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Abstract This paper presents a new variational principle
in finite elastostatics applicable to arbitrary elastic solids that
may contain constitutively rigid spatial domains (e.g., rigid
inclusions). The basic idea consists in describing the con-
stitutive rigid behavior of a given spatial domain as a set
of kinematic constraints over the boundary of the domain.
From a computational perspective, the proposed formulation
is shown to reduce to a set of algebraic constraints that can
be implemented efficiently in terms of both single-field and
mixed finite elements of arbitrary order. For demonstration
purposes, applications of the proposed rigid-body-constraint
formulation are illustrated within the context of elastomers,
reinforced with periodic and random distributions of rigid
filler particles, undergoing finite deformations.
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1 Introduction

Synthetic elastomers are more often than not reinforced with
filler particles (of various shapes) for engineering appli-
cations. The presence of stiff fillers is also ubiquitous in
soft biological tissues. The nature of such fillers is motley,
but they all typically exhibit a drastically stiffer mechani-
cal response—about five orders of magnitude or possibly
larger shear stiffness1—than then underlying soft matrix
and consequently behave, for all practical purposes, as rigid
bodies. The majority of existing computational studies of
filler-reinforced soft materials in the literature (see, e.g.,
[8,13,15,18]) have opted for discretizing the stiff fillers with
standard finite elements and assigning them a much stiffer
constitutive response than that assigned to the surrounding
matrix. For realistic types of material systems, the discretiza-
tion of the underlying fillers takes up at least one fifth of
the total number of degrees of freedom of the problem (see,
e.g., [5]), thus increasing unnecessarily (since the fillers,
again, do not experience any strain) the size of the system
of the resulting discrete equations and, in turn, the compu-
tational cost. In an alternative approach, Chi et al. [5] have
shown that, at least in two dimensions, stiff fillers can be
discretized as single polygonal (n-gon) finite elements. Yet,
fillers discretized as single polygonal elements, especially
those with many (more than 100 edges) and/or with highly
graded edges, are “mechanically softer” than standard ele-
ments and hence more prone to deform. Moreover, they
require a numerical integration scheme of higher order than
standard elements.While increasing the constitutive stiffness
of single-polygonal-element fillers and enhancing the associ-

1 For instance, the shear modulus of a typical rubber is in the order
of 0.1MPa while the shear modulus of carbon black is in the order of
10GPa.
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ated numerical integration scheme leads to accurate results,
both of these remediations are computationally undesirable
as they degrade the conditioning of the stiffness matrix and
increase the computational cost.

The object of this paper is to put forth a new varia-
tional formulation in finite elastostatics whose finite-element
implementation is free of the shortcomings of existing
approaches, as outlined above, when dealing with elastic
solids that contain rigid domains. The basic idea consists in
describing the constitutive rigid behavior of a given spatial
domain as a set of kinematic constraints over the boundary of
the domain, thereby eluding their internal discretizaion. The
idea is similar in nature to common multi-point constraint
approaches, wherein the motion of a set of nodes is con-
strained by the motion of an assigned node or set of nodes.
Contrary to these approaches, however, the formulation pro-
posed here renders Lagrange multipliers of direct physical
relevance which allow for the extraction of key information
about the fieldswithin the rigid domains, such as for instance
their average stress.

The remainder of the paper is organized as follows.
In Sect. 2, the standard displacement-based and mixed
variational formulations of finite elastostatics are recalled.
Section 3 presents the new variational formulation, while
Sect. 4 presents its finite-element implementation. Section 5
illustrates applications of the proposed formulation to the
numerical modeling of various types of filled elastomers.
Finally, some concluding remarks are recorded in Sect. 6.

Before proceeding with the technical sections, we briefly
and partially introduce the notation adopted in this paper. For
any given variable (or field) g, be it a tensor of any order, we
denote by δg its variation. For any function (or functional)
f (g) that depends on g, we write D f (g) · δg to denote its
derivative (or directional derivative) with respect to g. More-
over, for any subset E of a given spatial domain �, E ⊂ �,
we denote by |E | its area or volume, by ∂E its boundary, and
by 〈·〉E the average operator:

〈·〉E .= 1

|E |
ˆ
E

(·) dX. (1)

If the average is taken over the whole domain �, we use
instead the notation 〈·〉with the subscript� omitted.We shall
also use | · | to denote the standard determinant operator of a
matrix.

2 Preliminaries: classical variational formulations
of finite elastostatics

Consider an elastic solid that, in its undeformed and stress-
free configuration, occupies a domain � with boundary ∂�.
The part of the boundary ∂�X ⊂ ∂� is assumed to be sub-

jected to a prescribed displacement field u0, whereas the
complementary part of the boundary ∂�σ is assumed to be
subjected to a prescribed surface traction t (per unit unde-
formed surface). The presence of body forces is neglected.
The constitutive response of the elastic solid is taken to be
characterized by a hyperelastic energyW which is taken to be
a non-negative, quasi-convex, and objective function of the
deformation gradient tensor F. Accordingly, the first Piola–
Kirchhoff stress tensor P at each material point X ∈ � is
formally given by the constitutive relation

P (X) = ∂W

∂F
(X,F) . (2)

The displacement-based formulation The so-called displa-
cement-based formulation of finite elastostatics considers the
displacement field u as the only independent field; accord-
ingly, the deformation gradient is written as F (u) = I+∇u,
where ∇ denotes the gradient operator with respect to the
undeformed configuration and I stands for the identity in
the space of second-order tensors. The classical principle of
minimum potential energy states that the equilibrium dis-
placement field û is the field that minimizes the potential
energy � among the set of all kinematically admissible dis-
placements u, namely,

�
(

û
) = min

u∈K(�)
� (u) (3)

with

�(u) =
ˆ

�

W (X,F (u)) dX −
ˆ

∂�σ
t · udS, (4)

where K (�) stands for a sufficiently large set of kinemati-
cally admissible displacements u over � such that u = u0

on ∂�X.
The Euler–Lagrange equations associated with the varia-

tional problem (3)–(4) read, in weak form, as

D� · δu =
ˆ

�

∂W

∂F
(X,F (u)) : ∇ (δu) dX −

ˆ
∂�σ

t · δudS

= 0 ∀δu ∈ K0 (�) , (5)

where K0 (�) is a subset of K (�) that contains displace-
ments that vanish on ∂�X.

A mixed formulation Via the use of partial Legendre trans-
forms, the above displacement-based formulation can be
recast as a mixed variational formulation involving an
additional hydrostatic pressure field p as unknown (see,
e.g., [2–5,20,22]). More specifically, the most commonly
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utilized mixed formulation2 states that the pair of equilib-
rium displacement field û and hydrostatic pressure field p̂ is
the solution to the following min–max problem among all
kinematic admissible displacements u and hydrostatic pres-
sures p:

�
(

û, p̂
) = min

u∈K(�)
max

p∈Q(�)
� (u, p) (6)

with

� (u, p) =
ˆ

�

{

−W
∗ (

X,F (u) , p
)+ p [det F (u) − 1]

}

dX

−
ˆ

∂�σ
t · udS. (7)

In these relations,Q (�) stands for the set of all square inte-

grable functions on �, F = (det F)− 1
3 F, and the associated

complementary stored-energy function W
∗ (

X,F (u) , q
)

is
defined by the partial Legendre transformation

W
∗ (

X,F, p
) = max

J

{

p (J − 1) − W
(

X,F, J
)}

, (8)

where the function W
(

X,F, J
)

is such that W (X,F) =
W
(

X,F, J
)

when J = det F.
The Euler–Lagrange equations associated with the varia-

tional principle (6)–(7) read, in weak form, as

D� · δu =
ˆ

�

[

−∂W
∗

∂F

(

X,F (u) , p
)+ p

∂

∂F
(det F(u))

]

:

∇ (δu) dX −
ˆ

∂�σ
t · δudS=0 ∀δu ∈ K0 (�) ,

(9)

D� · δp =
ˆ

�

[

det F (u) − 1 − ∂W
∗

∂p

(

X,F (u) , p
)

]

δpdX

= 0 ∀δp ∈ Q (�) . (10)

3 The new variational formulation

Within the generic setting of the preceding section,we hence-
forth consider the case when the elastic solid contains a
collection of N disconnected regions �

(2)
1 , . . . , �

(2)
N that are

constitutively rigid. Collectively, these regions occupy the
domain �(2) = �

(2)
1 ∪ · · · ∪ �

(2)
N . The remaining non-rigid

part of the solid is denoted by �(1), so that �(1) ∪ �(2) = �

and �(1) ∩ �(2) = ∅. The collection of interfaces of mater-
ial discontinuity between the rigid and non-rigid domains is

2 We note that different mixed variational principles which do not
require any splitting of the deformation gradient into deviatoric (F)
and volumetric (det F) parts are also available [5].

Fig. 1 Schematic of an elastic solid containing N disconnected regions
�

(2)
1 , . . . , �

(2)
N that are constitutively rigid. The interface of material

discontinuity between the rigid domain �
(2)
i and the non-rigid part of

the solid �(1) is denoted by �i

labeled as �. Further, the interface of material discontinuity
between the rigid domain �

(2)
i and the non-rigid part of the

solid �(1) is denoted by �i , so that �1 ∪ · · · ∪ �N = � and
�1 ∩ · · · ∩ �N = ∅; see Fig. 1 for a schematic of the solid
of interest with the various geometric quantities indicated.

Having specified the geometric quantities of interest,
the stored-energy function characterizing the constitutive
response of the solid can be conveniently written in the form

W (X,F)= [1 − χ(X)]W (1) (X,F)+χ(X)W (2) (F) , (11)

where the indicator function χ(X) takes the value 1 if the
position vectorX ∈ �(2) and 0 otherwise,W (1) stands for the
stored-energy function characterizing the constitutive (pos-
sibly heterogeneous) response of the non-rigid part of the
solid, and

W (2) (F) =
{

0 if F ∈ Orth+
+∞ otherwise

(12)

with Orth+ denoting the set of proper orthogonal second-
order tensors.

Because of the kinematic constraint implied by the stored-
energy function (12), the standard variational formulations
(3)–(4) and (6)–(7) cannot be utilized directly. By exploiting
the fact that the motion of the rigid domains can be fully
described in terms solely of the motion of their boundaries,
we propose to reformulate the problem so that the standard
variational formulations are considered only in the non-rigid
domain�(1) with the constraint that the motion of each inter-
face �i be a rigid body motion.

The displacement-based formulation with rigid-body con-
straints Thus, within the context of a displacement-based
formulation, the proposed variational statement involving
constitutively rigid domains reads as

�(1) (̂u) = min
u∈KR(�(1))

�(1) (u) (13)
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with

�(1) (u) =
ˆ

�(1)
W (1) (X,F (u)) dX −

ˆ
∂�σ

t · udS, (14)

where the setKR of kinematically admissible displacements
is now given by

KR(�(1)) =
{

u : u ∈ K
(

�(1)
)

and u = ui0 + HiX,

HiTHi + Hi + HiT = 0, ui0 ∈ R
d ,

Hi ∈ R
d×d on �i , i = 1, . . . , N

}

. (15)

We note that the constant vector ui0 and constant second-
order tensorHi in (15) characterize the rigid body translation
and rotation of the rigid domain �

(2)
i . Further, once the

equilibrium displacement field û has been computed from
(13)–(15) for all material points X ∈ �(1), the equilibrium
displacement field at any material point within each rigid
domain �

(2)
i can be readily determined from the affine rela-

tion û = ûi0 + ̂H
i
X.

By introducing two sets of Lagrange multipliers, λi and
�i , i = 1, . . . , N , taken here to be, respectively, continuous
vector fields and constant symmetric second-order tensors,
the above constrained minimization problem can be recast as
the following constraint-free stationary principle:

min
u∈K(�(1))

min
ui0∈Rd

min
Hi∈Rd×d

stat
λi∈[C0(�i )]d

stat
�i∈Rd×d

symm

L
(

u,ui0,H
i ,λi ,�i

)

(16)

with

L
(

u,ui0,H
i ,λi ,�i

)

= �(1) (u) +
N
∑

i=1

1

2
|�(2)

i |�i :

(

HiTHi + Hi + HiT
)

+
N
∑

i=1

ˆ
�i

λi ·
(

u − ui0 − HiX
)

dS.

(17)

The strong form of the Euler–Lagrange equations associated
with this last variational principle are given by

DivP (X) = 0 in �(1), (18)

P (X)N = t on ∂�σ , (19)

λi − P (X)N� = 0 on �i , i = 1, . . . , N , (20)ˆ
�i

λidS = 0 i = 1, . . . , N , (21)

(

Hi + I
)

�i = 1

|�(2)
i |

ˆ
�i

(

λi ⊗ X
)

dS i = 1, . . . , N ,

(22)

u = ui0 + HiX on �i , i = 1, . . . , N , (23)

HiTHi + Hi + HiT = 0 i = 1, . . . , N , (24)

where it is recalled that P (X) = ∂W (X,F (u)) /∂F is the
first Piola–Kirchhoff stress tensor,N is the outward unit nor-
mal vector on ∂�σ , and N� is the unit normal vector on �

pointing towards the non-rigid domain. From (20) and (21),
we deduce that the Lagrange multiplier field λi corresponds
to the traction on the interface �i . Moreover, it follows from
(22) and the divergence theorem that the Lagrange multiplier
field�i is directly associated with the volume average of the
first Piola–Kirchhoff stress over the rigid domain �

(2)
i via

the relation

(

Hi + I
)

�i = 〈P (X)〉
�

(2)
i

i = 1, . . . , N . (25)

It is worthwhile noting that the above-proposed for-
mulation shares similarities with the variational treatment
of boundary conditions in computational homogenization
problems (see, e.g., [10,16,17]). Indeed, the ability of the
proposedmethod to provide information about the stress field
within the rigid domains is important for such problems, and
of the essence in analyses of damage such as filler/matrix
debonding.

For later use in their finite-element implementation, it
proves convenient to record here the above Euler–Lagrange
equations in weak form:

DL · δu =
ˆ

�(1)

∂W (1)

∂F
(X,F (u)) : ∇ (δu) dX

−
ˆ

∂�σ
t · δudS +

N
∑

i=1

ˆ
�i

λi · δudS=0 ∀δu∈K0
(

�(1)
)

,

(26)

DL · δui0 =
ˆ

�i
λi · δui0dS = 0 ∀δui0 ∈ R

d , (27)

DL · δHi = |�(2)
i |

(

Hi + I
)

�i : δHi −
ˆ

�i

(

λi ⊗ X
)

:
δHidS = 0 ∀δHi ∈ R

d×d , (28)

DL · δλi =
ˆ

�i

(

u − ui0 − HiX
)

· δλidS = 0 ∀δλi

∈
[

C0
(

�i
)]d

, (29)

DL · δ�i = 1

2
|�(2)

i |
(

HiTHi + Hi + HiT
)

: δ�i = 0

∀δ�i ∈ R
d×d
symm. (30)
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A mixed formulation with rigid-body constraints Similarly,
within the context of the standard mixed variational formu-
lation recalled in Sect. 2, the proposed variational statement
involving constitutively rigid domains reads as

�
(1)

(̂u, p̂) = min
u∈KR(�(1))

max
p∈Q(�(1))

�
(1)

(u, p) (31)

with

�
(1)

(u, p) =
ˆ

�(1)

{

−W
(1)∗ (

X,F (u) , p
)

+ p [det F (u) − 1]
}

dX −
ˆ

∂�σ
t · udS,

(32)

where it is recalled that F = (det F)− 1
3 F, W

(1)∗ (
F (u) , p

)

is the partial Legendre transformation (8) associated with the
stored-energy function W (1) of the non-rigid domain �(1),
and, again, KR stands for the set of constrained displace-
ments (15) whileQ stands for the set of all square integrable
functions on �(1).

Following the use of Lagrangemultipliers λi and�i much
like in the preceding displacement-based approach, the con-
strained min–max problem (31)–(32) can be recast as an
equivalent stationary principle free of constraints:

min
u∈K(�(1))

min
ui0∈Rd

min
Hi∈Rd×d

stat
λi∈[C0(�i )]d

stat
�i∈Rd×d

symm

max
p∈Q(�(1))

L
(

u,ui0,H
i ,λi ,�i , p

)

(33)

with

L
(

u,ui0,H
i ,λi ,�i , p

)

= �
(1)

(u, p) +
N
∑

i=1

1

2
|�(2)

i |�i :
(

HiTHi + Hi + HiT
)

+
N
∑

i=1

ˆ
�i

λi ·
(

u − ui0 − HiX
)

dS. (34)

Theweak formof theEuler–Lagrange equations (for concise-
ness, we do not spell out their strong form) of this variational
problem read as

DL · δu =
ˆ

�(1)

[

−∂W
(1)∗

∂F

(

X,F (u) , p
)

+ p
∂

∂F
(det F(u))

]

: ∇ (δu) dX

−
ˆ

∂�σ
t · δudS +

N
∑

i=1

ˆ
�i

λi · δudS = 0

∀δu ∈ K0
(

�(1)
)

, (35)

DL · δui0 =
ˆ

�i
λi · δui0dS = 0 ∀δui0 ∈ R

d, (36)

DL · δHi = |�(2)
i |

(

Hi + I
)

�i : δHi −
ˆ

�i

(

λi ⊗ X
)

:
δHidS = 0 ∀δHi ∈ R

d×d, (37)

DL · δλi =
ˆ

�i

(

u − ui0 − HiX
)

· δλidS = 0

∀δλi ∈
[

C0
(

�i
)]d

, (38)

DL · δ�i = 1

2
|�(2)

i |
(

HiTHi + Hi + HiT
)

: δ�i = 0

∀δ�i ∈ R
d×d
symm, (39)

DL · δp =
ˆ

�(1)

[

det F (u) − 1 − ∂W
(1)∗

∂p

(

X,F (u) , p
)

]

δpdX = 0 ∀δp ∈ Q
(

�(1)
)

. (40)

Here too the Lagrange multiplier field λi corresponds to the
traction field on the interface �i , whereas �i is related to the
volume average of the first Piola–Kirchhoff stress over �

(2)
i

via relation (25).

4 Finite element implementation

In this section, we outline the finite element approximation
and implementation of the proposed variational formulation
(see, e.g., [1,9,24,25]). Given that the numerical examples
that will be discussed in Sect. 5 are for conditions of plane
strain, we restrict the presentation to two dimensions (2D)
and simply note that the extension to three dimensions (3D)
is straightforward, a brief discussion of which can be found
in the Appendix.

We begin by considering a partition �h of the domain �

occupied by the elastic solid inwhich the discretization of the
non-rigid domain,�(1)

h , consists of non-overlapping polygo-
nal elements of arbitrary number of vertices n ≥ 3 (the stan-
dard triangular and quadrilateral elements are thus included
as special cases). Each rigid discrete domain �

(2)
i h consists

of a polygon that is characterized by the discretization of its
boundary �i

h . The area encompassed by �i
h shall be denoted

by Ai . An example of such a discretization is shown in Fig. 2.
The corresponding discrete displacement space Kh,k in

the non-rigid domain is defined as

Kh,k =
{

uh ∈ [C0
(

�
(1)
h

)

]2 ∩ K
(

�(1)
)

: uh |E∈[Vk (E)]2,
∀E ∈ �

(1)
h

}

, (41)
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Fig. 2 An example of the discretization considered in this paper. a The discretized non-rigid domain �
(1)
h is a regular polygonal mesh and each

rigid domain corresponds to a polygon that is characterized by the discretization of its boundary �i
h . b An illustration of the i th rigid domain, of

area Ai , with n vertices

whereVk (E) is the finite element space defined over element
E , which satisfies

Pk (E) ⊆ Vk (E) , (42)

and whose functions possess kthe order variation on ∂E .
Pk (E) is the kth order polynomial space. We also define the
discrete space of piecewise continuous polynomial functions
up to order k on�i

h , denoted asWk
(

�i
h

)

. For use in themixed
formulation, we further define a discrete pressure space,

Qh,k−1 =
{

ph ∈ Q
(

�
(1)
h

)

: ph |E∈Pk−1 (E) ,∀E ∈ �
(1)
h

}

.

(43)

Finite element approximation of the displacement-based for-
mulation Having defined the discrete spaces, the conforming
Galerkin approximation of Eqs. (26)–(30) amounts to find-

ing ûh ∈ Kh,k , ̂λ
i
h ∈ [Wk

(

�i
h

)]2
, ûi0 ∈ R

2, ̂�
i ∈ R

2×2
symm,

and ̂H
i ∈ R

2×2 that solve the following system of nonlinear
algebraic equations:

DLh · δuh =
“

�
(1)
h

∂W (1)

∂F
(X,F (uh)) : ∇ (δuh) dX

−
˛

∂�σ
t · δuhdS +

N
∑

i=1

˛
�i
h

λih · δuhdS=0 ∀δuh ∈K0
h,k,

(44)

DLh · δui0 =
˛

�i
h

λih · δui0dS = 0 ∀δui0 ∈ R
2, (45)

DLh · δHi = Ai

(

Hi + I
)

�i : δHi −
˛

�i
h

(

λih ⊗ X
)

:

δHidS = 0 ∀δHi ∈ R
2×2, (46)

DLh · δλih =
˛

�i
h

(

uh − ui0 − HiX
)

· δλihdS = 0

∀δλih ∈
[

Wk

(

�i
h

)]2
, (47)

DLh · δ�i = 1

2
Ai

(

HiTHi + Hi + HiT
)

:
δ�i = 0 ∀δ�i ∈ R

2×2
symm. (48)

In the above equations, we have made use of the notation›
�

(1)
h

= ∑

E∈�
(1)
h

›
E to indicate standard numerical evalua-

tion of the integrals over �
(1)
h , which account for elemental

contributions following the standard assembly rules (see,
e.g., [1,9,24,25]), and the symbol

¸
to indicate the numer-

ical evaluation of integrals over external (∂�h) and internal
boundaries (�i

h).
The system of Eqs. (44)–(48) can be rewritten in a more

computationally efficient manner, as described next. By
applying the nodal integration rule, we begin by noting that
the boundary integrals

˛
�i
h

δλih ·
(

uh − ui0 − HiX
)

dS, (49)

˛
�i
h

λih ·
(

δuh − δui0 − δHiX
)

dS (50)

take the form

˛
�i
h

δλih ·
(

uh − ui0 − HiX
)

dS

=
∑

Xi
j∈�i

h

[

wi
jδλ

i
h, j ·

(

uih, j − ui0 − HiXi
j

)]

, (51)
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˛
�i
h

λih ·
(

δuh − δui0 − δHiX
)

dS

=
∑

Xi
j∈�i

h

[

wi
jλ

i
h, j ·

(

δuih, j − δui0 − δHiXi
j

)]

, (52)

where wi
j is the weight associated with vertex Xi

j of the
chosen nodal quadrature rule. In addition to the nodal dis-

placement uih, j =
{

uihx, j , u
i
hy, j

}T
and Lagrange multiplier

λih, j =
{

λihx, j , λ
i
hy, j

}T
, these approximations involve the

unknown variables ui0 and Hi . It turns out that it is possible
to condense these variables from (44)–(48) by introducing a
set of “reference” nodes on �i

h . In the present 2D context,
only three non-collinear “reference” nodes are needed per
interface �i

h ; see Fig. 2b. Indeed, let us assume that we have
three non-collinear “reference” nodes for the interface �i

h ,

denoted as ˜X
i
r = {

x̃ ir , ỹ
i
r

}T
, r = 1, 2, 3. It follows that any

linear field g (X) can be interpolated exactly via

g (X) =
3
∑

r=1

φi
k (X) g̃i,r , (53)

where the notation g̃i, j = g
(

˜X
i
j

)

has been introduced for

convenience and

φi
1 (X) =

∣

∣

∣

∣

∣

∣

1 x y
1 x̃ i2 ỹi2
1 x̃ i3 ỹi3

∣

∣

∣

∣

∣

∣

˜φi
, φi

2 (X) =

∣

∣

∣

∣

∣

∣

1 x̃ i1 ỹi1
1 x y
1 x̃ i3 ỹi3

∣

∣

∣

∣

∣

∣

˜φi
,

φi
3 (X) =

∣

∣

∣

∣

∣

∣

1 x̃ i1 ỹi1
1 x̃ i2 ỹi2
1 x y

∣

∣

∣

∣

∣

∣

˜φi
(54)

with

˜φi =
∣

∣

∣

∣

∣

∣

1 x̃ i1 ỹi1
1 x̃ i2 ỹi2
1 x̃ i3 ỹi3

∣

∣

∣

∣

∣

∣

, (55)

and X = {x, y}T . With help of the function representation
(53), the unknown fields ui0 and Hi can be written as

ui0 + HiX =
3
∑

r=1

φi
r (X) ũi,r . (56)

Upon recognizing that

˜δλ
i
h,r ·

[

ũih,r − ui0 − Hi
˜X
i
r

]

= 0,

˜λ
i
h,r ·

[

˜δuih,r − δui0 − δHi
˜X
i
r

]

= 0, (57)

the right hand sides of relations (51) and (52) can then be
rewritten in the form

∑

Xi
j∈�i

h/
{

˜Xi
1,
˜Xi
2,
˜Xi
3

}

[

wi
jδλ

i
h, j ·

(

uih, j −
3
∑

r=1

φi
r, ju

i
h,r

)]

,

(58)

∑

Xi
j∈�i

h/
{

˜Xi
1,
˜Xi
2,
˜Xi
3

}

[

wi
jλ

i
h, j ·

(

δuih, j −
3
∑

r=1

φi
r, jδu

i
h,r

)]

.

(59)

Now, by defining arrays δ�i ∈ R
2n−6, Ui ∈ R

2n such that

δ�i =
{

wi
1δλ

i
hx,1 wi

1δλ
i
hy,1

· · · wi
n−3δλ

i
hx,n−3 wi

n−3δλ
i
hy,n−3

}T
, (60)

Ui =
{

uihx,1 uihy,1 · · · uihx,n−3 uihy,n−3

∣

∣

∣ ũihx,1 ũhy,1 · · ·
}T

,

(61)

and the 2n − 6 × 2n matrix Ci with entries

Ci =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 · · · 0 −φi
1,1 0 · · · −φi

3,1 0
0 −φi

1,1 · · · 0 −φi
3,1

.

.

.
. . .

.

.

.
.
.
.

−φi
1,n−3 0 · · · −φi

3,n−3 0
0 · · · 1 0 −φi

1,n−3 · · · 0 −φi
3,n−3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(62)

we have that

∑

Xi
j∈�i

h/
{

˜Xi
1,
˜Xi
2,
˜Xi
3

}

[

wi
jδλ

i
h, j ·

(

uih, j −
3
∑

r=1

φi
r, ju

i
h,r

)]

= δ�iTCiUi . (63)

Similarly, the matrix representation

∑

Xi
j∈�i

h/
{

˜Xi
1,
˜Xi
2,
˜Xi
3

}

[

wi
jλ

i
h, j ·

(

δuih, j −
3
∑

r=1

φi
r, jδu

i
h,r

)]

= δUiTCiT�i (64)

follows from the definitions

�i =
{

wi
1λ

i
hx,1 wi

1λ
i
hy,1 · · · wi

n−3λ
i
hx,n−3 wi

n−3λ
i
hy,n−3

}T

(65)
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and

δUi =
{

δuihx,1 δuihy,1 · · · δuihx,n−3

∣

∣

∣ δvihy,n−3

˜δu
i
hx,1

˜δuhy,1 · · ·
}T

. (66)

For reference, we further introduce the matrix gradient
relations

Hi =
[

ũix,1 ũix,2 ũix,3
ũiy,1 ũiy,2 ũiy,3

]

⎡

⎣

∂φi
1/∂x ∂φi

1/∂y
∂φi

2/∂x ∂φi
2/∂y

∂φi
3/∂x ∂φi

3/∂y

⎤

⎦ = ˜U
i
Bi

(67)

and

δHi =
[

˜δu
i
x,1

˜δu
i
x,2

˜δu
i
x,3

˜δu
i
y,1

˜δu
i
y,2

˜δu
i
y,3

]

⎡

⎣

∂φi
1/∂x ∂φi

1/∂y
∂φi

2/∂x ∂φi
2/∂y

∂φi
3/∂x ∂φi

3/∂y

⎤

⎦= ˜δU
i
Bi .

(68)

In viewof the above development, theGalerkin finite element
Eqs. (44)–(48) can be finally recast in themore compact form

DLh · δuh =
“

�
(1)
h

∂W (1)

∂F
(X,F (uh)) : ∇ (δuh) dX

−
˛

∂�σ
h

t · δuhdS

+
N
∑

i=1

Ai
(

˜U
i
Bi
)

�i :
(

˜δU
i
Bi
)

+
N
∑

i=1

δUiTCiT�i = 0, ∀δuh ∈ K0
h,k, (69)

DLh · δ�i = 1

2
Ai
(

BiT
˜U
iT
˜U
i
Bi +˜U

i
Bi + BiT

˜U
iT
)

:
δ�i = 0, ∀δ�i ∈ R

2×2
symm, (70)

DLh · δ�i = δ�iTCiUi = 0, ∀δ�i ∈ R
2n−6. (71)

Finite element approximation of the mixed formulation
The conforming Galerkin approximation of Eqs. (26)–(28)
for the mixed formulation can be constructed by essen-
tially following the same procedure described above for the
displacement-based formulation. For conciseness, we only
present the final result here. The problem reduces to finding
the pair of unknowns

(

ûh, p̂h
) ∈ Kh,k × Qh,k−1, symmet-

ric tensors ̂�
i ∈ R

2×2
symm, and Lagrange multiplier arrays

̂�
i ∈ R

2 that solve the following system of nonlinear alge-
braic equations:

DLh · δuh =
“

�
(1)
h

[

−∂W
∗(1)

∂F
(X,F (uh) , ph)

+ ph
∂

∂F
(det F (uh))

]

: ∇ (δuh) dX

−
˛

∂�σ
h

t · δuhdS +
N
∑

i=1

Ai
(

˜U
i
Bi
)

�i :
(

˜δU
i
Bi
)

+
N
∑

i=1

δUiTCiT�i = 0, ∀δuh∈K0
h,k

(

�(1)
)

,

(72)

DLh · δph =
“

�
(1)
h

[

det F (uh) − 1 − ∂W
∗(1)

∂p

(

X,F (uh) , ph
)

]

δph = 0,

∀δph ∈ Qh,k−1

(

�(1)
)

, (73)

DLh · δ�i = 1

2
Ai
(

BiT
˜U
iT
˜U
i
Bi +˜U

i
Bi + BiT

˜U
iT
)

:
δ�i = 0, ∀δ�i ∈ R

2×2
symm, (74)

DLh · δλi = δ�iTCiUi , ∀δ�i ∈ R
2n−6. (75)

Three points are worth remarking regarding the discrete
displacement-based (69)–(71) and mixed (72)–(75) formu-
lations:

• Neither formulation requires numerical integration of
the terms associated with the rigid domains. In fact, for
both displacement-based and mixed approximations, the
characterization of the motion of each rigid region is
formulated as a set of algebraic equations constraining
the displacement degrees of freedom (DOFs) on their
interface �i

h . For a given interface �i
h with n boundary

nodes, there are 2n − 3 constraining equations, 2n − 6
of which [Eqs. (71), (75)] are linear on the displacement
DOFs—and thus can be handled with great efficiency
using methods such as transformation and elimination
of dependent variables (see. e.g, [6,14,23])—and 3 of
which [Eqs. (70), (74)] are quadratic on the displacement
DOFs of the chosen “reference” nodes; we emphasize
that although Eqs. (70) and (74) describe 4 constraints,
only 3 of them are independent because of the symmetry
of �i .

• The Lagrange multiplier �i associated with Eqs. (71)
and (75) is not an array of nodal tractions, but an array
instead of the products of nodal tractions and the weights
of their corresponding nodes. Therefore, we do not need
to specify explicitly the nodal weights in (51) and (52),
since they are implicitly incorporated in �i .

123



Comput Mech (2016) 57:325–338 333

Fig. 3 a The unit cell considered in this example. b The corresponding polygonal discretization consisting of 3000 linear displacement-based
polygonal elements and 6132 nodes

• By construction, the formulations (69)–(71) and (72)–
(75) are expected to be more robust and efficient than
existing approaches that make use of the internal dis-
cretization of rigid domains. The numerical examples
presented in the following section suggest that this is
indeed the case.

5 Numerical examples

In the sequel, we deploy the above-developed formulation
to study: (i) the nonlinear elastic response of a compress-
ible elastomer reinforced with a periodic distribution of rigid
elliptical particles under simple shear, and (ii) the nonlinear
elastic response of an incompressible elastomer reinforced
with a random isotropic distribution of rigid circular parti-
cles under uniaxial tension. These numerical examples are
aimed at showcasing the capabilities of the proposed for-
mulation to deal with rigid domains of arbitrary shapes
and arbitrary spatial distributions, as well as to confirm its
higher robustness and efficiency when compared with exist-
ing approaches.

Throughout this section, polygonal discretizations and
polygonal finite element approximations are adopted, since
they have been shown to be inherently suited to describe
large deformations [5]. A triangulation integration scheme
is employed, which subdivides each polygonal element into
triangles and applies theDunavant rules [7] in each of the sub-
divided triangles (see, e.g., [5,21]). Unless otherwise stated,
the order of the triangulation scheme is chosen to be 2, imply-
ing that the scheme can integrate any polynomial functions
over the element exactly up to 2nd order. In addition, the
standard Newton-Raphson algorithm is used to solve the rel-
evant nonlinear systems of equations. In each loading step,
the convergence criterion is set such that the norm of the
residual reduces below 10−8 times that of the initial resid-
ual.

5.1 Elastomers reinforced with a periodic distribution of
rigid elliptical particles

Our first example is concerned with the nonlinear elastic
response of a compressible elastomer reinforced with a peri-
odic distribution of rigid elliptical particles under simple
shear, where the macroscopic deformation gradient has the
form 〈F〉 = I+γ e1 ⊗e2 with γ denoting the applied macro-
scopic shear. Since the microstructure is periodic, it suffices
(at least up to the onset of instabilities [15]) to consider the
response of a simple unit cell under periodic boundary condi-
tions. The unit cell considered in our calculations is depicted
in Fig. 3a. We restrict attention to the case of elliptical parti-
cles of aspect ratio 4, area fraction c = 15%, that are initially
aligned with the laboratory frame of reference e1–e2. The
elastomeric matrix is taken as a compressible Neo-Hookean
material with stored-energy function

W (F) = [

F : F − 3
]+ κ

2
(det F − 1)2 , (76)

where μ and κ stand, respectively, for the initial shear and
bulkmoduli of the elastomer. For definiteness, we takeμ = 1
and κ = 100. In this case, periodic boundary conditions
imply that

uk (1, X2) − uk (0, X2) = 〈F〉k1 − δk1
uk (X1, 1) − uk (X1, 0) = 〈F〉k2 − δk2 ∀k = 1, 2,

(77)

where δkl is the Kronecker delta, whereas uk and Xk(k =
1, 2) are the components of the displacement field and ini-
tial position vector in a Cartesian frame of reference with its
origin placed at the left lower corner of the unit cell (see,
e.g., [13]).

In terms of the discretization, we consider the polygo-
nal mesh depicted in Fig. 3b. It consists of 3000 polygonal
elements and 6132 nodes. To be able to apply the periodic
boundary conditions (77), we adopt the concept introduced
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Fig. 4 a An illustration of the insufficiency of the 2nd triangulation
scheme in the “n-gon” approach, which treats the elliptical particle as
a stiff but deformable polygonal element, at an applied shear of γ = 2.
The element deforms at the top and bottom poles of the particle, where

the local stretches in the particle-matrix interface are highest. b With
a 6th order triangulation scheme, the particle element remains rigid at
the same level of applied shear

Fig. 5 The finite deformation of the rigid elliptical particle as a function of applied shear γ . The inset depicts the deformed shape of the unit cell
at γ = 3 using the rigid-body constraint approach

in [5] of locally inserting additional nodes to achieve peri-
odic nodal distributions on opposite boundaries. A first order
displacement-based finite element formulation is utilized.

In addition to results from the proposed displacement-
based formulation with rigid-body constraints, for compari-
son purposes, we also work out results based on the “n-gon”
approach introduced in [5]. In the “n-gon” approach, the rigid
behavior of the particle is approximated by considering it
as a compressible Neo-Hookean solid with μ = κ = 106.
We find that moduli higher than 106 would lead to larger
converged residual norms that would make the convergence
criterion harder to be satisfied. In terms of the size of the
problem, the rigid-body constraint formulation leads to a
system containing 12,893 DOFs, as compared to the one
having 12,632 DOFs in the “n-gon” approach. We note that,
although the size of the system obtained from the rigid-body
constraint formulation is slightly larger than the one from the
“n-gon” approach, most of the additional DOFs (258 DOFs)
are Lagrange multipliers associated with linear constraints
that can, as already indicated, be condensed from the system.

Furthermore, the “n-gon” approach in this example treats the
elliptical particle as a polygonal element with 132 edges. As
mentioned in the Introduction, it is numerically challenging
tomake a polygonal element with many edges behave rigidly
under large deformations, even with shear and bulk moduli
as high asμ = κ = 106. The adopted 2nd order triangulation
scheme is insufficient for the particle element in this exam-
ple and undesirable deformation occurs in highly stretched
regions, such as the ones at the top and bottomof the elliptical
particle, as shown in Fig. 4a. To overcome such difficulties,
integration schemes of higher order are needed. We find that
at least a 6th order triangulation scheme is needed to keep
the particle rigid during the whole deformation process, as
shown in Fig. 4b. This, however, increases the computational
cost, given that the 6th order triangulation scheme requires
many more integration points (1584 integration points) than
the 2nd order one (396 integration points). By contrast, again,
the rigid-body constraint approach treats the presence of the
rigid particles, regardless of the number of edges, as a set
of algebraic equations. Therefore, no numerical integration
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Table 1 Summary of analysis histories and computational expenses of
example 1

Approaches # of Int. points Aver. iter.
per step

Time (S)

Rigid-body constraint 53,415 4.15 1007

“n-gon” approach 54,999 5.88 1350

is needed. Figure 5 shows the deformed configuration at
γ = 3 of the unit cell obtained with the rigid-body constraint
approach. As shown by the figure, the elliptical particle sim-
ply rotates under the applied shear while remaining rigid.
Moreover, as a quantitative comparison, we also plot the
rotating angle of the elliptical particle as a function of the
applied amount of shear in Fig. 5 for the results obtained by
the “n-gon” approach (with the 6th order triangulation rule
in the particle) and rigid-body constraint approach.

We conclude this example by comparing the computa-
tional costs, shown in Table 1, associated with the “n-gon”
approach and with the proposed approach with rigid-body
constraints. We find that the proposed approach takes less
computational time to reach the final deformation state (e.g.,
γ = 3) than the “n-gon” approach. Further, as a conse-
quence of the algebraic nature of the constraining equations,
the rigid-body constraint formulation uses less integration
points than the “n-gon” approach. We also find that the rigid-
body constraint formulation yields better conditioned finite
element systems because it is free of the artificial high mod-
uli (e.g., μ = κ = 106) assigned to the particle. In turn,
it takes less iterations per loading step to solve the nonlin-
ear system of equations than the “n-gon” approach. These
observed favorable comparisons, in view of the preceding
discussion, indicate that the proposed rigid-body constraint
formulation is indeed more robust and efficient than the “n-
gon” approach.

5.2 Elastomers reinforced with a random distribution of
circular particles

In this second example, we deploy the proposed mixed
formulation to study the nonlinear elastic response of an
incompressible elastomer filled with an isotropic distribu-
tion of rigid circular particles under uniaxial tension. The
macroscopic deformation gradient has thus the form 〈F〉 =
λe1 ⊗ e1 + λ−1e2 ⊗ e2 with λ denoting the macroscopic
stretch in the tensile direction. To this end, we consider the
filled elastomer to be comprised of the periodic repetition of
a unit cell that contains a random distribution of a large num-
ber of particles constructed by means of a random sequential
adsorption algorithm [13,19]. Motivated by the polydisper-
sity in size of typical fillers (see, e.g., [11]), we consider in
particular a case when there are three families of particles
with radii

{

r (1), r (2), r3
}

= {r, 0.75r, 0.5r}

with r =
(

c(1)

N (1)π

)(1/2)

, and (78)

{

c(1), c(2), c(3)
}

= {0.5c, 0.3c, 0, 2c} , (79)

where N (1) is the number of particles with the largest radius
r (1), and c stands for the total are fraction of particles. In
the present example, we take N (1) = 20 and c = 0.35. A
realization of such a unit cell containing a total number of
75 particles at area fraction c = 35% is shown in Fig. 6a.
The elastomericmatrix is taken to be an incompressible Neo-
Hookean material with stored-energy function

W (F) =
{ μ

2
[F : F − 3] if det F = 1

+∞ otherwise
(80)

with shear modulus μ = 1.

Fig. 6 aA realization of the type of unit cells considered in this example. b The corresponding polygonal discretization consisting of 20,000 linear
mixed polygonal elements and 40,196 nodes
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Fig. 7 Deformed configuration of the unit cell at the macroscopic stretch λ = 1.8

Fig. 8 Macroscopic response of the elastomer filled with a random isotropic distribution of rigid circular particles. a The total elastic energy
density 〈W 〉 versus the applied stretch λ. b The macroscopic stress 〈P〉11 versus the applied stretch λ

In terms of the discretization, wemake use of linear mixed
polygonal elements, which feature piecewise constant pres-
sure field per element [5]. Figure 6b depicts a representative
mesh containing a total of 20,000 elements and 40,196 nodes.
As in the foregoing example, themesh is alsomodified locally
to achieve periodic nodal distributions on opposite bound-
aries by inserting additional nodes. The discretization results
in a system of 107,635 DOFs with the rigid-body constraint
formulation as compared to one of 100,481 DOFs with the
“n-gon” approach. Again, most of the additional DOFs (6976
DOFs) in the rigid-body constraint formulation are Lagrange
multipliers associated with linear constraints.

Much like in the preceding example, in addition to results
from the proposed mixed formulation with rigid-body con-
straints, for comparison purposes, we also work out results
based on the “n-gon” approach. In the latter approach, the
rigid behavior of the particles are approximated by consider-
ing them as incompressible Neo-Hookean solids with shear
modulus μ = 105.

Figure 7 depicts the deformed configuration of the unit
cell at an applied stretch of λ = 1.8 obtained by the rigid-
body constraint approach, including the maximum stretch
of each element. An immediate observation from the fringe
plot is that, although most regions surrounding the particles
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Table 2 Summary of analysis histories and computational expenses of
example 2

Approaches # of Int. points Aver. iter.
per step

Time (S)

Rigid-body constraint 349,137 4.08 3250

“n-gon” approach 360,402 4.96 4032

are highly stretched, all the particles remain unstrained, indi-
cating the effectiveness of the proposed formulation to deal
with complex spatial distributions of rigid domains. Fig-
ure 8a, b plot, respectively, the total elastic energy density
〈W 〉 and the component of the macroscopic first Piola-
Kirchoff stress 〈P〉11, as functions of the applied stretch λ

for both approaches. In the rigid-body constraint approach,
the macroscopic stress 〈P〉11 is computed from the finite ele-
ment solution for the stress in thematrix phase in conjunction
with the set of Lagrange multipliers �i and relation (25).
Both approaches produce identical macroscopic responses
and they are in good agreement with the existing analytical
solution of such a problem in the literature [12].

Similarly to the preceding example, the computational
cost analysis summarized in Table 2 corroborates the higher
robustness and efficiency of the proposed rigid-body con-
straint formulation, as it requires less integration points, takes
less iterations per loading step, and uses less computational
time than the “n-gon” approach.

6 Concluding remarks

In this work, we have introduced a simple yet general
variational principle in finite elastostatics that, contrary to
existing principles, is applicable to elastic solids that may
contain constitutively rigid spatial domains. The presence
of rigid domains is formulated as a combination of lin-
ear and nonlinear kinematic constraints on their boundary,
whose associated Lagrange multipliers are directly related
to the surface traction field and the volume average of the
first Piola–Kirchhoff stress within each of the rigid domains.
From a computational point of view, as compared to the com-
monly used approaches of discretizing the rigid domainswith
standard (triangular/tetrahedral or quadrilateral/hexahedral)
finite elements, the proposed formulation does not require
any discretization in the interior of each rigid domain. Fur-
thermore, unlike the recently proposed “n-gon” approach,
which needs special care in choosing the order of numerical
integration and assigning material properties to accurately
approximate rigid behavior, the proposed formulation is
shown to reduce to a set of algebraic equations of the bound-
ary displacement DOFs of each rigid domain, which can be
implemented efficiently with either displacement-based or

mixed finite elements of arbitrary orders, and lead to bet-
ter conditioned nonlinear finite element systems. Although
the size of the system obtained from the proposed rigid-body
constraint formulation is slightly larger than the one from the
“n-gon” approach, the majority of the additional DOFs are
Lagrange multipliers associated with linear constraints that
can be condensed from the system. Two numerical examples
have been discussed to showcase the application of the pro-
posed rigid-body constraint formulation and to demonstrate
the effectiveness and efficiency of the approach in model-
ing elastomers filled with rigid particles of arbitrary shapes
and spatial distributions. As a final remark, we point out that
although the rigid-body formulation has been studied here in
the context of elastostatics, it can be readily extended to elas-
todynamics, inelastic materials, and other physics problems.
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Appendix: On the FE implementation in 3D

This appendix briefly describes the generalization of the FE
implementation of the proposed rigid-body-constraint for-
mulation to 3D. In this case, a set of four non-coplanar
“reference” nodes is needed for each interface �i

h (in 3D,

�i
h is the boundary of a polyhedral �(2)

ih ). Assuming that we
have four non-coplanar “reference” nodes for the interface

�i
h , denoted as˜X

i
r = {

x̃ ir , ỹ
i
r , z̃

i
r

}T
, r = 1, 2, 3, 4, any linear

field g (X) can be interpolated exactly via

g (X) =
4
∑

r=1

φi
r (X) g̃i,r , (81)

where the interpolation functions are of the form

φi
1 (X) =

∣

∣

∣

∣

∣

∣

∣

∣

1 x y z
1 x̃ i2 ỹi2 z̃i2
1 x̃ i3 ỹi3 z̃i3
1 x̃ i4 ỹi4 z̃i4

∣

∣

∣

∣

∣

∣

∣

∣

˜φi
, φi

2 (X)=

∣

∣

∣

∣

∣

∣

∣

∣

1 x̃ i1 ỹi1 z̃i1
1 x y z
1 x̃ i3 ỹi3 z̃i3
1 x̃ i4 ỹi4 z̃i4

∣

∣

∣

∣

∣

∣

∣

∣

˜φi
,

(82)

φi
3 (X) =

∣

∣

∣

∣

∣

∣

∣

∣

1 x̃ i1 ỹi1 z̃i1
1 x̃ i2 ỹi2 z̃i2
1 x y z
1 x̃ i4 ỹi4 z̃i4

∣

∣

∣

∣

∣

∣

∣

∣

˜φi
, φi

4 (X)=

∣

∣

∣

∣

∣

∣

∣

∣

1 x̃ i1 ỹi1 z̃i1
1 x̃ i2 ỹi2 z̃i2
1 x̃ i3 ỹi3 z̃i3
1 x y z

∣

∣

∣

∣

∣

∣

∣

∣

˜φi

(83)
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with

˜φi =

∣

∣

∣

∣

∣

∣

∣

∣

1 x̃ i1 ỹi1 z̃i1
1 x̃ i2 ỹi2 z̃i2
1 x̃ i3 ỹi3 z̃i3
1 x̃ i4 ỹi4 z̃i4

∣

∣

∣

∣

∣

∣

∣

∣

, (84)

and X = {x, y, z}T . With help of (81), the unknown fields
ui0 and Hi can be written as

ui0 + HiX =
4
∑

r=1

φi
k (X) ũi,r (85)

with ũi,r =
{

ũix,r , ũ
i
y,r , ũ

i
z,r

}T
. The remainder of the general-

izations for both displacement-based and mixed approxima-
tions can be obtained by simply expanding the dimensions of
nodal variables (and consequently, the corresponding arrays
and matrices), and following the same procedure described
for the 2D case. For conciseness, they are not presented here.
As a final remark, we note that there is a total of 3n − 6 con-
straining equations for a given interface �i

h with n boundary
nodes in 3D.Moreover, 3n−12 of the constraining equations
are linear on the displacement DOFs (corresponding to Eqs.
(71), (75) in 2D), and the remaining 6 are quadratic on the
displacement DOFs of the “reference” nodes (corresponding
to Eqs. (70), (74) in 2D).
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