) 2676.1 204.0 306.3

5M (20M dofs) 29880.2 2274.7 −
10M (40M dofs) 72000.5 − −

The GPU EbEPCG is faster than the PARDISO solver for a mesh with
1M of polygonal elements. The parallel direct solver (PARDISO) does
not have enough memory for solving the linear system for larger mesh
sizes.

4.3 Overall performance

Considering the total time to solve the entire topology
optimization, we compare the total runtime using both Poly-
Top++ (PARDISO solver) and PolyTop codes for the
MBB beam problem during 200 iterations for various mesh
sizes (Table 5). All the 8 CPU cores were used for both
applications. The increased speed achieved by the Poly-
Top++ code is more than 3 times that for the PolyTop
model.

4.4 Solver performance

The main PolyTop++ bottleneck is the linear solver, as
shown in Table 4. This step was already a bottleneck in
the Matlab code, together with assembling the matrix K, as
mentioned before. To analyze this step in more detail, we
compare only the runtime of the linear solvers available in
the C++ code. Table 6 presents the runtime for solving the
linear system of equations, considering the very first iter-
ation of the MBB beam problem. We used all 8 available
cores, with 1 thread per core, for the parallel CPU solvers
(EbEPCG and PARDISO). TheUMFPACK library was used
with its default parameters.

All the linear solvers give the same results for the node
displacements. From Table 6, we notice that the parallel
direct solver (PARDISO) is faster than the others. PARDISO
includes a very efficient parallel implementation of a direct
solver, requiring just a few seconds to solve meshes with
hundreds of thousands of elements while the other solvers
require several minutes to solve the same problem. We used
the serial implementation of the UMFPACK solver, and
we observed that the parallelism of the PARDISO solver
makes a big difference compared to the UMFPACK. The
iterative solvers, implemented in a serial way in the PCG
and in a parallel way in the EbEPCG, have performances
comparable to the UMFPACK.

We realize that comparing direct and iterative solvers is
not fair, but the goal here is to show how different solvers
can dramatically influence the feasibility of solving large-
scale problems in topology optimization. Although direct
solvers are faster and scalable, their memory consumption is
usually bigger, so that they can be used only up to a certain
mesh size. In this work, using 16.0GBs of RAM memory,
the mesh size limit was 1M for polygonal elements (with
just 8.0GBs of RAM the limit is 400K polygonal elements).
Table 6 shows that the system does not have enough mem-
ory to solve for larger meshes using direct solvers. Notice
that not even the iterative PCG solver could allocate the
required memory; however, in this case, this was due to the
memory required to store the global stiffness matrix.

In Table 6, we also demonstrate that for very large
meshes of over 1 million polygonal elements, the ’matrix-
free’ iterative solver is the only option. This type of solver
requires only the local stiffness matrices, which makes
a great difference in the memory footprint required. In
contrast, our EbEPCG algorithm takes 1.6 hours to solve
a linear system with 4 million dofs (1M elements) and
almost 2 hours to solve a linear system with 6 million
dofs (1.5M elements). It is important to mention that
the results reported here in terms of computational time
already takes into account the parallel solution developed
in this work and described in Section 3.3. Our results

Fig. 12 Final topology layout
for the 3D Cantilever Beam
problem solved using
PolyTop++. Due to the
symmetry of the problem, only
half of the domain is used. a 3D
Cantilever Beam problem. b
Optimal layout using a
hexahedral mesh with 12M
elements (36M dofs)
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show the high computational cost for solving such large
meshes and how important it is to use massive paral-
lel machines like the GPU. The speedup achieved by
our GPU version of the EbEPCG solver is so high that
its runtime can be compared with the PARDISO parallel
direct solver, when considering the 1M and 1.5M element
meshes. By using a Nvidia GTX Titan with 6.0GBytes
of RAM, the GPU EbEPCG solution is around 12 times
faster than its respective CPU EbEPCG, which is also
in parallel using OpenMP. These results show that our
’matrix-free’ iterative solver is not just the only but also
a feasible solution for solving very large polygonal meshes.

4.5 Non-cartesian domains

We also employ non-cartesian domains like theMichell can-
tilever problem (Talischi et al. 2010), and the Hook problem
(Talischi et al. 2012b), as shown in Fig. 11. We use a mesh
with 500K polygonal elements, a filter radius R = 0.04, a
SIMP penalty parameter p from 1.0 to 4.0 with 0.25 of step,
and 100 as the maximum number of iterations. The final
topology layouts can be seen in Fig. 11c and d.

Considering only EbEPCG and PARDISO to solve the
Michell cantilever problem with very large meshes, we
obtained the very interesting result shown in Table 7: the
iterative solver was faster than the direct solver. Our GPU
EbEPCG solver achieved a speedup of 1.5 in relation to the
PARDISO solver and a 13.1 increase in speed in relation to
the CPU EbEPCG for a mesh with 1M of polygonal ele-
ments. Moreover, the PARDISO solver was not capable of
solving a mesh with 5M polygonal elements using a CPU
with 16.0GBs of RAM, while the GPU EbEPCG solver
spent 37.9 minutes using a GPU with 6.0 GBs of memory.

4.6 3D examples

We extended the PolyTop++ framework to handle 3D exam-
ples. The Cantilever Beam problem was solved with our
GPU EbEPCG solution using two meshes: one with poly-
hedron elements and other one with hexahedral. For the
polyhedral case, we usedWachspress coordinates as defined
in Floater et al. (2014) and analyzed in Warren et al. (2007).
These coordinates are valid for elements that are not only
convex but also simple. For the hexahedral case, we used
only one local stiffness matrix shared by all elements, since
they were all identical.

Figure 12 shows the geometry and boundary condi-
tions of the Cantilever Beam problem and the results
obtained for half of the domain using a correspond-
ing hexahedral mesh with 12M elements (36M dofs).
The symmetric Cantilever Beam using polyhedral mesh
with 20K elements needs special techniques for its inter-
pretation/visualization – this is work in progress. We

used no filter, employed a SIMP penalty parameter p

from 1 to 3 with 0.5 of increment, had a maximum number
of 50 iterations and a volume fraction equal to 0.1.

To the best of our knowledge, the problem with 36M
dofs is the largest ever solved for topology optimization
using a single GPU. This result shows the ability of our
element-by-element approach to handle large-scale prob-
lems, further when it is possible to share the local stiffness
matrix between elements. The parallel computing in GPU
solved this problem in 6 days and 6 hours. It is important
to remember that this result was achieved by using the plat-
form shown in Table 3, which is a single desktop with a
single GPU. The evolution of the code to use a supercom-
puter cluster of GPUs could enable the solution of problems
with larger sizes.

5 Conclusions

In this work, we have presented a topology optimization
implementation that uses polygonal finite elements imple-
mented in C++ language and in CUDA. It provides several
features to handle the computational cost associated with the
use of large-scale polygonal meshes. The modular feature
provides an easy way to modify and extend the code to use
different analysis routines without changing the topology
optimization formulation.

We presented four types of linear solvers that can be
used in the finite element analysis. The PolyTop++ (PAR-
DISO) was approximately 3 times faster compared to the
reference PolyTop. The PARDISO solver was the most
efficient solver option in the code, solving topology opti-
mization problems with 1M element meshes. However, the
linear solver EbEPCG presented in this work is the only
option when solving problems with even larger meshes. It
was used with meshes composed of 1.5M polygonal ele-
ments (6 million dofs) and 10M polygonal elements (40
million dofs), with an increase in speed of 13 times between
the GPU and the CPU versions. For the Mitchell cantilever
problem with 1M elements, the GPU EbEPCG solver was
1.5 times faster than PARDISO.

The GPU EbEPCG, as a ’matrix-free’ parallel linear
solver, makes the use of very large polygonal meshes fea-
sible in topology optimization problems. It presents a low
memory footprint, different from the direct solvers, which
were not capable of solving meshes with more than 1M ele-
ments. The parallelism solution appears to be a good way of
speeding up the EbEPCG solver and the results indicate that
larger meshes could be handled with more computational power.

We extended the PolyTop++ framework to handle 3D
examples. The Cantilever Beam problem was solved with
our GPU EbEPCG solution using a polyhedral mesh com-
posed of 20K elements and a hexahedral mesh with 12M
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elements (36Mdofs). For the hexahedral case, we used only
one local stiffness matrix shared for all elements, since they
are all identical, and to the best of our knowledge, this is the
largest problem ever solved for topology optimization using
a single GPU.

The EbEPCG solver still needs improvements with
regard to the high number of iterations required to achieve
convergence. A better pre-conditioner may substantially
reduce the computing time of the solver, like the multi-
grid pre-conditioned conjugate gradients solver presented
recently by Amir et al. (2013). Another potential for future
work is a distributed version of the code to be used in a clus-
ter of GPUs, taking advantage of the high computational
power and available memory to provide an extension for
solving even larger problems.

We extended the code by using iterative and direct
solvers, and with serial and parallel implementations, like
our parallel EbEPCG solver solution, to show its ability to
easily change the analysis routines. We show that the linear
solvers and even the entire finite element solution can be
modified without any change in the topology optimization
formulation. Moreover, the PolyTop++ handles large-scale
problems in a much better fashion than the Matlab ver-
sion of the code. Considering these improvements, we
believe that PolyTop++ is a good alternative to be explored
by the engineering community for practical problems and
computational issues in topology optimization.
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