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Introduction

In an effort to attain structural efficiency, a promising technique
used for optimizing the truss layout is the ground structure method
(GSM) (Dorn et al. 1964; Christensen and Klarbring 2008;
Bendsøe and Sigmund 2003). This method can be used to study the
flow of forces within a domain, and to obtain the optimal design
of structures. The generation of the initial ground structure is a
crucial aspect of the GSM. For example, Smith (1998) proposed
an approach that employs unstructured grids to represent the design
domain; however, the approach requires additional preprocessing
steps, including the decomposition of design elements and the
generation of boundary faces. Other studies (Rule 1994; McKeown
1998; Martinez et al. 2007; Hagishita and Ohsaki 2009) proposed
growing methods that tend to use a small size of the initial ground
structure, but the size of the structure later needs to be expanded

during the optimization. Furthermore, the use of various con-
nectivity levels have been investigated by a number of studies
(e.g., Ben-Tal and Bendsøe 1993; Bendsøe et al. 1994; Bendsøe
and Sigmund 2003; Achtziger and Stolpe 2007; Sokół 2010),
showing that different initial ground structures may result in dif-
ferent final topologies. A well-known problem with the leveling
method is that the assignment of a sufficient connectivity level
is problem-dependent. Hence, the main purpose of this paper is
to propose new approaches to generate ground structures and to
improve the results of the traditional GSM.

One limitation associated with the traditional GSM is the
generation of invalid connectivity. For concave domains (Ω), as
illustrated in Fig. 1(a), or distinct design domains (Ω1 and Ω2),
as illustrated in Fig. 1(b), it is necessary to verify that connections
do not fall outside the boundary of concave domains or cross the
border of distinct design domains. With the approaches presented
in the present paper, these problems are circumvented.

In this paper, the proposed approaches are compared with the
full-level classical GSM. In the GSM, a set of nodes discretizes
the domain, and then the nodes are connected by truss members.
For a full-level ground structure, all nodes in the domain are
connected, giving a fully populated global stiffness matrix that adds
to the computational cost (Heath 1997). In an effort to reduce the
computational cost, a number of studies have defined various
connectivity levels (Sokół 2010), whose underlying concept is that
the final topology does not require long bars. Thus, many bars in
full-level ground structures are unused in the optimization process
(Gilbert and Tyas 2003). In addition, the use of lower levels of con-
nectivity may reduce the computational cost associated with these
unused bars in the optimization process. However, it is impractical
to define a general ground structure level for all problems. Different
connectivity levels may result in different topologies for the same
problem, as illustrated in Fig. 2, in which the final topology of a
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(a) (b)

Fig. 1. Illustration of ground structure generation, in which the solid lines denote allowed connections and the dashed lines denote violated
connections: (a) concave domain; (b) convex domain decomposed into two separate design regions

(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 2. Generation of the initial ground structure for three levels of connectivities: (a) box domain and boundary conditions; (b) level 1 ground
structure; (c) level 1 optimal topology with normalized compliance C ¼ 1.58; (d) level 2 ground structure; (e) level 2 optimal topology with normal-
ized compliance C ¼ 1.02; (f) full-level ground structure; (g) full-level optimal topology with normalized compliance C ¼ 1.00
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level 2 ground structure in Fig. 2(e) has a simple design, whereas
the topology of a full-level ground structure in Fig. 2(g) provides
the best solution in terms of compliance. This work analyzes only
full-level ground structures with the classic GSM.

In the GSM, overlapping bars are undesirable in the initial
ground structure when issues of stability and buckling are not con-
sidered. The bars can be removed either during or after the member-
generation process. As shown in Fig. 3, a simple example highlights
the importance of removing overlapping bars. The solution of this
problem is trivial: One straight horizontal member carries all of the
load to the supports. (The issue of stability is beyond the scope of
this work.)When the overlapping bars are not removed, the bar areas
are not equal, as shown in Fig. 3(b). However, when the overlapping
bars are removed, all of the bar areas are equal [Fig. 3(c)]; the sum of
bar areas (at a location of the bar) of the overlapping case is equal to
the corresponding bar area of the nonoverlapping case. Thus, to ob-
tain meaningful and practical results, even in the simplest examples,
one should remove overlapping members. In addition, the removal
of the overlapping bars reduces the total number of bars in the model
and decreases the computational cost. In this work, the authors re-
move overlapping bars during the member-generation process.

Under equal stress limits, for a structure to be optimal, all
members should be fully stressed (Michell 1904), leading to the
requirement that all tensile and compressive bar pairs should
intersect orthogonally (for problems without material or geomet-
ric nonlinearities). Therefore, if all bars are assumed to have the
same stress limits, orthogonality in pairs of bars should appear
in optimal configuration patterns (Ohsaki 2010). The Michell’s
discrete solution (Michell 1904; Sokół and Rozvany 2012) typi-
cally has infinitely dense members. Employing the traditional
GSM, the authors approximate the theoretical solution by using

a finite number of structural members extracted from the original
ground structure.

This paper proposes two simple and effective approaches to gen-
erate initial ground structures, the macroelement and macropatch ap-
proaches, which are capable of generating initial ground structures
for design domains of nontrivial geometries with ease, and do not
require any additional information about the outer and inner boun-
daries of the domain. The two approaches, proposed in a general
setting, may be combined with any type of discretization, including
quadrilateral and Voronoi-based grids, in two or three dimensions.
Furthermore, the two approaches can be implemented in both elastic
and plastic formulations. The elastic formulation is adopted in this
paper (Christensen and Klarbring 2008; Bendsøe and Sigmund
2003), because it can be easily extended to a wider class of problems,
such as material and geometrical nonlinearity and multiple load
cases, which is not the case for the plastic formulation.

In this paper, the authors optimize truss layouts to approximate
available analytical solutions, to study the force flow of non-box
(concave) domains, and most importantly, to obtain a practical
design of structures. One focus of this paper is to approximate the
discretized Michell truss and optimize a nonbox domain to verify
the solutions obtained using new approaches with the analytical
solution, and demonstrate the capabilities of the proposed ap-
proaches with respect to different geometries. Another focus is
the optimization of structural engineering problems, including a
skyscraper and a long-span bridge. General examples and structural
engineering designs are presented that highlight the features of the
proposed approaches and compare the results from the literature,
the traditional GSM, and the continuum optimization method.

This paper is organized as follows: First is a review of the ground
structure optimization formulation for compliance minimization,

(a)

(b) (c)

Fig. 3. Topology optimization with and without overlapping bars in a box domain (discretized by a 2 × 2 grid): (a) box domain and boundary
conditions; (b) optimal topology and bar area plot with overlapping bars; (c) optimal topology and bar area plot with nonoverlapping bars
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using only the cross-sectional areas of the bars as the design var-
iables. Next is an introduction to discretization methods and the
proposed macroelement and macropatch approaches, with a discus-
sion of their attributes for the optimization of trusses using the
GSM. Finally, several numerical examples highlight the properties
of the new approaches, and some concluding remarks provide
suggestions for extending the work.

Problem Formulation

Optimization Formulation

In this work, equilibrium, compatibility, and constitutive relations
are taken into account, which are explicitly known as the elas-
tic formulation (Kirsch 1989). The authors assume that the initial
ground structure has N nodes and M members. The equilibrium
state of the system can be described by

Ku ¼ f ð1Þ
where for the case of a two-dimensional (2D) problem, f ∈ R2N =
external force vector; u ∈ R2N = displacement vector; and K ∈
R2N�2N = stiffness matrix. For a full-level ground structure in a
convex domain before removing the overlapping bars, the relation
between M and N is M ¼ NðN − 1Þ=2.

The stiffness matrix K can be expressed as (Christensen and
Klarbring 2008)

KðaÞ ¼
XM
i¼1

aiK0
i ; K0

i ¼
Ei

li
bibTi ð2Þ

where K0
i = constant matrix in global coordinates associated with

each member; Ei = Young’s Modulus; and li = length of member i.
Moreover, a ∈ RM = vector of the design variables (areas of bars)
for the optimization problem; and bi = vector describing the orien-
tation of member i of the form

bi ¼ f · · · −nðiÞ · · · nðiÞ · · · gT ð3Þ
where nðiÞ = unit vector in the axial direction of member i.

Here, the optimization problem is defined as obtaining a set
of design variables that minimizes the compliance of the struc-
ture subjected to equilibrium and volume constraints. Because the
main purpose of this paper is to explore the connectivity genera-
tion in the initial ground structure, the authors adopt the simplest
displacement-based formulation with a small positive lower bound
imposed on the design variables ai. The nested formulation has
been shown to be convex (Svanberg 1984). The problem statement
with multiple load cases is formulated as (Bendsøe and Sigmund
2003)

CðaÞ ¼ mina
Xq
j¼1

αjf Tj ujðaÞ;

s:t:

�
gðaÞ ¼ aTL − Vmax ≤ 0;

amin
i ≤ ai ≤ amax

i ∀ i ¼ 1∶M ð4Þ

where uj = solution of Eq. (1); CðaÞ = objective function; q =
number of load cases; αj = weighting factor of load case j;
gðaÞ = constraint function; a and L = vectors of area and length,
respectively; Vmax = maximum material volume; and amax

i and
amin
i = upper and lower bounds, respectively.
This formulation allows the efficient computation of the ele-

ment stiffness matrices. The global stiffness matrix can then be

assembled from element stiffness matrices and current design
variables (i.e., member cross-sectional areas). This feature facili-
tates the development of an efficient computational implementa-
tion. To avoid a singular stiffness matrix in the solution of Eq. (1),
zero member areas are avoided by a small lower bound, amin

i . An
upper bound, amax

i , is also imposed to ensure robustness of the
formulation. Throughout this work, the lower and upper bounds
are defined by amin

i ¼ 10−2a0 and amax
i ¼ 103a0, respectively, in

which a0 is the average area defined as

a0 ¼ Vmax

.X
i

Li ð5Þ

Implementation Aspects

The concepts in this paper were implemented in a complete
truss layout optimization solver in MATLAB. The implementation
consists of two components: initial ground structure generation
and optimization. The initial ground structure generation process
includes the initial grid generation and connectivity generation.
To generate the initial grid of a domain, three alternatives are em-
ployed: the generation of Voronoi-based grids using the mesh gen-
erator for polygonal elements, PolyMesher (Talischi et al. 2012a);
the generation of structured quadrilateral grids using an intrinsic
subroutine; or importing unstructured grids from elsewhere. Here,
the main idea of the initial ground structure generation is to produce
nonoverlapping connectivity using the initial grid. Testing for mu-
tually overlapped connections is an additional procedure that is
used to generate connectivity in the traditional GSM. The optimi-
zation process contains three components: solving the structural
equilibrium problem for a set of given design variables, computing
the sensitivities of the design variables, and updating design vari-
ables based on the optimality criteria (OC). Details of the OC are
provided in the Appendix.

Ground Structure Generation

Initial Grid

In this paper, two types of grids are used to discretize the domain:
structured quadrilateral and Voronoi-based grids, as shown in
Fig. 4. The use of a specific grid type is problem-dependent.
Indeed, points can be distributed without an initial grid and provide
a good basis for a ground structure, but this is true under the con-
dition that the points are distributed uniformly in the domain,
whereas the use of the initial grid readily provides a set of evenly
distributed nodes in the domain. Moreover, the distribution of
the nodes can be controlled by the element quality in the grid.

The use of a structured quadrilateral grid in a full-level ground
structure provides pairs of orthogonal bars by construction, but
the truss members tend to orient in a limited number of directions.
In addition, when the domain is nonconvex, the procedure for
generating grids is generally tedious, as the restriction zones need
to be identified (Zegard and Paulino 2014).

As an alternative, the use of the Voronoi-based grid is proposed.
Voronoi-based grids easily discretize nonconvex domains and
have been shown to be advantageous in continuum topology
optimization (Talischi et al. 2009, 2010, 2012a, b). The seeds of
Voronoi-based grids are initially generated randomly, then iterated
to align more uniformly to form a centroid Voronoi tessellation
(CVT). After extracting the node and element information, the
optimization procedure is the same as for structured quadrilateral
or other discrete grids. Voronoi-based discretization, as compared
with the structured quadrilateral one, has a greater possibility of

© ASCE 04016090-4 J. Struct. Eng.
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providing truss members with various directions because of its
initial random node distribution. When the domain is concave or
contains holes, the Voronoi-based grid is the preferred discretiza-
tion in this work. For these domains, as the generated bars have
to be entirely within the domain, not all connections are feasible.
Therefore, additional information on the outer and inner boundaries
of the domain is needed with respect to the traditional GSM. This
issue is naturally solved by the member generation approaches that
are proposed, which is further discussed in section “Attributes and
Properties.”

Member Generation Approaches

In this section, two approaches for generating the initial ground
structures using structured quadrilateral and Voronoi-based grids in
two or three-dimensional domains are presented. A macroelement
approach and a macropatch approach are proposed to overcome
some of the difficulties in generating the initial ground structure
that are discussed previously.

Macroelement Approach
The basic idea behind this method is to insert equally spaced nodes
on each edge of each element, then connections are only generated
within each element. The macroelement approach is illustrated in
Fig. 5. Different scenarios are considered to show the flexibility of
this method: Three equally spaced nodes are inserted on each edge
for the structured quadrilateral element in Figs. 5(a–c), and one
node is inserted per edge for the wrench domain with the Voronoi-
based grid in Figs. 5(d–f).

Macropatch Approach
Generating the initial ground structure for three-dimensional (3D)
curved surfaces is a challenge that can be overcome by assuming
that the curved surface is a collection of different facets or patches.
For a curved surface, the patches cannot be guaranteed to be in the
same plane; thus, patch connectivity is done individually for each
patch. Determining the size of the patch is usually based on the
computational time and the level of detail that the user wants. In
the current paper, only structured grids are used in the macropatch
approach; however, this approach can be extended to Voronoi-
based grids as well.

Each patch is represented as a unit. Additional bars and nodes
are created by dividing the macropatch into subpatches; the total
resulting nodes within the original patch are then interconnected

to each other. An illustration of a single element and a tower
domain in 3D is shown in Fig. 6.

Attributes and Properties
The properties of the macroelement approach and the macropatch
approach relate to the initial ground structure generation process,
optimization process, and final topology. In the initial ground struc-
ture generation process, the proposed approaches avoid invalid
connections outside the boundary (for concave domains) by con-
struction, as illustrated in Fig. 7(a). For the case of concave do-
mains, the initial ground structure can be generated efficiently as
long as the domain is discretized and the member connectivity ma-
trix is known. These approaches can also be used to prevent con-
nections across separated design domains, Ω1 and Ω2, as shown in
Fig. 7(b). Thus, the bars can be generated without the additional
step of detecting boundaries or checking for feasible connections.

Another attribute of the two approaches relates to the optimiza-
tion process. The global stiffness matrices generated using the two
new approaches have reduced maximum semi-bandwidths. This
advantage becomes important when the problem size is large. After
the nodes have been inserted on the edge of each element, the re-
verse Cuthill–McKee (RCM) algorithm (Cuthill and McKee 1969)
is applied to renumber the nodes. Because bars are only generated
in each element, the maximum semibandwidth for the global stiff-
ness matrix of the problem will be reduced accordingly.

In terms of the final topology, the macroelement and macropatch
approaches offer alternative bar distributions for a similar number
of design variables by providing finer control of the connectivity.
Different types of connectivity can be achieved by changing
the number of nodes inserted on the edge. Although the classic
GSM can be created such that it encompasses the proposed ap-
proaches, this is at the expense of using a much denser ground
structure and a much greater number of design variables. In addi-
tion, either curved or straight paths can be achieved with the pro-
posed approaches and the classic GSM. If an overall curved path is
desired, the node distribution needs to be dense enough for the clas-
sic GSM to obtain an overall curved path. However, the proposed
approaches are capable of generating an overall curved path with
a coarse grid, as shown in Fig. 8(b). Section “Examples and
Verification” further demonstrates this feature.

Furthermore, the two proposed methods generate much less over-
lapping bars in the domain. For the macroelement approach, over-
lapping bars appear only on the (refined) element boundary, and
can be efficiently and systematically removed. For the macropatch

(a) (b)

Fig. 4. Discretization techniques for forming the base grid: (a) structured quadrilateral grid; (b) Voronoi-based grid
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(a) (b) (c)

(d) (e)

(f)

Fig. 5.Macroelement approach: (a) standard single-structured quadrilateral element; (b) single element with three nodes inserted on each edge; (c) all
possible connections within the element; (d) wrench domain with a Voronoi-based grid; (e) wrench domain with one node inserted on each edge;
(f) all possible connections within each element

(a) (b) (c)

(d) (e) (f)

Fig. 6. Macropatch approach: (a) single-structured quadrilateral patch; (b) single patch divided into 2 × 2 subpatches; (c) all possible connections
within the patch; (d) 3D tower domain and boundary conditions; (e) 3 × 3 subpatches on front-surface elements, and 3 × 2 subpatches for side-surface
elements; (f) all connections within each patch surface

© ASCE 04016090-6 J. Struct. Eng.
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approach, even though removing overlapping bars is still an issue,
the problem of finding and removing these bars becomes a reduced
local problem with a lower associated computational cost.

The two proposed approaches are general enough to be used with
any type of discretizations, including the structured quadrilateral and
Voronoi-based grids. These techniques can handle different types
of domains, concave or convex, and in two or three dimensions.
In addition, because the macroelement approach and macropatch
approach are independent of the optimization formulations, they are
flexible and can be extended to other applications with ease.

Examples and Verification

Three types of problems are studied in this paper to demonstrate the
various features of the proposed approaches:
• Benchmark example: Michell truss;
• Nonbox (concave) domain: wrench; and
• Structural engineering applications: long-span bridge,

skyscraper.
The Michell truss example is used to verify solutions of the new

approaches with a benchmark problem with an available analyti-
cal solution. The example with a nonbox (concave) domain is used
to demonstrate the capability of the new approaches and to study
the force flow in the design phases. The third type of example is the
optimization of structures with engineering applications to show-
case the use of the new approaches in structural designs. The first
three examples use the macroelement approach with Voronoi-based
and quadrilateral grids, including comparisons with the traditional
GSM and continuum optimization method, and the last example
uses the macropatch approach on a structured quadrilateral grid in
a 3D shell configuration.

All examples are performed with the same volume constraint,
Vmax ¼ AΩ × t, in which AΩ is the area of the domain; the stopping
criterion is chosen as tol ¼ 10−8; the move value as move ¼
ðamax

i − amin
i Þ × 100; and the damping factor for the OC update

scheme as η ¼ 0.7 (Appendix). The Young’s modulus for all of
the bars is taken to be E0 ¼ 2 × 108, the load vector is f i ¼ 1
for point load, Σ f i ¼ 1 for distributed load, and the initial guess
of bar areas is chosen as ainitial ¼ 0.7 × a0. The examples aim to
demonstrate the proposed approaches. Choosing the cut-off value
to define the final topology is a common problem in the ground
structure method; bars with normalized areas above the cut-off
value are plotted. The cut-off value is problem-dependent. For the
Michell truss and the wrench examples, the cut-off value is 0.001.
For the bridge and the tower examples, the cut-off values are 0.01
and 0.15, respectively. A larger cut-off value tends to exclude struc-
turally important bars on the final topology, whereas a smaller cut-
off value results in plotting many small area bars (Christensen and
Klarbring 2008).

Comparison with Analytical Solution

The main objective of this example is to compare results from
the traditional GSM and the macroelement approach in approxi-
mating the Michell’s solution of a simply supported beam, as
shown in Fig. 9(a). For the Michell’s analytical solution, readers
are referred to Michell (1904) and Sokół and Rozvany (2012).
Both structured quadrilateral and Voronoi-based discretizations
are used in the box domain with the traditional GSM and the
macroelement approach. Key features of the results are presented
in Table 1.

The final topologies, using the full-level traditional GSM
with a structured quadrilateral grid and a Voronoi-based grid, are

(a) (b)

Fig. 7. Optimization problems using macroelement approach and macropatch approach to correctly generate initial ground structures with valid
connections: (a) concave domain; (b) convex domain with separated design domains

(a) (b)

Fig. 8. (a) Wrench domain with a boxed zoom-in region; (b) possible connectivity using the macroelement approach

© ASCE 04016090-7 J. Struct. Eng.
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illustrated in Figs. 9(b and c), respectively. The final topologies
from the dense discretizations are similar to the analytical solution,
but contain multiple layers along the boundary lines. By using the
proposed macroelement approach, the topologies converge to the
analytical solution, as shown in Figs. 9(d and e), for the structured
quadrilateral and Voronoi-based grids, respectively. Because the
Michell’s analytical solutions typically consist of orthogonal and
curved bars, the traditional GSM may not be able to approximate
a curved path unless a very dense grid is used. However, in using

the macroelement approach, the curved feature of the analytical
solution is better approximated.

Application to Nonbox (Concave) Domain

The second example uses the macroelement approach for the
wrench domain that was introduced in Talischi et al. (2012a). The
nonbox domain is used to showcase the capability of the macro-
element approach. The final topology is compared with that ob-
tained using the traditional GSM.

Wrench Example: Comparison with Traditional GSM
This example considers the wrench domain with a Voronoi-based
discretization, as shown in Fig. 10. The idea is to compare the final
topology and the number of bars that are produced by both methods
at a similar computational cost. In the traditional GSM, a Voronoi-
based grid with 1,000 elements is used to discretize the domain, as
illustrated in Fig. 10(b), with a full-level connectivity generated
within the domain. Overlapping bars are removed during the bar-
generating process. The final topology is shown in Fig. 10(d).

(a)

(b) (c)

(d) (e)

Quad Voronoi

Quad Voronoi

Fig. 9.Approximation of Michell’s solution in a box domain using both a structured quadrilateral grid and a Voronoi-based grid: (a) box domain with
boundary conditions; (b) topology obtained from the traditional GSM with a structured quadrilateral grid with 1,080 elements; (c) topology obtained
from the traditional GSM using a Voronoi-based grid with 800 elements; (d) topology obtained from the macroelement approach using a structured
quadrilateral grid of 120 elements with seven nodes inserted along each edge; (e) topology obtained from the macroelement approach using a
Voronoi-based grid of 240 Voronoi-based elements with seven nodes inserted along each edge

Table 1. Numerical Information for Michell Truss Example

Grid GSM
Number
of bars

Number
of DOFs Compliance

Quadrilateral grid
[Figs. 9(b and d)]

Traditional 77,710 2,294 1.7095
Macroelement 59,520 3,954 1.6800

Voronoi-based grid
[Figs. 9(c and e)]

Traditional 135,280 3,098 1.7099
Macroelement 192,272 10,626 1.7049

© ASCE 04016090-8 J. Struct. Eng.
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The boundary lines around the right-hand-side hole in the final
topology are not smooth, and the bars in the middle of the domain
are not detailed. The initial grid used in the macroelement approach
is shown in Fig. 10(c), discretized by a Voronoi-based grid with
260 elements and seven additional nodes inserted along each edge.
The final topology using the macroelement approach is shown in
Fig. 10(e). Qualitatively, the macroelement approach results in a
clear and crisp solution around the right-hand-side hole, and the
bars inside the domain are smoother than those obtained using
traditional GSM. In addition, the solution obtained using the
macroelement approach exhibits the close-to-orthogonal pairs
of bars.

A comparison of the number of bars, the number of degree of
freedoms (DOFs) in the initial ground structures, and the final

compliance values between the traditional GSM and the macroele-
ment approach are presented in Table 2. This showcases the ability
of the macroelement approach to handle the case of concave do-
mains. In addition, the bar-generation process is efficient in the
macroelement approach, because there is no need to detect the
boundary or search for a large number of overlapping bars.

The source of the efficiency of the macroelement approach is
apparent through a comparison of the maximum semibandwidth
and profile of the stiffness matrix for both methods. The normalized
maximum semibandwidth is computed as Max:semibandwidth=
2N, and the normalized profile is computed as Profile=½Nð2N þ
2Þ þ 1�, in which N is the number of nodes (Cook et al. 2002).

Both the maximum semibandwidth and the profile of the global
stiffness matrices are significantly reduced when the macroelement

(a)

(b)

(c)

(d)

(e)

Fig. 10. Wrench example with Voronoi-based grid using classic GSM and macroelement approach: (a) wrench domain, maximum length: 2.8,
maximum width: 1; (b) discretization using a Voronoi-based grid of 1,000 elements; (c) discretization using a Voronoi-based grid of 260 elements
with seven additional nodes inserted along each edge (for clarity, the insert on the figure shows only two additional nodes along each edge); (d) final
topology using the full-level classic GSM; (e) final topology using the macroelement approach
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approach is used, as given in Table 2. A greater sparseness in the
stiffness matrix is seen in the macroelement approach, as shown in
the visual comparison of the global stiffness matrices provided in
Fig. 11. The reduction in the maximum semibandwidth and profile
becomes increasingly significant, as the size of the stiffness matrix
increases.

Applications to Structural Engineering Designs

Arch Bridge
An engineering application of the macroelement approach is exam-
ined using a bridge topology optimization as an example. Fig. 12(a)

shows a typical arch bridge design in real life. The 2D bridge
domain in Fig. 12(b) has supports, a cantilever, and a nondesign-
able layer that represents the bridge deck. The nondesignable layer
is implemented by a discrete two-node beam element for both the
GSM and the continuum method. In an effort to obtain construct-
ible structures, the authors use a relatively coarse grid to discretize
the domain (10 × 10 for the macroelement approach and 20 × 10

for the traditional GSM; both methods use structured quadrilateral
discretization), as shown in Fig. 12(c). Unstable nodes and floating
bars are removed, then the final topologies are checked to ascertain
that they are at equilibrium (instability of members is not verified).
The final topology obtained from the GSM using the macroelement
approach is compared with those obtained from the traditional
GSM and density-based optimization using PolyTop (Talischi et al.
2012b), as shown in Figs. 13(b–d). The numerical information is
provided in Table 3.

The macroelement approach offers a solution that resembles a
typical arch bridge shown in Fig. 13(a). When a coarse grid is
used, the overall result of the GSM using the macroelement ap-
proach is improved in terms of constructability, because this ap-
proach is capable of generating various shapes of paths, thus
providing clear layouts. In the comparison with other types of op-
timization methods, the GSM with the macroelement approach
using a similar number of bars as the traditional GSM, not only
gives a clear overall layout and provides a smooth arc top and fan
feature on the topology, but also has a smaller compliance value.
The traditional GSM, however, gives a topology with multiple
layers along the top. The reason could be directions of paths
are limited in the traditional GSM, thus, there are multiple force
paths on the topology. When comparing results from the macro-
element approach with the continuum optimization solution

Table 2. Numerical Information for Wrench Example

GSM
Number
of bars

Number
of DOFs Compliance

Normalized maximum
semibandwidth

Normalized
profile

Traditional GSM 92,188 4,030 0.201 0.8496 0.7729
Macroelement 215,200 12,118 0.182 0.0556 0.0695

(a) (b)

Fig. 11. Global stiffness matrix after applying the reverse Cuthill–
McKee algorithm for the wrench example using: (a) traditional full-
level GSM; (b) GSM with macroelement approach

(a) (b)

(c)

Fig. 12. Structural design for arch bridge example: (a) rendering of a typical arch bridge; (b) domain and boundary conditions; (c) discretization using
macroelement approach with 10 × 10 grid and three inserted nodes per edge

© ASCE 04016090-10 J. Struct. Eng.
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(obtained using PolyTop), qualitatively, both topologies appear
to converge to the same solution and have similar traits, such as
arc top and fan features on the left and right-hand-side of the top-
ology. Furthermore, the macroelement approach provides vertical
members on the topology, which is closer to the real-life design
of an arch bridge. This suggests that the GSM using the macro-
element approach offers promising and constructible structural
designs.

Skyscraper Design: Lotte Tower
The conceptual design of a diagonal grid (diagrid) structure is illus-
trated in Figs. 14(a and b), which shows a square base transitioning
to a circle at the top. This example is based on the design of the
Lotte Tower in Seoul, Korea, by Skidmore, Owings & Merrill LLP
(SOM) architects. The design domain dimensions are 10×10×80,
with all members initialized with the unit area. The macropatch ap-
proach is used in this example. Fig. 15(a) shows the initial patches
defined over the domain. The patches are further subdivided, and all
internal nodes within the patch are connected to each other using bar
elements as a full ground structure, as illustrated in Fig. 15(b). The
extent of the subdivisions of a patch for internal connectivity is user-
defined. The overlapping of bars is still an issue; they are removed
from the problem before any optimization takes place.

Fig. 16 shows an analysis performed for wind loading in one
direction with imposed symmetry; and Fig. 17 shows the results for
the case with wind loading applied in both directions with imposed
symmetry using multiple load cases. The resulting designs illustrate
how the load flows in a naturally cascading pattern, leading to a
diagrid structure. Diagrid structures are stiff and contribute to limit-
ing the drift of tall buildings. In addition, the fundamental aspects
of high-rise building behavior are evident: The columns decrease
in size from the bottom of the building to the top. When the wind is
applied symmetrically from one direction, the final pattern shows
thicker members in the direction of the wind. In the direction nor-
mal to the wind loading, the members are relatively thin and act as a
web member for the building. In the second case, when the applied
wind load is symmetric in both directions, the optimized building
is symmetric and displays a diagrid pattern on all sides. The initial
structure does not need to be finely discretized, as it is not feasible,
from a construction point of view, to have a larger number of small
bars in the optimized solution.

Diagrid solutions are not only artistic but also quite practical in
design and can easily achieve efficiency with the use of steel for
construction (Moon et al. 2007). These solutions have been used
widely in the design of some very unique buildings. In general, the
high stiffness of diagrid structures, with or without the use of corner
columns, not only make them very desirable but an attractive sol-
ution to architects. In the typical structural design process, several
iterations are needed in the design process to get the optimum dia-
grid solution, which is very time-consuming and may not result in a
global optimized structure. Using the macropatch approach, it is
possible to limit the time in the design process and easily estimate
the final optimized diagrid solution.

Discussion and Concluding Remarks

In this paper, the generation of ground structures for generic 2D and
3D domains is discussed and explored. Two types of discretization
are used, standard structured quadrilateral discretizations and
Voronoi-based discretizations, which offer alternative methods for
grid generation. In addition, two approaches for ground structure
generation have been presented in an effort to improve the solutions
of the GSM, the macroelement approach and the macropatch ap-
proach, which are designed to avoid invalid connectivity in the
ground structure. The proposed approaches are investigated and
have been demonstrated to improve the process of initial generation
of ground structures, reduce the bandwidth of the stiffness matrix
in the optimization process, provide a finer control of the final
topology, and reduce the number of overlapping bars. Three types
of examples are studied in this paper: (1) benchmark example:
Michell truss; (2) nonbox domain: wrench; and (3) structural en-
gineering applications: long-span bridge, skyscraper.

(a)

(b)

(c)

(d)

Fig. 13. Final topologies for arch bridge example: (a) rendering of a
typical arch bridge; (b) truss optimization using the GSM with the
macroelement approach (100 structural quadrilateral elements with
three additional nodes inserted per edge); (c) truss optimization using
the traditional GSM (200 structural quadrilateral elements); (d) conti-
nuum optimization using the density-based method (R ¼ 1.5, volume
fraction ¼ 0.15)

Table 3. Numerical Information for Arch Bridge Example

GSM
Number
of bars DOFs Compliance jKtoputop − Ftopj=jFtopj

Traditional GSM 10,078 462 7.59 1.163 × 10−11
Macroelement 8,840 1,562 7.18 2.149 × 10−11

© ASCE 04016090-11 J. Struct. Eng.
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From the Michell truss example, the proposed macroelement
approach yields similar discretized results to the analytical solution,
and the curved features can be approximated by means of the pro-
posed method. The wrench example highlights the capability of the

Fig. 14. Conceptual design of the Lotte Tower by SOM architects: (a) full view (SOM | © SEVENTH ART GROUP); (b) top detailed view (SOM |
© Archimation)

(a) (b)

Fig. 15. Lotte tower example using the macropatch approach with a
structured quadrilateral surface grid: (a) initial patch definition of the
design domain (10 × 10 × 80); (b) internal connectivity within the
patches defined for the design domain

Fig. 16. Final topologies for Lotte tower example using the macro-
patch approach with distributed wind load applied in a single direction
with symmetry: (a) perspective view; (b) bottom-to-top view
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macroelement approach to handle large-size problems and nonbox
(concave) domains. A greater sparseness is found in the stiffness
matrix obtained from the macroelement approach, as shown in the
investigation to verify the source of efficiency. In the bridge exam-
ple, the macroelement approach leads to a solution that resembles
a typical arch bridge (Fig. 13). The topology of GSM using the
macroelement approach is improved in terms of constructability
for coarse discretizations, because this approach is capable of gen-
erating various shapes of paths and thus provide clear layouts. In
addition, final topology obtained from the macroelement approach
shows agreement with that from the continuum structural optimi-
zation. The macropatch approach for the Lotte Tower leads to a
diagrid-like structure, which is a typical design used in practice.
This work offers room for future extensions, including exploring
the macroelement for 3D Voronoi tessellations (Gain et al. 2014)
and investigating the plastic formulation approach (Zegard and
Paulino 2014, 2015).

Appendix. Optimality Criteria Method

The optimization in this work is solved by the OC algorithm. This
algorithm can be derived by replacing the objective and constraints
functions with the approximations on the current design point using
an intermediate variable. In such a way, a sequence of separable and
explicit subproblems is generated to approximate of the original
problem. In this context, we linearized the objective function using
exponential intermediate variables as (Groenwold and Etman 2008)

yi ¼
�

ai − amin
i

amax
i − amin

i

�
pi

ð6Þ

CðaÞ ≅ ĈðaÞ ¼ C½yðakÞ� þ
�∂C
∂y

�
T

a¼ak
½yðaÞ − yðakÞ� ð7Þ

Then, after substitution of ð∂C=∂yiÞa¼aki
¼ ½ð∂C=∂ajÞð∂aj=

∂yiÞ�a¼aki
and substitution of Eq. (6) in Eq. (7), the following equa-

tions are obtained:

ĈðaÞ ¼ C½yðakÞ�

þ
Xn
i¼1

∂C
∂ai

����
a¼ak

1

pi
ðaki − amin

i Þ
��

ai − amin
i

aki − amin
i

�
pi − 1

�
ð8Þ

minaĈðaÞ s:t:

�
gðaÞ ¼ aTL − Vmax ¼ 0

amin ≤ ai ≤ amax ∀ i ¼ 1∶M ð9Þ

By means of the Lagrangian duality, this problem can be
solved with

Lða; γÞ ¼ ĈðaÞ þ ϕgðaÞ ð10Þ
where ϕ = Lagrange multiplier, and the optimality conditions are
given as

∂L
∂ai ða;ϕÞ ¼

∂ĈðaÞ
∂ai þ ϕ

∂gðaÞ
∂ai

¼ ∂C
∂ai

����
a¼ak

�
ai − amin

i

aki − amin
i

�
pi−1

þ ϕLi ¼ 0 ð11Þ

∂L
∂ϕ ¼ aTL − Vmax ¼ 0 ð12Þ

Solving Eq. (11) for aiðϕÞ to obtain

aiðϕÞ ¼ a�i ¼ amin
i þ ½BiðϕÞ�1=1−piðaki − amin

i Þ ð13Þ
and substituting in Eq. (12), the Lagrange multiplier ϕ is obtained,
for example, using the bisection method in which Bi is defined as

Bi ¼ −
∂C
∂ai
���
a¼ak

ϕLi
ð14Þ

To calculate ϕ and a�i , the box constraints need to be satisfied,
and thus the next design point anewi is defined as

anewi ¼

8><
>:

aþi ; a�i ≥ aþi
a−i ; a�i ≥ a−i
a�i ; otherwise

ð15Þ

where the aþi and a−i = bounds for the search region defined by

a−i ¼ maxðamin
i ; aki −moveÞ ð16Þ

aþi ¼ minðamax
i ; aki þmoveÞ ð17Þ

in which the variable move is the move limit usually specified as
a fraction of amax

i − amin
i . In the convex examples, presented in this

work, a fast convergence is obtained using values for move larger
than amax

i − amin
i .

The quantity η ¼ 1=1 − pi is usually called a numerical damp-
ing factor, and for pi ¼ −1, a reciprocal approximation is obtained.
The pi values can be estimated using different approaches. In this

Fig. 17. Final topologies for Lotte tower example using the macro-
patch approach with distributed wind load applied in both directions
with imposed symmetry: (a) perspective view; (b) bottom-to-top view
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work, a two-point approximation approach is used based on the
work of Fadel et al. (1990) and presented by Groenwold and Etman
(2008). In this approach, the estimation of pðkÞ

i is

pðkÞ
i ¼ 1þ

ln
�
∂C
∂ai
���
a¼ak−1

∂C
∂ai
���
a¼ak

	
lnðak−1i =aki Þ

ð18Þ

where lnð•Þ = natural logarithm. In the first step pi ¼ −1 is used
and −15 ≤ pi ≤ −0.1 is restricted for the subsequent iterations.
The convergence criteria used is

max

�jaki − ak−1i j
1þ ak−1i

�
≤ tol ð19Þ

where tol = tolerance.
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