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Abstract We use the graphical processing unit (GPU) to
perform dynamic fracture simulation using adaptively
refined and coarsened finite elements and the inter-element
cohesive zone model. Due to the limited memory available
on the GPU, we created a specialized data structure for
efficient representation of the evolving mesh given. To
achieve maximum efficiency, we perform finite element
calculation on a nodal basis (i.e., by launching one thread
per node and collecting contributions from neighboring
elements) rather than by launching threads per element,
which requires expensive graph coloring schemes to avoid
concurrency issues. These developments made possible the
parallel adaptive mesh refinement and coarsening schemes
to systematically change the topology of the mesh. We
investigate aspects of the parallel implementation through
microbranching examples, which has been explored
experimentally and numerically in the literature. First, we
use a reduced-scale version of the experimental specimen
to demonstrate the impact of variation in floating point
operations on the final fracture pattern. Interestingly, the
parallel approach adds some randomness into the finite
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element simulation on the structured mesh in a similar way
as would be expected from a random mesh. Next, we take
advantage of the speedup of the implementation over a
similar serial implementation to simulate a specimen
whose size matches that of the actual experiment. At this
scale, we are able to make more direct comparisons to the
original experiment and find excellent agreement with
those results.

Keywords GPU computing - Finite elements - Adaptive
mesh refinement - Adaptive mesh coarsening - Cohesive
zone model - Microbranching

1 Introduction

We use the graphical processing unit (GPU) to perform
dynamic fracture simulation using adaptively refined and
coarsened finite elements and the inter-element cohesive
zone model. The massively parallel nature of the GPU
results in significant speedup over similar adaptive mesh
refinement and coarsening strategies implemented on a
CPU.

In a related work, researchers developed a framework to
perform dynamic fracture simulation on a static bulk mesh
[1]. While large speedup was achieved because of ability to
perform floating point operations very quickly, the size of
the system was limited due to the inherent memory
restrictions of the GPU architecture. In the present work,
we aim to solve larger problems that demand more memory
due to the sizes of the finite element meshes. Thus, we
develop an adaptive refinement and coarsening
scheme (AMR+C) suitable for the GPU architecture to
ensure only the most important information is stored during
the simulation. The AMR+C will allow for analysis of
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much larger systems than that of an equivalent uniform
mesh as we only use the finest level of refinement where
necessary. Performing adaptivity on the GPU is not a
straightforward task though, as a new mesh representation
data structure, finite element calculation framework, and
refinement and coarsening algorithms are necessary.

Before going into the details of adaptive mesh refine-
ment and coarsening for dynamic fracture applications, it is
useful to first provide some background of the GPU
architecture and comparison to a central processing unit
(CPU) system. CPUs are a multi-core system, which are
optimized for serial programming with sophisticated con-
trol logic and access to ample cache memory. However,
neither control logic nor access to memory improves the
peak calculation speed, and by about 2003 software
developers were making more advances than could be
supported with the existing hardware. The speed of an
individual CPU is ultimately limited by energy consump-
tion and heat-dissipation issues; leading developers moved
to many-core environment of the GPU. The many-core
approach focuses on execution throughput of parallel
applications. Conversely, the GPU comprised a large
number of small cores, so computationally intensive parts
of a code can be moved to the GPU where it can be divi-
ded. Moreover, many-core systems have up to 10 times
higher memory bandwidth than multi-core systems, mak-
ing it possible to move data in and out of its memory much
faster. Much of the GPU development has been motivated
by the gaming industry in which massive numbers of
floating point operations are required. In order to accom-
modate this demand, developers optimize codes for exe-
cution throughput of a massive number of threads; more
chip area is given for floating point operations rather than
to memory to increase throughput. To summarize, GPUs
are well-suited for problems involving a large number of
floating point calculations, thus they are not universally
faster than CPU systems as certain applications are simply
not suited for them [2]. In general, the developer must take
great care to ensure that the benefits of the GPU outweigh
the constraints for a particular application, or the perfor-
mance will suffer greatly.

In the past decade, researchers have ported multi-core
applications to many-core systems for increased perfor-
mance. See [3] for an overview of the state of the practice
and trends an GPU computing. In the field of finite ele-
ments, recent efforts have been focused on linear system
assembly, storage, and solution. Researchers in [4] pro-
pose an iterative technique to generate space matrices on
several GPUs in order to overcome limited storage space.
Memory issues are also addressed in [5], where techniques
for assembling finite element matrices are explored.
Solution of linear systems is also non-trivial, especially on
GPUs. To address this, the authors of [6] propose a

@ Springer

massively parallel Cholesky factorization technique for
use on GPUs.

Multi-core dynamic fracture simulations have been
studied by several authors in the past. For example,
researchers [7] investigate cohesive dynamic fracture in a
parallel CPU environment ParFUM framework [8]. The
cohesive elements require an external activation criteria
and do not feature the initial elastic slope present in the
intrinsic model, the interface elements are present at all
facets before the start of the simulation. Nodes at all facets
are duplicated from the beginning, but the traction sepa-
ration relationship is not activated until the external stress-
based criteria are met. In this way, the work is more similar
to an intrinsic implementation because the mesh connec-
tivity does not change as the problem evolves. In a related
work, authors in [9] also pre-insert externally active
cohesive elements into the domain. They use a discontin-
uous Galerkin approach, and because the mesh topology
does not change, they are able to attain scalability of the
parallel implementation. More recently, fully extrinsic
dynamic fracture simulation was achieved in [10]. The
work is based on the ParTopS data structure and supports
insertion of extrinsic cohesive elements on-the-fly.

Fracture simulation using the many-core GPU environ-
ment and adaptive finite element mesh operations are not
well documented in the literature. To the best knowledge of
the author, adaptive dynamic fracture simulation on GPUs
has not been investigated. Adaptivity has been explored in
other fields, for example cartesian meshes are generated on
the GPU for computational fluid dynamics applications
resulting in speedup of up to 36 for large meshes [11].
Dynamic fracture with the extrinsic cohesive zone model
on a uniform mesh is investigated and implemented in [1],
and serves as the motivation and foundation on which the
proposed adaptive GPU fracture is based.

In this work, we present a massively parallel adaptive
finite element analysis for dynamic fracture simulations.
Cohesive interface elements are adaptively inserted along
bulk elements boundaries where and when needed, accord-
ing to the analysis fracture criterion. Secondly, and more
computationally demanding, bulk elements are adaptively
refined and coarsened in order to reduce mesh size while
using appropriate mesh resolution on critical regions.

The remainder of this paper is organized as follows. Our
methodology for conducting adaptive mesh modification
for dynamic fracture simulation, including the physical
basis for the work and computational implementation, is
discussed in great detail in the Sect. 2. Section 3 describes
our data structure and explains mesh modification algo-
rithms on the GPU, such as mesh refinement and coarsening
and insertion of cohesive elements. Equipped with a com-
putational framework to conduct large-scale fracture sim-
ulation quickly, we explore some numerical investigations



Engineering with Computers (2016) 32:533-552

535

in Sect. 4. We simulate benchmark problems with accepted
results in the literature, but investigate features of the GPU
implementation that have yet to be explored. Finally, we
close in Sect. 5 with a summary of the contribution and
discussion of potential future research directions.

2 Numerical representation of dynamic fracture

The primary application of this work is dynamic crack
propagation and nucleation. We simulate such problems
using the cohesive zone model approach in which the
fracture process zone ahead of the crack tip is approxi-
mated by a nonlinear traction-separation relation. This
approach is attractive in its simplicity: the degrading and
softening mechanisms where micro-cracks and voids ini-
tiate and coalesce ahead of the crack tip are not explicitly
modeled, rather they are approximated by the cohesive
zone [12, 13]. The concept is illustrated by the simple
schematics shown in Figs. 1 and 2. The macro-crack tip
contains zero tractions and complete separation, then ahead
of this point the traction increases and opening decreases.

The cohesive zone model approach can be incorporated
into a number of numerical frameworks. In this work we
limit our attention to the inter-element approach, in which
the cohesive elements are only present at the bulk finite
element boundaries. We employ standard quadratic trian-
gular elements to represent the continuum behavior. The
cohesive elements are quadratic edge elements encoded
with the traction-separation relationship, given by the PPR
potential-based cohesive zone model. We will not address
the model in detail here, instead the reader is referred to
[14] for the derivation of the model and to [15] for a
comparison of the model to others available in the litera-
ture. The extrinsic model is utilized, which allows for
arbitrary crack growth (so long as it is along element
boundaries) without restriction to predefined or preexisting
fracture planes [16].

We consider temporal effects when modeling crack
propagation through the explicit central difference time

integration scheme with a lumped mass matrix [17]. This
eliminates the need to solve the linear system when cal-
culating the nodal displacements, which makes the con-
tinuum problem without adaptivity readily parallelizable.
However, in this work, the mesh evolves in time via
insertion of cohesive elements, mesh refinement, and mesh
coarsening; thus parallelization is not at all trivial. The
details of the GPU parallelization of this approach are
described in detail in the next section.

3 Adaptive mesh modification

Mesh adaptivity is important in the context of finite ele-
ment applications, as it enables larger simulations to be
performed in less computational time. Of course, adaptivity
has been widely utilized in the context of material fracture
and failure modeling, which has been demonstrated
throughout the course of this thesis. However, mesh
adaptivity and hierarchical schemes are also utilized in
other fields such as modeling electronic chip packages [18],
large-eddy simulations [19], and astrophysical thermonu-
clear flash [20], just to name a few. We continue the focus
of this work on dynamic fracture simulation and develop
the data structure and algorithm for adaptive modification
of the finite element mesh, namely mesh refinement and
coarsening. The data structure is detailed in the following
subsections.

3.1 Data structure for 4k adaptive finite element
mesh representation

An efficient data structure is critical in adaptive fracture
applications. From a data representation perspective, the
implications of inserting a cohesive element or refining or
coarsening a region of the mesh involves dynamically
changing the size of the node/element representation and
updating adjacency relations. If this is not done in an
efficient way with respect to computational processing
time, then the cost of solving even a small problem could

Voids and

micro-cracks

Cohesive zone

Fig. 1 Schematic of the cohesive zone model approach. The cohesive zone ahead of the macro-crack tip consists of voids and micro-cracks
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Fig. 2 The surfaces of the macro-crack tip are completely separated
and are traction free. Then separation decreases and traction increases
into the cohesive zone

be dominated by upkeep of the mesh representation instead
of on the structural mechanics computations.

Several data structures have been devised including those
for dynamic fracture with adaptive insertion of cohesive
elements and adaptive topological operators on a serial CPU
platform [21], dynamic fracture with adaptive insertion of
cohesive elements on a parallel CPU platform [10], and
dynamic fracture with adaptive insertion of cohesive ele-
ments on a massively parallel GPU platform [1]. However,
none of these previous approaches are appropriate for the
present work of adaptivity on a GPU platform for a variety
of reasons. First, data structures for serial platforms are not
equipped to handle issues of concurrency which is critical in
parallel simulations. Secondly, the CPU data structures (for
serial or parallel platforms) do not have nearly the space
restrictions as that of a GPU; we need to store far fewer
entities explicitly on the GPU and instead derive them each
time they are accessed. Finally, problems in which the bulk
mesh remains constant throughout the simulation do not
pose the challenges of constant insertion and deletion of
variables in the data structure, as we have in the adaptive
simulations proposed here.

Therefore, given the requirements of the adaptive sim-
ulation and limitations imposed by the GPU architecture,
we propose a simple and inexpensive data structure for
representation of the evolving 4k structured finite element
mesh. The 4k mesh is composed of triangular elements that
meet at vertices of 4 or 8 facets. It is constructed from a
quadrilateral grid where each cell contains 4 triangular
elements that form an “X” pattern in the cell (see Fig. 3a).

Since the data structure was developed for this particular
type of mesh, we take advantage of its properties to reduce
storage demands by avoiding extra fields that would be
necessary for a generic mesh. Not only does the data
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structure save memory over other implementations, but it is
simple and compact enough to minimize global memory
access and hide latency. For example, it is organized as
structures of arrays and transposed matrices (column-major
matrices) in order to perform coalesced memory access.
Thanks to the use of the specialized triangular mesh, we
avoid many extra fields in the data structure that a generic
mesh would require. Moreover, the proposed data structure
is based simply on a table of nodes and a table of elements.
Since we only store limited adjacency information,
traversing nodes and elements requires more “on-the-fly”
computations. However, this is acceptable because it is
done on the GPU using registers with fast access. For
example, we save space by not storing information related
to the topological edges of the mesh or a table of incidence
for each element. In such a table, each quadratic, triangular
element would contain three values: the incidence of the
node in the bulk element pointing to the next opposite
element in the order of traversal. This would greatly help
during element traversal, but it would consume more
device memory and require more global memory access.
Instead, we save the memory by only storing one incident
node per element and perform extra computations on the
GPU with registers.

The 4k mesh is a mesh that is well suited for refinement
and coarsening, because the structure is maintained as
facets are split or merged. The data structure consists of
node and element tables with some basic adjacencies and
information necessary for the hierarchical refinement and
coarsening scheme. A schematic of a sample mesh and
corresponding data structure representations is shown in
Fig. 3; we will refer back to this figure several times in the
next few sections to aid discussion.

The sample coarse mesh is partially refined in three
steps, as shown in Fig. 3a and the corresponding nodal
number of the final mesh is shown in Fig. 3b. All of the
data necessary to store this adaptive mesh are contained in
the node table (Fig. 3d) and element table (Fig. 3e).

3.2 Nodal data

The node table contains all information related to the nodes
of the mesh. The x and y values describe its 2-dimensional
spatial position. The adjacent element refers to the ID of a
bulk element (cross reference the element table) that is
adjacent to the node. Storage of this adjacent bulk element
is critical as it is frequently used to begin the process of
traversing all of the adjacent elements of a given node.

3.3 Element data

The element table contains information associated to the
bulk and cohesive elements in the mesh, each of which
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Fig. 3 Schematic of GPU data
structure for adaptive 4k mesh:
a progression of mesh
refinement and element
labeling; b node numbering on
refined mesh; ¢ facets labels
indicating order of refinement
on refined mesh; d node

table showing node ids,
coordinates, and adjacent
element; e element

table showing element id, nodal
connectivity, adjacent elements,
reference level, level of
refinement, and facet labels

Id X y Adj Elem

16 X y 0
17 X y 1
32 X y 8
33 X y 12

(d)

Id v0 vl v2 v3 v4 v5 0, o, o, Level Ref Labels
0 0 2 7 1 17 16 6 5 -1 1 0 0-0-1
1 12 7 10 21 29 26 10 7 5 2 1 0-2-0
3 8 4 9 6 20 19 -1 12 4 1 3 0-0-1
4 2 4 8 3 6 5 3 6 -1 0 4 0-0-0
11 13 8 11 22 33 30 12 2 9 2 2 1-0-2
12 8 9 11 19 32 33 8 11 2 2 2 1-2-0

are referred to by their ID. The bulk elements used in
this work are quadratic triangular elements (T6), so they
contain six node IDs (cross reference the node table):
three corner nodes followed by three mid-side nodes.
Next are the IDs of three adjacent elements (bulk or

(e)

cohesive) that are opposite to the corner nodes of the
element. While not shown in Fig. 3e, the cohesive ele-
ments are also stored explicitly in the element table. To
be consistent with the quadratic bulk element, the
cohesive elements also contain six nodes (three per
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Fig. 4 a Refinement of

elements 0, 1, 2 and 3 from

level O (white) to level 2 (dark

grey), b binary tree 0

w
o
o
w
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representation of refinement
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facet) but only contain two adjacent elements (one for
each facet).

3.4 Data storage necessary for mesh refinement

As bulk elements are subdivided, they are assigned a new
level of refinement; Fig. 3a illustrates the elements at level
0 shown in white, elements at level 1 shown in light grey,
and elements at level 2 shown in dark grey. These levels
are stored in the element table as shown in Fig. 3e. In
addition to the element-level information, we adopt a edge
labeling technique to assist in mesh coarsening in which
new edges resulting from mesh refinement are assigned a
label with a number equal to one more than its adjacent
edges. For example, when the simulation begins, the edges
of each element are labeled 0, then the new edges resulting
from one level of refinement are labeled 1, next new edges
resulting from a second level of refinement are labeled 2,
and so on. The edge labels are shown on the schematic in
Fig. 3c and as a column of the element table in Fig. 3e.
Because edges are not represented as an explicit entity in
our data structure, we store three labels per bulk element
(one per edge). Fig. 4 illustrates the hierarchical repre-
sentation of element subdivision in the refinement strategy.

To achieve an efficient element refinement strategys, it is
necessary to be able to quickly determine if an element is
inside or outside of a refinement region (read on to Sect. 3
for details on what constitutes a refinement region). Thus,
we identify regions of refinement on a background grid
because it is more efficient than identifying the elements
directly. If the midpoint of any of the facets of an element
is contained within a grid cell, then that element needs to
be refined. The grid attributes are stored in constant
memory and we maintain a counter per cell to indicate if
the cell is inside or outside of refinement region.

The size of the element table is allocated before the
simulation begins. Because the adaptive simulation grows
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with element refinement and insertion of cohesive ele-
ments, we must estimate of the final mesh size to ensure
there is adequate storage.

3.5 Data storage necessary for mesh coarsening

To enable quick updates to the mesh adjacency during
coarsening, we store the ID of the coarse element (parent)
from which two elements (children) emerge during
refinement from level n to level n 4+ 1 as the reference
element in Fig. 3e. This enables us to quickly access the
coarse bulk element that should result from merging
(coarsening) two fine elements.

When coarsening the mesh, elements and nodes are
removed from the pre-allocated tables, which results in
“holes” in the data structure. Rather than collapsing the
data structure by renumbering the mesh entities (we
explored this approach but concluded that it was too
computationally expensive for the present application), we
opt to fill the holes the next time a node or element is
inserted into the mesh. Thus, we need to keep track of
unused node and element IDs, which we do through a node
and element stack. When new nodes/elements are added to
the mesh, we first insert them at the indices stored in the
respective stack. Then, once the stack is empty, we add
nodes/elements by creating new entities in the node/ele-
ment tables, respectively. We avoid coarsening of cohesive
elements, therefore there is no need to store additional
information for adaptivity. The data structure stores two
stacks, one for the nodes and one for the elements, and two
stack counters to reference the top of the stack.

3.6 Non-topological data storage
We allocate space for non-topological attributes used in the

numerical simulation, e.g., displacements, velocities, accel-
erations, nodal forces, stresses, strains, stiffness matrices,
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mass, and elastic material properties. Some of these are read
and written, while others are read-only attributes.
Attributes that are read and written frequently (e.g.,
displacements, velocities, stress, cohesive traction) are
stored in global memory. As mentioned previously, global
memory is time consuming to access, so when possible we
minimize use of this memory. Due to the memory access
issues on the GPU, we chose to only implement a small
deformation, isoparametric formulation for the numerical
simulations. Using this assumption we can calculate the
element stiffness matrices once without need for updates,
which would be necessary in a finite deformation case.
Therefore, the element stiffness matrices are stored in
texture memory, which is read-only and can be accessed
faster than global memory. Moreover, we utilize the central
difference time integration with a lumped mass matrix and
we neglect effects of damping, therefore we arrive at a
fully explicit time integration scheme. In practice this
means that we do not have to assemble and store the system
matrices because solution of the linear system is trivial.
Instead we can solve the dynamic time integration equa-
tions one element or node at a time (see the next section for
details on these calculations). Finally, we store the material
properties of homogenous domains in constant memory.
This is similar to texture memory in that it is read only;
however, the space is smaller so it is faster to access.

3.7 Node and element calculations

In parallel finite element simulations, it is critical to avoid
concurrently writing to the same location in memory. For
example, node quantities (e.g., displacements, nodal force,
etc.) are composed of contributions from adjacent ele-
ments. Writing conflicts will arise if multiple elements are
updating a node at the same time. Typically, this issue is
handled with graph coloring schemes, such as that pro-
posed in [22], whereby the color groups are visited in a
serial fashion, and one thread is launched per element in
that color group. This is usually done once at the start and
absorbed in the overhead cost as it is a relatively expensive
operation for arbitrary meshes. In the adaptive simulation,
however, the number of bulk elements and their connec-
tivity will change. Therefore the coloring algorithm would
need to be executed every time a bulk element was
removed or inserted, which would be computationally
inefficient even on the GPU.

Our solution for the adaptive simulation is to sweep the
nodes (one thread per node) and gather information from
its adjacent elements, rather than sweeping elements (one
thread per element) and updating its adjacent nodes. The
data structure allows for quick access the elements adjacent

to the nodes through use of the adjacent bulk elements
stored in the element table. Using the node-based calcu-
lations, elements will be visited concurrently, as nodes
within a close vicinity will share adjacent elements.
However, since data will only be read from the element
entities, the issue of concurrent writing is not present. The
efficiency of this approach is similar to that of the element
sweep approach. When mesh refinement and coarsening
are enabled, this approach leads to some variation in final
crack patterns and results from one simulation to another.
While this variation is not incorrect it warrants some
investigation, which is conducted via numerical experiment
in Sect. 4.

3.8 Adaptive insertion of cohesive elements

The extrinsic cohesive model employed in this work
requires an external criteria to activate (i.e., insert) the
traction-separation relation associated with the cohesive
element. A number of approaches have been utilized to
activate the elements including strength/stress, strain,
velocity, numerical instability, etc. We will assume that
elements have been activated for the following discussion.
When cohesive elements are inserted into the mesh, the
nodes along the insertion facet are duplicated. The cohe-
sive element is defined by the original nodes along the facet
(three in this case of quadratic triangular elements) plus the
additional nodes resulting from duplication.

As mentioned in Sect. 3.7, we do not utilize a graph
coloring scheme in this work. One of the implications of
our node-based approach is that we cannot use previous
strategies, such as those adopted in [1, 10], to insert
cohesive elements at bulk element facets. Instead we utilize
a two-step node sweep strategy, which is analogous to the
update scheme discussed in Sect. 3.7.

Figures 5, 6 illustrate the algorithm for inserting the
cohesive elements on a non-colored quadratic triangular
mesh (T6 elements). In this example, three cohesive ele-
ments will be inserted at the bold black facets in Fig. 5a.
After detecting the facets which need a cohesive element
inserted (fractured facet), we begin the procedure for
inserting cohesive elements and duplicating nodes. In the
first kernel, we launch one thread per bulk element that
contains at least one fractured facet. Because a facet is
shared by two bulk elements, we choose the element with
the smaller ID in the element table to be responsible for
inserting the cohesive element. The bulk element sweeps
its facets and inserts the cohesive elements on the fractured
facets by adding them to the element table. While inserting
the cohesive elements we also duplicate the mid-side nodes
by adding a new node to the node table for each cohesive
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C)) (b)

Fig. 5 Cohesive elements are inserted on fractured facets (in bold
black) by launching one thread per bulk element that contains at least
one fractured facet. Mid-side nodes are also duplicated

element inserted. The result is shown in Fig. 5b. We mark
the corner nodes that belong to the cohesive elements so we
can determine which ones need to be duplicated; however,
the duplication is not done in this step. Once all of the

(@) (b)

cohesive elements are inserted in parallel, then we begin
the second step of duplicating corner nodes.

The nodes marked in the previous kernel will be fil-
tered using a simple CUDA Scan and Compact operation.
In the second kernel, we launch one thread per filtered
node and check them for duplication, as illustrated in
Fig. 6b. Starting from the node’s adjacent element (stored
in element table) we traverse all incident elements. The
algorithm begins by accessing the adjacent element from
the node in the data structure and traversing the elements
in one direction, until the first cohesive element is
reached. This cohesive element will serve as the reference
element. Then the direction is switched and the elements
adjacent to the node are traversed. The node is duplicated
each time a cohesive element is passed. When we arrive
back at the reference element the procedure is complete.
This algorithm does not cause issues of concurrent writing
because each thread is responsible for duplicating its own
node.

(c) (d)

(e) (f)

Fig. 6 To determine if a node should be duplicated, we traverse the
elements adjacent to the node. a Traversal begins in one direction
until first cohesive element is reached, it will serve as a reference
point. The traversal direction changes and b a bulk element is
reached, ¢ then the second cohesive element is reached, d then a bulk
element is reached. When the cohesive element is passed the node is
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(9)

duplicated. Traversal continues and e the third cohesive element is
reached, f then the last bulk element is reached. The node is
duplicated again when the cohesive element is passed. g Traversal
and node duplication stops when the first cohesive element is reached
again
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Fig. 7 4k refinement scheme. a Mesh is initially refined around the
notch tip. b Cohesive elements are inserted along facets of fully
refined elements, new crack tips are identified and new refinement
regions associated with each crack tip are created. ¢ A background
grid, shown in dashed blue, is used to identify which elements are
within the refinement region. d The grid cell counters indicate the
number of refinement regions present in the cell. e The distance

3.9 Adaptive mesh refinement

One of the main contributions of this work is the devel-
opment and implementation of the 4k refinement and
coarsening scheme on the GPU. The criteria for which is

between the crack tips and the elements with a grid cell counter
greater than 0 is calculated. If the distance is less than a user-defined
value then the element is marked (black ‘x’) and elements adjacent to
the hypotenuse of a marked element are marked (grey |x’). f Marked
elements are refined to level 1, then the process repeats to refine the
marked elements to level 2 and so on

similar to that of [23] and are briefly reviewed here before
describing the GPU implementation. Multiple crack tips
may emerge as the fracture simulation evolves in time,
where we define a crack tip as an unduplicated nodes of a
cohesive element. These crack tips are necessary to per-
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form adaptive mesh refinement, as we use the a priori
assumption that regions around crack tips (i.e., high gra-
dient of the displacement field) must be the finest in the
simulation. Given a crack tip, elements that fall within a
user-specified radius are refined according to the hierar-
chical 4k scheme to a user-defined level. To avoid com-
plicated transfer of internal state variables associated with
the nonlinear cohesive elements, this refinement strategy
prohibits cohesive elements from being refined or coars-
ened. Thus, cohesive elements may only be inserted at
elements that are already refined to the highest level. This
assumption is generally acceptable, as we expect cracks to
initiate from areas that are fully refined, e.g., initial defects,
notch, or crack tip.

The algorithm to refine bulk elements in a certain region
of a 4k mesh is a multi-step procedure described as follows
and corresponds to Algorithm 1. The notation we use in
Algorithm 1, < << x > > >, indicates that a kernel
call is being made where x indicates the number of threads
launched. The scheme is demonstrated from a topological
perspective in Fig. 7. The domain in the figure contains an
initial notch which is refined (Fig. 7a). Next step cohesive
elements are inserted (notice that they are also inserted
along facets of fully refined elements) and the crack tip
nodes are updated.

As new crack tips emerge during the simulation, new
corresponding refinement regions must be created
(Fig. 7b). An element is refined if at least one of its mid-
side node is inside a refinement region. As discussed in
Sect. 3.1, we use a regular grid to determine which ele-
ments need to be refined (Fig. 7c). Each grid cell stores a
counter that indicates the number of refinement regions it
belongs to. The cell size is chosen based on the size of the
refinement region. If a cell is inside a refinement region, its
counter is incremented by one. Cells that remain with zero
counter are outside refinement regions. An element is said
to be inside a refinement region if the cell it belongs to is
marked with a value greater than zero. We launch one
thread per cell and calculate the distance between the
center of the cell and the center of each new refinement
region. If the distance is less than the user-defined radius,
then we increment the cell counter (Fig. 7c).

The loop in Algorithm 1 begins by refining elements to
level 1, once all eligible elements are refined to level 1,
then we move to level 2 and so on until the desired level of
refinement is reached. The first kernel call launches one
thread per bulk element and if the midpoint of at least one
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Fig. 8 Marked opposite elements. a Elements with at least one node
inside the refinement region are marked, b elements adjacent a
marked element’s hypotenuse are also marked

facet of the element has its cell counter greater than zero,
then the element is marked for refinement (lines 4-5 in
Algorithm 1 and the black ’x’ in Fig. 7e). In the next kernel
call, for each marked element we mark the element adja-
cent to the hypotenuse of the originally marked element
(lines 7-8 in Algorithm and the grey 'x’ in Fig. 7e). This is
also illustrated in Fig. 8, where the facets between elements
2 and 1 and elements 2 and 3 have at least one node that
falls within the radius of refinement shown as the light grey
semi-circle, so all three elements are marked. Element O is
adjacent to the hypotenuse of marked element 1, so it is
also marked. This procedure is executed until there are no
more marked elements (line 9 in Algorithm 1). Note that a
scan operation is performed to get the total number of
marked elements (line 8 in Algorithm 1).

In the next kernel call we launch one thread per marked
element and split it according to the 4k hierarchical
refinement strategy, i.e., split the element along its longest
edge [24]. It is useful to note that the first two nodes in a
row of the element table are the corner nodes that define
the hypotenuse of the element (see Fig. 3e), thus the
longest facet of an element is directly accessible and does
not require additional calculations. New nodes/elements
are created in this step by either adding them to the node/
element tables or by reusing node/element IDs from their
respective stacks (line 10 in Algorithm 1). The last kernel
updates adjacency of the newly added elements in the
element table (line 11 in Algorithm 1). This procedure is
continued until all elements inside the refinement region
reach the level 1, then it starts again for level 2, and so on
until all elements inside the refinement region reach the
level prescribed by the user or there are no more marked
elements. The resulting mesh after refinement of one level
is shown in Fig. 7f.
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Algorithm 1 Kernel based algorithm to perform adaptive mesh refinement

1 RefineCUDA ()

2 MarkRefinedRegionCells <<<nCells>>>

3 do {

4 MarkElements <<<nElems>>>

5 nMarkedElems = ScanMarkedElems <<<nElems>>>
6 do {

7 MarkNeighbors <<<nMarkedElems>>>

8 nMarkedNeighbors = ScanMarkedNeighbors <<<nElems>>>
9 } while numMarkedNeighbors != 0

10 SplitFacets <<<totalNumMarkedElems >>>

11 Update adjacency <<<totalNumMarkedElems >>>
12 } while there are marked elements

13 end RefineCUDA

3.10 Adaptive mesh coarsening

For adaptive mesh coarsening, we can deduce that in
regions far away from the crack tip, a coarser mesh is
sufficient. However, unlike refinement, the coarsening
criteria are not only based on an element’s geometric
position relative to the crack tip. Rather, it is also based on
convergence of the norm of the strain of the coarsened
mesh to that of the refined mesh. However, in regions near
crack tips, coarsening does not occur. Thus, cells are
marked and used also as a criteria for coarsening by veri-
fying if they are outside existing refining regions. The error
between the norm of the strain in a patch of the refined 4k
element is compared to the norm of the strain in the same
patch but with coarse elements. If the error is less than a
certain threshold, 2 % in this study, then the patch is
coarsened. Since the finite element space is becoming less
rich, energy conservation is not expected; however, the loss
is minimal and justified by the gain in memory and pro-
cessing time.

The parallel coarsening algorithm is essentially the
reverse of the refinement; however, the implementation on
the GPU must be done in such a way to ensure that con-
currency is avoided. First, a kernel with one thread per
element is launched where the bulk elements are marked if

the mid points of all of its facets are outside of an existing
refinement region (lines 4-5 in Algorithm 2). This is done
by verifying if the cell counter is equal to zero and if its
level of refinement is greater than zero. After bulk elements
are marked, the nodes are visited through a kernel call by
launching one thread per node. An interior node is marked
for coarsening if (1) four of its adjacent bulk elements were
marked as being outside a refinement region, and (2) two of
the facets emanating from it are labeled with values greater
than that of any other facets on adjacent elements (lines
9-10 in Algorithm 2). Nodes of boundary elements are
handled similarly.

Once the nodes are marked for coarsening, a kernel call
is used to update the adjacent elements’ reference element
by choosing one of the adjacent elements that will merge
into the coarser element (line 11 in Algorithm 2). The
kernel launches one thread per node and traverses the
node’s incident elements The reference element is updated
using atomic operations to avoid concurrency in updating
the elements. Finally, the element is coarsened, which
involves updating the adjacent element to the node in the
node table, the nodes defining the adjacent elements, the
elements opposite to the corner nodes of the adjacent ele-
ments in the element table, and the level of refinement of
the adjacent elements (line 12 in Algorithm 2).
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Algorithm 2 Kernel based algorithm to perform adaptive mesh coarsening

1 CoarsenCUDA ()

2 MarkCoarsenRegionCells <<<nCells>>>

3 do {

4 MarkElements <<<nElems>>>

5 nMarkedElems = ScanMarkedElements <<<nElems>>>
6 if nMarkedElems == 0 then {

7 break

8 }

9 MarkNodes <<<nNodes>>>

10 nMarkedNodes = ScanMarkedNodes <<<nNodes>>>
11 UpdateReferenceTable <<<nMarkedNodes>>>

12 Coarsen <<<nMarkedNodes>>>

13 } while there are marked elements

14 end CoarsenCUDA

4 Numerical investigations

The adaptive mesh refinement and coarsening scheme im-
plemented here is applicable for many types of fracture
problems; however, the benefits of the approach are most
realized for problems dominated by few cracks. Consider
the contrary example of pervasive fracture problems [25].
All or most of domain needs high levels of mesh refine-
ment to capture the fracture behavior, thus an adaptive
refinement scheme would not have any effect. The fol-
lowing investigations are intended to examine implications
of the GPU implementation on the physics of the problem,
push the limits of the GPU to determine the maximum
problem size that can be simulated, and to explore the
response of systems through parametric studies in an effi-
cient manner.

4.1 Reduced-scale micro-branching specimen

We verify the implementation of the adaptive scheme on
the GPU through a series of numerical investigations on a
well-known micro-branching problem. This model prob-
lem is inspired by the experimental work of [26] and has
been simulated by many authors [10, 27-29]. Similar to the
previous investigations, we utilize a reduced-scale model
for direct comparison purposes. Later we will address the
issue of the full-scale model. The problem features few
major cracks, which makes it a good candidate for the
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adaptive scheme, and several minor cracks that results in a
complex fracture pattern. The simple geometry and loading
conditions are shown in Fig. 9. For the reduced-scale
model, the geometry is given by x = 16 mm, y =4 mm,
the applied strain is 0.015 and we use the material
parameters suggested in [27]. Due to the reduction of the
model size and known issues related to representing an
experimental system on a numerical model, we adopt the
following: Young’s Modulus of 3.24e9 Pa, density of 1190
kg/m?, and a Poisson ratio of 0.3 for the bulk elements and
a fracture energy of 352.3 N/m and cohesive strength of
129.6e6 Pa for the cohesive elements. The shape of the
softening curve is linear, as given by the PPR shape
parameter of 2 in each opening direction. Unloading is

Pttt Tt Ittty
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— 4 y
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X

Fig. 9 Micro-branching problem geometry and loading conditions
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(b)

Fig. 10 Final crack pattern for the reduced-scale micro-branching
problem for a uniform mesh, b AMR-enabled mesh, ¢ AMR+C-
enabled mesh. Cohesive elements opened greater than 10 % of the

assumed to occur linearly back to the origin, i.e., perma-
nent deformation is not sustained. To prevent interpene-
tration of materials, a penalty stiffness is applied if
cohesive tractions become negative.

First, it is useful to compare the results using AMR and
AMR+-C to that of an equivalent uniformly refined mesh.
For the reduced-scale model, the uniform mesh comprised
192x48 4k patches, or 36,864 T6 elements. The AMR- and
AMR+-C-enabled meshes are initially discretized into
48x12 4k patches, or 2,304 T6 elements, then adaptively
refined to a level 4 in the region of the crack tips. Elements
are removed in the AMR+4-C case in regions far away from
the crack tips when the root mean error in the strain on a
patch of elements falls below the user-defined threshold of
0.01.

(c)

normal or tangential critical opening distance are shown in blue, other
cohesive elements are shown in red (color figure online)

The final crack patterns for each case are shown in
Fig. 10. The finite element meshes are visible and various
levels of refinement are clear in the AMR and AMR+C
cases. Cohesive elements that are open greater than a
certain threshold of the critical opening distance in either
the normal or tangential direction are plotted in blue.
Cohesive elements that are inserted but not open greater
than the threshold are plotted in red. The threshold by
which a cohesive element is considered open is important
when quantifying the fracture pattern. For visualization
purposes, we show the fracture pattern with the relatively
low threshold of 10 %, but in the quantifications reported
later in this section we also examine a higher threshold.

Table 1 shows the final number of elements and nodes
(after adaptivity and insertion of cohesive elements) and
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Table 1 Comparison of final quantities between Uniform, AMR and AMR+-C simulations

Tol Mesh type Elements Nodes Crack tip Total crack Num Avg. branch
initial/final initial/final velocity (m/s) length (m) branches length

0.1 Uniform 36,864/36,864 74,257/76,268 7717.5 0.034 2 2.2e—4

0.1 AMR* 2,634/13,277 5,411/28,506 754.3 0.036 5.2e—4

0.1 AMR+C* 2,634/8,303 5,411/18,296 755.5 0.039 2 5.le—4

0.75 Uniform 36,864/36,864 74,257/76,268 7717.5 0.019 14 4.6e—4

0.75 AMR* 2,634/13,277 5,411/28,506 754.3 0.021 19 4.le—4 m

0.75 AMRHC* 2,634/8,303 5,411/18,296 755.5 0.021 20 4.7e—4 m

* The AMR and AMR+C quantities are averaged over 20 simulations

quantitative differences between the simulations, namely e »

the crack tip velocity, total crack length, and number of _ ngkcgfgnch

branches off the main crack. The crack tip velocity is zgianZrack ——  Secondary branch

computed by performing a linear regression of the crack tip
versus time, where the crack tip is defined at the right-most
non-duplicated node of a cohesive element. The crack tip
velocity is quite stable throughout the simulation, so the
linear regression agrees well with the raw data. Notice that
the crack tip velocity is the same for both tolerances,
because by our definition the crack tip for the purposes of
the velocity calculation is independent of the amount of
element opening. The total crack length is total distance
covered by all of the cohesive elements open greater than a
certain fraction of the critical normal or tangential opening
length (denoted Tol in Table 1). We see good quantitative
agreement between the uniform, AMR and AMR+-C cases
in terms of the crack tip velocity and total crack length.
The number and length of branches was post-processed
using a simple algorithm performed on the final fracture
pattern. Starting from the notch tip node, the main branch is
detected by traversing cohesive elements using the adja-
cency information stored in the data structure. The main
branch consists of the path of full open elements that reach
the right end of the specimen. Once the main crack is
detected, the secondary branches are found by again
traversing the main crack. Every point where the crack
branches, the path is followed using adjacent information
until it terminates. Primary branches are those with the
longest length emanating from the main branch. A shorter
branch emanating from a primary branch is denoted as a
secondary branch, see Fig. 11. This algorithm excludes
cohesive elements that are not connected to the main crack.
We chose this approach so that the process of counting
branches would be controlled and consistent between
specimens. The procedure of quantifying number and
length of branches is too subjective to be evaluated by a
visual inspection. There is quite a difference in the number
and average length of branches and between the uniform,
AMR and AMR+4C cases. We report this information,
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Fig. 11 Details of crack branching including kink in the main crack,
crack branches, and secondary branches

because when visualizing a fracture pattern, one often
focuses on the number and length of branches; however,
this data can be misleading, because it is not an accurate
representation of the crack velocity or the total crack
length, which includes the main crack and the many kinks
it may have, as illustrated in Fig. 11. Instead, we choose
total crack length as the important quantity on which to
compare the cases because it is directly related to the total
energy released during the fracture process, and this is
quantity that should remain similar between different
numerical representations of the same process.

The quantities shown in Table 1 for the AMR and
AMR+C cases are average over 20 simulations. This is
because the massively parallel nature of the adaptivity in
GPU implementation introduces some variation into the
fracture simulation. New elements resulting from mesh
refinement are inserted to the mesh in a random order, so
from one simulation to the next the order in which new
bulk elements are inserted will be different. The impact on
the simulation is realized when nodal quantities are com-
puted. Recall that we avoid graph coloring and concurrency
issues, we traverse nodes and gather necessary data from
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elements as opposed to traversing elements and writing to
nodes. When we gather information onto a node from a
neighboring element, the random order in which the ele-
ments were inserted affects the order in which we visit the
elements adjacent to a node. Since we only have a certain
level of accuracy in floating point operations, we cannot, in
general, guarantee A + B # B+ A. So, when computing
quantities on a node 1, we may pull data from elements
100, 101, 102 and 103 in one simulation, and from ele-
ments 101, 100, 103, 102 in a second simulation, which is
not equal in a precise sense. These variations accumulate
over all of the computations, nodes, time steps, etc., and the
result is a variation in final fracture patterns.

It should be noted that we also examined an imple-
mentation in which the order of element/nodal computa-
tions is prescribed and the same from one simulation to
another and verified that the results are identical. This does
not imply that the implementation with no variation is
correct and the one with variation is incorrect. The same
randomness is present in the consistent implementation and
if we chose to access the elements in a different order, we
would have a similar effect as the implementation with
variation. We chose to pursue the implementation that
introduces randomness, because it is much more compu-
tationally efficient.

Using the reduced-scale micro-branching problem, we
investigate the impact that the randomness has on the final
result. We performed the simulation 20 times on each of an
AMR- and AMR+C-enabled mesh, then quantified the
variation in fracture patterns in Table 2.

As before, we notice a large difference in the number
of crack branches especially for the low crack tolerance,
which emphasizes the point that number of branches is
not an ideal measure to by which to compare fracture
patterns resulting from the same process, e.g., same
geometry, material properties, and loading conditions. The
variance on the total crack length is quite low, suggesting
that the variation caused by the numerical implementation

is low. The crack tip velocity also shows low variation
amongst the 20 iterations, for the AMR and AMR4C
cases the crack tip velocities are 754.3+ 9.8 and
755.6 £ 10.1 m/s, respectively. Additionally, the total
energy released during the fracture process is quite
comparable, 75.0+ 2.6 and 77.0£ 2.0 N/m for the
AMR and AMR+-C cases, respectively. The total energy
released considers all cohesive elements, regardless of
their amount of opening, thus this quantity is also inde-
pendent of the threshold.

We observe some other additional fracture pattern
characteristics. The branch spacing is fairly regular among
all simulations and the main cracks kinks about 3-6 times
during the simulation. Most of the branches are 1-3 ele-
ments in length, then the frequency drops significantly, as
shown in Fig. 12. Secondary branches occurred in about
half of the adaptive. Thus we concluded that the variation
caused by the massively parallel GPU implementation is
not significant.

The variation caused by the GPU could alternatively be
viewed as a way to induce randomness into the numerical
model, which in other similar studies was achieved by
perturbing a structured mesh [28] or by using a completely
random mesh [29]. The adaptive GPU implementation
allows the use of structured mesh with variability that
would be expected of a random mesh.

Finally, we compare the computational time of the
proposed scheme with other platforms (serial CPU, single
GPU) and different types of implementation (adaptive vs.
non-adaptive). The serial CPU versions were run on a 1.3
GHz Intel Core i5 processor and the GPU version imple-
mented here was done on a GeForce GTX TITAN with
2688 CUDA cores and 6Gb memory. To the best of the
authors’ knowledge there has been no other implementa-
tion of an adaptive mesh refinement and coarsening
scheme done on a parallel platform. Table 3 shows the run
times and speedups over the serial implementation without
adaptivity.

Table 2 Variation in crack tip

. Tol = 0.1 Tol = 0.75
velocity, energy released, and
occurrence of branching for 20 AMR AMR+C AMR AMR+C
simulations of each the AMR-
and AMR+C-enabled meshes Total crack length
Mean 0.036 m 0.039 m 0.021 m 0.021 m
Standard deviation 8.8e—4 m 6.8e—4 m 9.2e—4 m 9.4e—4 m
Number of branches
Mean 17 19 1 2
Standard deviation 3 4 1
Average branch length
Mean 5.2e—4 m 5.le—4 m 4.1e—4m 4.7e—4m
Standard deviation 4.2e—4 m 4.6e—4 m 4.2e—4 m 6.le—4 m
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Fig. 12 Histogram of branch 40 40
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Table 3 Comparison of execution time of the reduced-scale micro-
branching problem on different platforms (the speedup factor is
shown with respect to the no adaptivity case on the serial CPU)

Platform Implementation ~ Execution time (s) Speedup
Serial CPU No adaptivity 1196 -

Serial CPU AMR 83 14 times
Serial CPU AMR+C 57 21 times
Single GPU No adaptivity 12 100 times
Single GPU AMR 18 66 times
Single GPU  AMR+C 20 60 times

Of course, the GPU is much faster than the serial CPU,
thus adaptivity also performs faster on the GPU than the
CPU. It is interesting to note that the cases of adaptivity
on the GPU actually take longer than the uniform case.
This is because for this small problem, the percentage of
time spent on updates related to adaptive mesh refinement
and coarsening on the GPU is greater than that spent on
the finite element calculations. When the problem is larger
on the GPU, then we begin to see a difference in execution
time between the uniform and adaptive simulations. More
important, however, is that the size of the problem is
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severely limited for the uniform case on the GPU; this
limitation is alleviated by adaptivity, which makes large
problems feasible because we store much less information
than we would on a uniform mesh. So, we may not
achieve a large speedup between the uniform and adaptive
cases on the GPU, but adaptivity gives the ability to
examine problems that we could not be able to simulate
otherwise.

4.2 Full-scale micro-branching specimen

Next, we are interested in comparing the fracture pattern
from the reduced-scale model with that of the actual
experimental setup proposed in [26]. The full-scale prob-
lem size has dimensions 50 x 200 mm (12.5 times larger
than the reduced-scale case from the previous section).
Previous numerical simulations of this work using the
inter-element cohesive zone model have only simulated
reduced-scale problems due to limitations of computation
resources and sophisticated algorithms. The adaptivity
algorithm implemented on the GPU architecture makes
simulation of this full-scale problem possible. We should
note, that even with the GPU and adaptive mesh
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refinement, computational times for the following simula-
tions were on the order of 3 h.

In scaling up the problem, not only does the geometry of
the specimen change, but also the applied load and material
properties. For the full-scale model, the goal was to keep
the numerical representation as close to the experiment.
Thus specimen dimensions are those of the experiment, and
the material properties are those of PMMA, the material
used in the experiment. The Young’s Modulus is 3.24e9
Pa, the density is 1190 kg/m3, and the Poisson ratio is 0.3
for the bulk elements, while and a fracture energy of 352.3
N/m and cohesive strength of 62.1e6 Pa is used for the
cohesive elements. As before, linear softening, linear
unloading back to the origin, and a penalty stiffness to
prevent interpenetration are utilized. We examined a range
of externally applied loads: a low strain of 0.003, mid strain
of 0.004, and a high strain of 0.005, which are similar to the
loads applied in the experiment.

The difference between the full-scale and the reduced-
scale model is the applied load and the cohesive strength.
For the reduced-scale model, the loading was increased
such that the strain energy per unit length felt by the
specimen would match that of the experiment. The
adjustment of the material properties for the reduced-scale
model, namely the cohesive strength, is not as straight-
forward as has been demonstrated by other authors [27,
30]. A cohesive strength that is too large means that
fracture never initiates, while a low strength results in the
insertion of an excessive number of cohesive elements,
which is not physically realistic. Thus, we used the value
recommended in [31] and [10]. However, for the full-
scale problem, we do not adjust the material properties,
and use the experimentally obtained cohesive strength of
PMMA.

The model is initially discretized with 300 x 75 4k mesh
patches, or 90,000 elements. We use the AMR to reduce
the element size at the notch tip by 4 times (e.g., the largest
elements have a maximum length of 0.67 mm and the
smallest elements have a maximum length of 0.167 mm).
Note that a uniform mesh of comparable size would con-
tain 1,440,000 elements, which is well beyond the size
capacity of the GPU, thus adaptivity is essential.

The selection of element size was based on the results of
a parametric study of element size and the limitations of
the GPU storage capabilities. The full study is omitted here
for brevity, but the results are summarized. Essentially, we
selected the highest level of refinement to be as small as
possible while not exceeding the capacity of the GPU. An
overall coarser mesh where the ratio between the size of the
coarsest and finest elements are the same as those chosen
for this study was not sufficiently fine for the crack to

initiate. We also investigated using coarser elements in the
far field such that the difference between the courts and
finest elements was greater than what is presented here. In
this case, we found that the cracks were not initiating
because the far-field discretization was too coarse to
transfer the strain from the load application points to the
crack tip. Finally, we investigated finer levels of dis-
cretization. We found that while it performed well initially,
the simulation could not be complete because the total
numbers of elements exceeded that which we could store
on the GPU as cracks propagated. At this higher level of
refinement, the characteristics of the initial fracture pattern
were similar to that of the coarser mesh, thus giving us
confidence that the level selected is adequate.

The fracture patterns for three different strains are
shown in Fig. 13. Here we plot cohesive elements that have
opened more the 75 % of the critical opening distance. The
numerical results obtained here agree well with those
shown in the original experiment [26]. At lower strains the
fracture surface is smoother and features one predominate
crack; however, the crack arrested before it reached the end
of the domain. As the load increases, branches appear and
the fractured surface becomes rougher. Finally, at the
highest strain, many branches are present and are increased
in length.

As a proof of concept for the computational gains of the
AMR+C, we also included coarsening for the low strain
case. The computation time for the AMR was 4.63 and
3.65 h for the AMR+C. Of course, we cannot compare the
computational time to the uniform case because the prob-
lem would be too large to execute on the GPU; however,
we clearly see that when the model is sufficiently large, the
AMR+C improves computational efficiency, by 21 % in
this case.

The velocities of the three cases also increase with
increased applied strain. The average velocity for the low,
mid, and high strain cases are 611, 625, and 706 m/s,
respectively, all of which are well below the Rayleigh
wave speed of the material, as expected. It is important to
note that these numeric velocity values may have been
impacted by the small deformation assumption. Generally,
dynamic crack tip velocities in small deformation formu-
lations are higher than in finite deformation cases because
less energy is dissipated. See Sect. 3.1 for the explanation
of the use of small deformation and the impacts on GPU
memory availability. The velocity versus time plots for
each case are shown in Fig. 14. Clearly there is overlap in
the velocity versus time plots; however, the general trend is
evident. There is a drop in the velocity of the high strain
case around 1/3 of the way through the simulation, which
corresponds to the growth of three branches simultane-
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Fig. 13 Final fracture patterns for full-scale micro-branching problem with an externally applied strain of a 0.003, b 0.004, and ¢ 0.005

ously. Then, once the branches arrest and the main crack
progresses again at the higher velocity.

The details of the crack pattern and the adaptive mesh
refinement scheme are shown in Fig. 15 for the low strain
case. Elements that are open less than 75 % of the critical
opening distance are shown in the zoom-in view in red.
Notice that in relation to the crack branch, the branches
comprised partially open elements are quite small. The
details of the refinement scheme are clear, elements within
the user-defined radius of a crack tip are refined. The radius
of refinement is sufficiently large such that new cohesive
elements will be inserted within the bounds of the refined
elements.

When comparing the reduced-scale model results and
the full-scale model results, we notice some qualitative
similarities, but the details are not evident in the smaller
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model. Thus, whenever possible, it is recommended to use
a numerical model that closely resembles the actual
experiment. However, in many cases, that is not entirely
feasible due to lack of access to powerful and sophisticated
computational resources.

5 Concluding remarks

Investigation of adaptive refinement and coarsening
schemes on the structured 4k mesh for dynamic fracture
simulation on the massively parallel GPU architecture
reveals insight into intricacies of the numerical simulation.
First, a specialized data structure and new approach to
performing finite element calculations in parallel was
detailed. The race condition and expensive graph coloring
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Fig. 14 Magnitude of the crack tip velocity versus time for the high,
mid, and low strain loading. The average velocity increases with
increasing strain, but remains well below the Rayleigh wave speed as
expected

algorithms are avoided by performing finite element cal-
culations on a nodal basis. Nodal quantities are gathered by
launching threads per nodes and accumulating element
contributions rather than by launching threads per ele-
ments. Using the assumption that areas near crack tips need
to be the most refined and a strain criterion to determine
where elements can be coarsened, we adaptively change
the mesh resolution during the simulation. We detail the
parallel algorithms to systematically change the topology
of the mesh.

The variations that normally occur during floating point
operations are not usually apparent in serial or even parallel
fracture simulations on structured meshes. This is because
the order in which operations are performed, and thus the
accumulation of variation, is usually the same from one
simulation to the next. However, in the present imple-
mentation, new elements and nodes are inserted in a ran-
dom order, meaning that the quantities added to the node
are not done so in the same order from one simulation to
another. While not incorrect, the result is that fracture
patterns are different from one simulation to the next. To
demonstrate the validity of the approach given the very
different appearance of the fracture pattern, we quantified
the crack patterns through several parameters and showed
that those that are physically based agree well between
simulations. Interestingly, the parallel approach adds some
randomness into the finite element simulation on the
structured mesh in a similar way as a would be expected
from a random mesh.

Lastly, thanks to a data structure and adaptive mesh
modification scheme developed specially for the GPU
architecture, we are able to represent much larger finite
element meshes than without adaptivity. With the large-
scale simulation of the micro-branching problem, we are
able to make more direct comparisons to the original
experiment and find excellent agreement with those results.

A natural extension of this work would be include all
three dimensions; however, on a single GPU the problem
size would be quite limited, which is not well suited for
three-dimensional finite element applications. Thus,

Fig. 15 Detailed view of fracture pattern for the full-scale micro-branching problem with an externally applied strain of 0.003
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current development is on distributed computing where
different parts of the model would be simulated on dif-
ferent GPUs.
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