
ORIGINAL ARTICLE

Massively parallel adaptive mesh refinement and coarsening
for dynamic fracture simulations

Andrei Alhadeff1 • Sofie E. Leon 2,3
• Waldemar Celes1 • Glaucio H. Paulino4

Received: 11 June 2015 / Accepted: 22 December 2015 / Published online: 18 January 2016

� Springer-Verlag London 2016

Abstract We use the graphical processing unit (GPU) to

perform dynamic fracture simulation using adaptively

refined and coarsened finite elements and the inter-element

cohesive zone model. Due to the limited memory available

on the GPU, we created a specialized data structure for

efficient representation of the evolving mesh given. To

achieve maximum efficiency, we perform finite element

calculation on a nodal basis (i.e., by launching one thread

per node and collecting contributions from neighboring

elements) rather than by launching threads per element,

which requires expensive graph coloring schemes to avoid

concurrency issues. These developments made possible the

parallel adaptive mesh refinement and coarsening schemes

to systematically change the topology of the mesh. We

investigate aspects of the parallel implementation through

microbranching examples, which has been explored

experimentally and numerically in the literature. First, we

use a reduced-scale version of the experimental specimen

to demonstrate the impact of variation in floating point

operations on the final fracture pattern. Interestingly, the

parallel approach adds some randomness into the finite

element simulation on the structured mesh in a similar way

as would be expected from a random mesh. Next, we take

advantage of the speedup of the implementation over a

similar serial implementation to simulate a specimen

whose size matches that of the actual experiment. At this

scale, we are able to make more direct comparisons to the

original experiment and find excellent agreement with

those results.

Keywords GPU computing � Finite elements � Adaptive
mesh refinement � Adaptive mesh coarsening � Cohesive
zone model � Microbranching

1 Introduction

We use the graphical processing unit (GPU) to perform

dynamic fracture simulation using adaptively refined and

coarsened finite elements and the inter-element cohesive

zone model. The massively parallel nature of the GPU

results in significant speedup over similar adaptive mesh

refinement and coarsening strategies implemented on a

CPU.

In a related work, researchers developed a framework to

perform dynamic fracture simulation on a static bulk mesh

[1]. While large speedup was achieved because of ability to

perform floating point operations very quickly, the size of

the system was limited due to the inherent memory

restrictions of the GPU architecture. In the present work,

we aim to solve larger problems that demand more memory

due to the sizes of the finite element meshes. Thus, we

develop an adaptive refinement and coarsening

scheme (AMR?C) suitable for the GPU architecture to

ensure only the most important information is stored during

the simulation. The AMR?C will allow for analysis of

Andrei Alhadeff and Sofie E. Leon equally contributed to this work.

& Waldemar Celes

celes@tecgraf.puc-rio.br

1 Tecgraf/PUC-Rio Institute, Pontifical Catholic University,

Rio de Janiero, Brazil

2 Department of Civil and Environmental Engineering,

University of Illinois at Urbana-Champaign, Champaign,

USA

3 Center for Research and Interdisciplinary, Paris, France

4 School of Civil and Environmental Engineering, Georgia

Institute of Technology, Atlanta, USA

123

Engineering with Computers (2016) 32:533–552

DOI 10.1007/s00366-015-0431-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-015-0431-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-015-0431-0&domain=pdf

much larger systems than that of an equivalent uniform

mesh as we only use the finest level of refinement where

necessary. Performing adaptivity on the GPU is not a

straightforward task though, as a new mesh representation

data structure, finite element calculation framework, and

refinement and coarsening algorithms are necessary.

Before going into the details of adaptive mesh refine-

ment and coarsening for dynamic fracture applications, it is

useful to first provide some background of the GPU

architecture and comparison to a central processing unit

(CPU) system. CPUs are a multi-core system, which are

optimized for serial programming with sophisticated con-

trol logic and access to ample cache memory. However,

neither control logic nor access to memory improves the

peak calculation speed, and by about 2003 software

developers were making more advances than could be

supported with the existing hardware. The speed of an

individual CPU is ultimately limited by energy consump-

tion and heat-dissipation issues; leading developers moved

to many-core environment of the GPU. The many-core

approach focuses on execution throughput of parallel

applications. Conversely, the GPU comprised a large

number of small cores, so computationally intensive parts

of a code can be moved to the GPU where it can be divi-

ded. Moreover, many-core systems have up to 10 times

higher memory bandwidth than multi-core systems, mak-

ing it possible to move data in and out of its memory much

faster. Much of the GPU development has been motivated

by the gaming industry in which massive numbers of

floating point operations are required. In order to accom-

modate this demand, developers optimize codes for exe-

cution throughput of a massive number of threads; more

chip area is given for floating point operations rather than

to memory to increase throughput. To summarize, GPUs

are well-suited for problems involving a large number of

floating point calculations, thus they are not universally

faster than CPU systems as certain applications are simply

not suited for them [2]. In general, the developer must take

great care to ensure that the benefits of the GPU outweigh

the constraints for a particular application, or the perfor-

mance will suffer greatly.

In the past decade, researchers have ported multi-core

applications to many-core systems for increased perfor-

mance. See [3] for an overview of the state of the practice

and trends an GPU computing. In the field of finite ele-

ments, recent efforts have been focused on linear system

assembly, storage, and solution. Researchers in [4] pro-

pose an iterative technique to generate space matrices on

several GPUs in order to overcome limited storage space.

Memory issues are also addressed in [5], where techniques

for assembling finite element matrices are explored.

Solution of linear systems is also non-trivial, especially on

GPUs. To address this, the authors of [6] propose a

massively parallel Cholesky factorization technique for

use on GPUs.

Multi-core dynamic fracture simulations have been

studied by several authors in the past. For example,

researchers [7] investigate cohesive dynamic fracture in a

parallel CPU environment ParFUM framework [8]. The

cohesive elements require an external activation criteria

and do not feature the initial elastic slope present in the

intrinsic model, the interface elements are present at all

facets before the start of the simulation. Nodes at all facets

are duplicated from the beginning, but the traction sepa-

ration relationship is not activated until the external stress-

based criteria are met. In this way, the work is more similar

to an intrinsic implementation because the mesh connec-

tivity does not change as the problem evolves. In a related

work, authors in [9] also pre-insert externally active

cohesive elements into the domain. They use a discontin-

uous Galerkin approach, and because the mesh topology

does not change, they are able to attain scalability of the

parallel implementation. More recently, fully extrinsic

dynamic fracture simulation was achieved in [10]. The

work is based on the ParTopS data structure and supports

insertion of extrinsic cohesive elements on-the-fly.

Fracture simulation using the many-core GPU environ-

ment and adaptive finite element mesh operations are not

well documented in the literature. To the best knowledge of

the author, adaptive dynamic fracture simulation on GPUs

has not been investigated. Adaptivity has been explored in

other fields, for example cartesian meshes are generated on

the GPU for computational fluid dynamics applications

resulting in speedup of up to 36 for large meshes [11].

Dynamic fracture with the extrinsic cohesive zone model

on a uniform mesh is investigated and implemented in [1],

and serves as the motivation and foundation on which the

proposed adaptive GPU fracture is based.

In this work, we present a massively parallel adaptive

finite element analysis for dynamic fracture simulations.

Cohesive interface elements are adaptively inserted along

bulk elements boundaries where and when needed, accord-

ing to the analysis fracture criterion. Secondly, and more

computationally demanding, bulk elements are adaptively

refined and coarsened in order to reduce mesh size while

using appropriate mesh resolution on critical regions.

The remainder of this paper is organized as follows. Our

methodology for conducting adaptive mesh modification

for dynamic fracture simulation, including the physical

basis for the work and computational implementation, is

discussed in great detail in the Sect. 2. Section 3 describes

our data structure and explains mesh modification algo-

rithms on the GPU, such as mesh refinement and coarsening

and insertion of cohesive elements. Equipped with a com-

putational framework to conduct large-scale fracture sim-

ulation quickly, we explore some numerical investigations

534 Engineering with Computers (2016) 32:533–552

123

in Sect. 4. We simulate benchmark problems with accepted

results in the literature, but investigate features of the GPU

implementation that have yet to be explored. Finally, we

close in Sect. 5 with a summary of the contribution and

discussion of potential future research directions.

2 Numerical representation of dynamic fracture

The primary application of this work is dynamic crack

propagation and nucleation. We simulate such problems

using the cohesive zone model approach in which the

fracture process zone ahead of the crack tip is approxi-

mated by a nonlinear traction-separation relation. This

approach is attractive in its simplicity: the degrading and

softening mechanisms where micro-cracks and voids ini-

tiate and coalesce ahead of the crack tip are not explicitly

modeled, rather they are approximated by the cohesive

zone [12, 13]. The concept is illustrated by the simple

schematics shown in Figs. 1 and 2. The macro-crack tip

contains zero tractions and complete separation, then ahead

of this point the traction increases and opening decreases.

The cohesive zone model approach can be incorporated

into a number of numerical frameworks. In this work we

limit our attention to the inter-element approach, in which

the cohesive elements are only present at the bulk finite

element boundaries. We employ standard quadratic trian-

gular elements to represent the continuum behavior. The

cohesive elements are quadratic edge elements encoded

with the traction-separation relationship, given by the PPR

potential-based cohesive zone model. We will not address

the model in detail here, instead the reader is referred to

[14] for the derivation of the model and to [15] for a

comparison of the model to others available in the litera-

ture. The extrinsic model is utilized, which allows for

arbitrary crack growth (so long as it is along element

boundaries) without restriction to predefined or preexisting

fracture planes [16].

We consider temporal effects when modeling crack

propagation through the explicit central difference time

integration scheme with a lumped mass matrix [17]. This

eliminates the need to solve the linear system when cal-

culating the nodal displacements, which makes the con-

tinuum problem without adaptivity readily parallelizable.

However, in this work, the mesh evolves in time via

insertion of cohesive elements, mesh refinement, and mesh

coarsening; thus parallelization is not at all trivial. The

details of the GPU parallelization of this approach are

described in detail in the next section.

3 Adaptive mesh modification

Mesh adaptivity is important in the context of finite ele-

ment applications, as it enables larger simulations to be

performed in less computational time. Of course, adaptivity

has been widely utilized in the context of material fracture

and failure modeling, which has been demonstrated

throughout the course of this thesis. However, mesh

adaptivity and hierarchical schemes are also utilized in

other fields such as modeling electronic chip packages [18],

large-eddy simulations [19], and astrophysical thermonu-

clear flash [20], just to name a few. We continue the focus

of this work on dynamic fracture simulation and develop

the data structure and algorithm for adaptive modification

of the finite element mesh, namely mesh refinement and

coarsening. The data structure is detailed in the following

subsections.

3.1 Data structure for 4k adaptive finite element

mesh representation

An efficient data structure is critical in adaptive fracture

applications. From a data representation perspective, the

implications of inserting a cohesive element or refining or

coarsening a region of the mesh involves dynamically

changing the size of the node/element representation and

updating adjacency relations. If this is not done in an

efficient way with respect to computational processing

time, then the cost of solving even a small problem could

Fig. 1 Schematic of the cohesive zone model approach. The cohesive zone ahead of the macro-crack tip consists of voids and micro-cracks

Engineering with Computers (2016) 32:533–552 535

123

be dominated by upkeep of the mesh representation instead

of on the structural mechanics computations.

Several data structures have been devised including those

for dynamic fracture with adaptive insertion of cohesive

elements and adaptive topological operators on a serial CPU

platform [21], dynamic fracture with adaptive insertion of

cohesive elements on a parallel CPU platform [10], and

dynamic fracture with adaptive insertion of cohesive ele-

ments on a massively parallel GPU platform [1]. However,

none of these previous approaches are appropriate for the

present work of adaptivity on a GPU platform for a variety

of reasons. First, data structures for serial platforms are not

equipped to handle issues of concurrency which is critical in

parallel simulations. Secondly, the CPU data structures (for

serial or parallel platforms) do not have nearly the space

restrictions as that of a GPU; we need to store far fewer

entities explicitly on the GPU and instead derive them each

time they are accessed. Finally, problems in which the bulk

mesh remains constant throughout the simulation do not

pose the challenges of constant insertion and deletion of

variables in the data structure, as we have in the adaptive

simulations proposed here.

Therefore, given the requirements of the adaptive sim-

ulation and limitations imposed by the GPU architecture,

we propose a simple and inexpensive data structure for

representation of the evolving 4k structured finite element

mesh. The 4k mesh is composed of triangular elements that

meet at vertices of 4 or 8 facets. It is constructed from a

quadrilateral grid where each cell contains 4 triangular

elements that form an ‘‘X’’ pattern in the cell (see Fig. 3a).

Since the data structure was developed for this particular

type of mesh, we take advantage of its properties to reduce

storage demands by avoiding extra fields that would be

necessary for a generic mesh. Not only does the data

structure save memory over other implementations, but it is

simple and compact enough to minimize global memory

access and hide latency. For example, it is organized as

structures of arrays and transposed matrices (column-major

matrices) in order to perform coalesced memory access.

Thanks to the use of the specialized triangular mesh, we

avoid many extra fields in the data structure that a generic

mesh would require. Moreover, the proposed data structure

is based simply on a table of nodes and a table of elements.

Since we only store limited adjacency information,

traversing nodes and elements requires more ‘‘on-the-fly’’

computations. However, this is acceptable because it is

done on the GPU using registers with fast access. For

example, we save space by not storing information related

to the topological edges of the mesh or a table of incidence

for each element. In such a table, each quadratic, triangular

element would contain three values: the incidence of the

node in the bulk element pointing to the next opposite

element in the order of traversal. This would greatly help

during element traversal, but it would consume more

device memory and require more global memory access.

Instead, we save the memory by only storing one incident

node per element and perform extra computations on the

GPU with registers.

The 4k mesh is a mesh that is well suited for refinement

and coarsening, because the structure is maintained as

facets are split or merged. The data structure consists of

node and element tables with some basic adjacencies and

information necessary for the hierarchical refinement and

coarsening scheme. A schematic of a sample mesh and

corresponding data structure representations is shown in

Fig. 3; we will refer back to this figure several times in the

next few sections to aid discussion.

The sample coarse mesh is partially refined in three

steps, as shown in Fig. 3a and the corresponding nodal

number of the final mesh is shown in Fig. 3b. All of the

data necessary to store this adaptive mesh are contained in

the node table (Fig. 3d) and element table (Fig. 3e).

3.2 Nodal data

The node table contains all information related to the nodes

of the mesh. The x and y values describe its 2-dimensional

spatial position. The adjacent element refers to the ID of a

bulk element (cross reference the element table) that is

adjacent to the node. Storage of this adjacent bulk element

is critical as it is frequently used to begin the process of

traversing all of the adjacent elements of a given node.

3.3 Element data

The element table contains information associated to the

bulk and cohesive elements in the mesh, each of which

Tn

δn

Cohesive zone Complete
separation, zero

traction

Fig. 2 The surfaces of the macro-crack tip are completely separated

and are traction free. Then separation decreases and traction increases

into the cohesive zone

536 Engineering with Computers (2016) 32:533–552

123

are referred to by their ID. The bulk elements used in

this work are quadratic triangular elements (T6), so they

contain six node IDs (cross reference the node table):

three corner nodes followed by three mid-side nodes.

Next are the IDs of three adjacent elements (bulk or

cohesive) that are opposite to the corner nodes of the

element. While not shown in Fig. 3e, the cohesive ele-

ments are also stored explicitly in the element table. To

be consistent with the quadratic bulk element, the

cohesive elements also contain six nodes (three per

9

23 10

7 0

2 3 4

12 13 14

8

1 5 6

15 11

16 18

17

21 22

19

24 25

26
27

28 29

30
31

32 33

0

0

0

0

0 0 0

0

0 0

0
0

0

0

0
1 1 1

1
2 2

2 2

0

1
2

3
4

0

1
2

3
4

5

6

7
8

0

1
2

3
4

5

6

7
89

10
11

12

(a)

(b)

(c)

(d)

(e)

20

Fig. 3 Schematic of GPU data

structure for adaptive 4k mesh:

a progression of mesh

refinement and element

labeling; b node numbering on

refined mesh; c facets labels

indicating order of refinement

on refined mesh; d node

table showing node ids,

coordinates, and adjacent

element; e element

table showing element id, nodal

connectivity, adjacent elements,

reference level, level of

refinement, and facet labels

Engineering with Computers (2016) 32:533–552 537

123

facet) but only contain two adjacent elements (one for

each facet).

3.4 Data storage necessary for mesh refinement

As bulk elements are subdivided, they are assigned a new

level of refinement; Fig. 3a illustrates the elements at level

0 shown in white, elements at level 1 shown in light grey,

and elements at level 2 shown in dark grey. These levels

are stored in the element table as shown in Fig. 3e. In

addition to the element-level information, we adopt a edge

labeling technique to assist in mesh coarsening in which

new edges resulting from mesh refinement are assigned a

label with a number equal to one more than its adjacent

edges. For example, when the simulation begins, the edges

of each element are labeled 0, then the new edges resulting

from one level of refinement are labeled 1, next new edges

resulting from a second level of refinement are labeled 2,

and so on. The edge labels are shown on the schematic in

Fig. 3c and as a column of the element table in Fig. 3e.

Because edges are not represented as an explicit entity in

our data structure, we store three labels per bulk element

(one per edge). Fig. 4 illustrates the hierarchical repre-

sentation of element subdivision in the refinement strategy.

To achieve an efficient element refinement strategy, it is

necessary to be able to quickly determine if an element is

inside or outside of a refinement region (read on to Sect. 3

for details on what constitutes a refinement region). Thus,

we identify regions of refinement on a background grid

because it is more efficient than identifying the elements

directly. If the midpoint of any of the facets of an element

is contained within a grid cell, then that element needs to

be refined. The grid attributes are stored in constant

memory and we maintain a counter per cell to indicate if

the cell is inside or outside of refinement region.

The size of the element table is allocated before the

simulation begins. Because the adaptive simulation grows

with element refinement and insertion of cohesive ele-

ments, we must estimate of the final mesh size to ensure

there is adequate storage.

3.5 Data storage necessary for mesh coarsening

To enable quick updates to the mesh adjacency during

coarsening, we store the ID of the coarse element (parent)

from which two elements (children) emerge during

refinement from level n to level n ? 1 as the reference

element in Fig. 3e. This enables us to quickly access the

coarse bulk element that should result from merging

(coarsening) two fine elements.

When coarsening the mesh, elements and nodes are

removed from the pre-allocated tables, which results in

‘‘holes’’ in the data structure. Rather than collapsing the

data structure by renumbering the mesh entities (we

explored this approach but concluded that it was too

computationally expensive for the present application), we

opt to fill the holes the next time a node or element is

inserted into the mesh. Thus, we need to keep track of

unused node and element IDs, which we do through a node

and element stack. When new nodes/elements are added to

the mesh, we first insert them at the indices stored in the

respective stack. Then, once the stack is empty, we add

nodes/elements by creating new entities in the node/ele-

ment tables, respectively. We avoid coarsening of cohesive

elements, therefore there is no need to store additional

information for adaptivity. The data structure stores two

stacks, one for the nodes and one for the elements, and two

stack counters to reference the top of the stack.

3.6 Non-topological data storage

We allocate space for non-topological attributes used in the

numerical simulation, e.g., displacements, velocities, accel-

erations, nodal forces, stresses, strains, stiffness matrices,

0

1
2

3
4

0

1
2

3
4

5

6

7
8

0

1
2

3
4

5

6

7
89

1
0

11
1
2

(a)

12 8

8 3

3 0

0 5

1

1

1

6

10

2

2

2 11 7 9

7

4

(b)

Fig. 4 a Refinement of

elements 0, 1, 2 and 3 from

level 0 (white) to level 2 (dark

grey), b binary tree

representation of refinement

538 Engineering with Computers (2016) 32:533–552

123

mass, and elastic material properties. Some of these are read

and written, while others are read-only attributes.

Attributes that are read and written frequently (e.g.,

displacements, velocities, stress, cohesive traction) are

stored in global memory. As mentioned previously, global

memory is time consuming to access, so when possible we

minimize use of this memory. Due to the memory access

issues on the GPU, we chose to only implement a small

deformation, isoparametric formulation for the numerical

simulations. Using this assumption we can calculate the

element stiffness matrices once without need for updates,

which would be necessary in a finite deformation case.

Therefore, the element stiffness matrices are stored in

texture memory, which is read-only and can be accessed

faster than global memory. Moreover, we utilize the central

difference time integration with a lumped mass matrix and

we neglect effects of damping, therefore we arrive at a

fully explicit time integration scheme. In practice this

means that we do not have to assemble and store the system

matrices because solution of the linear system is trivial.

Instead we can solve the dynamic time integration equa-

tions one element or node at a time (see the next section for

details on these calculations). Finally, we store the material

properties of homogenous domains in constant memory.

This is similar to texture memory in that it is read only;

however, the space is smaller so it is faster to access.

3.7 Node and element calculations

In parallel finite element simulations, it is critical to avoid

concurrently writing to the same location in memory. For

example, node quantities (e.g., displacements, nodal force,

etc.) are composed of contributions from adjacent ele-

ments. Writing conflicts will arise if multiple elements are

updating a node at the same time. Typically, this issue is

handled with graph coloring schemes, such as that pro-

posed in [22], whereby the color groups are visited in a

serial fashion, and one thread is launched per element in

that color group. This is usually done once at the start and

absorbed in the overhead cost as it is a relatively expensive

operation for arbitrary meshes. In the adaptive simulation,

however, the number of bulk elements and their connec-

tivity will change. Therefore the coloring algorithm would

need to be executed every time a bulk element was

removed or inserted, which would be computationally

inefficient even on the GPU.

Our solution for the adaptive simulation is to sweep the

nodes (one thread per node) and gather information from

its adjacent elements, rather than sweeping elements (one

thread per element) and updating its adjacent nodes. The

data structure allows for quick access the elements adjacent

to the nodes through use of the adjacent bulk elements

stored in the element table. Using the node-based calcu-

lations, elements will be visited concurrently, as nodes

within a close vicinity will share adjacent elements.

However, since data will only be read from the element

entities, the issue of concurrent writing is not present. The

efficiency of this approach is similar to that of the element

sweep approach. When mesh refinement and coarsening

are enabled, this approach leads to some variation in final

crack patterns and results from one simulation to another.

While this variation is not incorrect it warrants some

investigation, which is conducted via numerical experiment

in Sect. 4.

3.8 Adaptive insertion of cohesive elements

The extrinsic cohesive model employed in this work

requires an external criteria to activate (i.e., insert) the

traction-separation relation associated with the cohesive

element. A number of approaches have been utilized to

activate the elements including strength/stress, strain,

velocity, numerical instability, etc. We will assume that

elements have been activated for the following discussion.

When cohesive elements are inserted into the mesh, the

nodes along the insertion facet are duplicated. The cohe-

sive element is defined by the original nodes along the facet

(three in this case of quadratic triangular elements) plus the

additional nodes resulting from duplication.

As mentioned in Sect. 3.7, we do not utilize a graph

coloring scheme in this work. One of the implications of

our node-based approach is that we cannot use previous

strategies, such as those adopted in [1, 10], to insert

cohesive elements at bulk element facets. Instead we utilize

a two-step node sweep strategy, which is analogous to the

update scheme discussed in Sect. 3.7.

Figures 5, 6 illustrate the algorithm for inserting the

cohesive elements on a non-colored quadratic triangular

mesh (T6 elements). In this example, three cohesive ele-

ments will be inserted at the bold black facets in Fig. 5a.

After detecting the facets which need a cohesive element

inserted (fractured facet), we begin the procedure for

inserting cohesive elements and duplicating nodes. In the

first kernel, we launch one thread per bulk element that

contains at least one fractured facet. Because a facet is

shared by two bulk elements, we choose the element with

the smaller ID in the element table to be responsible for

inserting the cohesive element. The bulk element sweeps

its facets and inserts the cohesive elements on the fractured

facets by adding them to the element table. While inserting

the cohesive elements we also duplicate the mid-side nodes

by adding a new node to the node table for each cohesive

Engineering with Computers (2016) 32:533–552 539

123

element inserted. The result is shown in Fig. 5b. We mark

the corner nodes that belong to the cohesive elements so we

can determine which ones need to be duplicated; however,

the duplication is not done in this step. Once all of the

cohesive elements are inserted in parallel, then we begin

the second step of duplicating corner nodes.

The nodes marked in the previous kernel will be fil-

tered using a simple CUDA Scan and Compact operation.

In the second kernel, we launch one thread per filtered

node and check them for duplication, as illustrated in

Fig. 6b. Starting from the node’s adjacent element (stored

in element table) we traverse all incident elements. The

algorithm begins by accessing the adjacent element from

the node in the data structure and traversing the elements

in one direction, until the first cohesive element is

reached. This cohesive element will serve as the reference

element. Then the direction is switched and the elements

adjacent to the node are traversed. The node is duplicated

each time a cohesive element is passed. When we arrive

back at the reference element the procedure is complete.

This algorithm does not cause issues of concurrent writing

because each thread is responsible for duplicating its own

node.

(a) (b)

Fig. 5 Cohesive elements are inserted on fractured facets (in bold

black) by launching one thread per bulk element that contains at least

one fractured facet. Mid-side nodes are also duplicated

(a) (b) (c) (d)

(e) (f) (g)

Fig. 6 To determine if a node should be duplicated, we traverse the

elements adjacent to the node. a Traversal begins in one direction

until first cohesive element is reached, it will serve as a reference

point. The traversal direction changes and b a bulk element is

reached, c then the second cohesive element is reached, d then a bulk

element is reached. When the cohesive element is passed the node is

duplicated. Traversal continues and e the third cohesive element is

reached, f then the last bulk element is reached. The node is

duplicated again when the cohesive element is passed. g Traversal

and node duplication stops when the first cohesive element is reached

again

540 Engineering with Computers (2016) 32:533–552

123

3.9 Adaptive mesh refinement

One of the main contributions of this work is the devel-

opment and implementation of the 4k refinement and

coarsening scheme on the GPU. The criteria for which is

similar to that of [23] and are briefly reviewed here before

describing the GPU implementation. Multiple crack tips

may emerge as the fracture simulation evolves in time,

where we define a crack tip as an unduplicated nodes of a

cohesive element. These crack tips are necessary to per-

(a) (b)

(c)

00 001 2 2

00 013 3 3

00 013 3 3

00 001 2 1

(d)

(e) (f)

Fig. 7 4k refinement scheme. a Mesh is initially refined around the

notch tip. b Cohesive elements are inserted along facets of fully

refined elements, new crack tips are identified and new refinement

regions associated with each crack tip are created. c A background

grid, shown in dashed blue, is used to identify which elements are

within the refinement region. d The grid cell counters indicate the

number of refinement regions present in the cell. e The distance

between the crack tips and the elements with a grid cell counter

greater than 0 is calculated. If the distance is less than a user-defined

value then the element is marked (black ‘x’) and elements adjacent to

the hypotenuse of a marked element are marked (grey j‘x’). f Marked

elements are refined to level 1, then the process repeats to refine the

marked elements to level 2 and so on

Engineering with Computers (2016) 32:533–552 541

123

form adaptive mesh refinement, as we use the a priori

assumption that regions around crack tips (i.e., high gra-

dient of the displacement field) must be the finest in the

simulation. Given a crack tip, elements that fall within a

user-specified radius are refined according to the hierar-

chical 4k scheme to a user-defined level. To avoid com-

plicated transfer of internal state variables associated with

the nonlinear cohesive elements, this refinement strategy

prohibits cohesive elements from being refined or coars-

ened. Thus, cohesive elements may only be inserted at

elements that are already refined to the highest level. This

assumption is generally acceptable, as we expect cracks to

initiate from areas that are fully refined, e.g., initial defects,

notch, or crack tip.

The algorithm to refine bulk elements in a certain region

of a 4k mesh is a multi-step procedure described as follows

and corresponds to Algorithm 1. The notation we use in

Algorithm 1, \\\ x [[[; indicates that a kernel

call is being made where x indicates the number of threads

launched. The scheme is demonstrated from a topological

perspective in Fig. 7. The domain in the figure contains an

initial notch which is refined (Fig. 7a). Next step cohesive

elements are inserted (notice that they are also inserted

along facets of fully refined elements) and the crack tip

nodes are updated.

As new crack tips emerge during the simulation, new

corresponding refinement regions must be created

(Fig. 7b). An element is refined if at least one of its mid-

side node is inside a refinement region. As discussed in

Sect. 3.1, we use a regular grid to determine which ele-

ments need to be refined (Fig. 7c). Each grid cell stores a

counter that indicates the number of refinement regions it

belongs to. The cell size is chosen based on the size of the

refinement region. If a cell is inside a refinement region, its

counter is incremented by one. Cells that remain with zero

counter are outside refinement regions. An element is said

to be inside a refinement region if the cell it belongs to is

marked with a value greater than zero. We launch one

thread per cell and calculate the distance between the

center of the cell and the center of each new refinement

region. If the distance is less than the user-defined radius,

then we increment the cell counter (Fig. 7c).

The loop in Algorithm 1 begins by refining elements to

level 1, once all eligible elements are refined to level 1,

then we move to level 2 and so on until the desired level of

refinement is reached. The first kernel call launches one

thread per bulk element and if the midpoint of at least one

facet of the element has its cell counter greater than zero,

then the element is marked for refinement (lines 4–5 in

Algorithm 1 and the black ’x’ in Fig. 7e). In the next kernel

call, for each marked element we mark the element adja-

cent to the hypotenuse of the originally marked element

(lines 7–8 in Algorithm and the grey ’x’ in Fig. 7e). This is

also illustrated in Fig. 8, where the facets between elements

2 and 1 and elements 2 and 3 have at least one node that

falls within the radius of refinement shown as the light grey

semi-circle, so all three elements are marked. Element 0 is

adjacent to the hypotenuse of marked element 1, so it is

also marked. This procedure is executed until there are no

more marked elements (line 9 in Algorithm 1). Note that a

scan operation is performed to get the total number of

marked elements (line 8 in Algorithm 1).

In the next kernel call we launch one thread per marked

element and split it according to the 4k hierarchical

refinement strategy, i.e., split the element along its longest

edge [24]. It is useful to note that the first two nodes in a

row of the element table are the corner nodes that define

the hypotenuse of the element (see Fig. 3e), thus the

longest facet of an element is directly accessible and does

not require additional calculations. New nodes/elements

are created in this step by either adding them to the node/

element tables or by reusing node/element IDs from their

respective stacks (line 10 in Algorithm 1). The last kernel

updates adjacency of the newly added elements in the

element table (line 11 in Algorithm 1). This procedure is

continued until all elements inside the refinement region

reach the level 1, then it starts again for level 2, and so on

until all elements inside the refinement region reach the

level prescribed by the user or there are no more marked

elements. The resulting mesh after refinement of one level

is shown in Fig. 7f.

0

1
2

3
4

1
2

(a)

0

1
2

3
4
(b)

Fig. 8 Marked opposite elements. a Elements with at least one node

inside the refinement region are marked, b elements adjacent a

marked element’s hypotenuse are also marked

542 Engineering with Computers (2016) 32:533–552

123

3.10 Adaptive mesh coarsening

For adaptive mesh coarsening, we can deduce that in

regions far away from the crack tip, a coarser mesh is

sufficient. However, unlike refinement, the coarsening

criteria are not only based on an element’s geometric

position relative to the crack tip. Rather, it is also based on

convergence of the norm of the strain of the coarsened

mesh to that of the refined mesh. However, in regions near

crack tips, coarsening does not occur. Thus, cells are

marked and used also as a criteria for coarsening by veri-

fying if they are outside existing refining regions. The error

between the norm of the strain in a patch of the refined 4k

element is compared to the norm of the strain in the same

patch but with coarse elements. If the error is less than a

certain threshold, 2 % in this study, then the patch is

coarsened. Since the finite element space is becoming less

rich, energy conservation is not expected; however, the loss

is minimal and justified by the gain in memory and pro-

cessing time.

The parallel coarsening algorithm is essentially the

reverse of the refinement; however, the implementation on

the GPU must be done in such a way to ensure that con-

currency is avoided. First, a kernel with one thread per

element is launched where the bulk elements are marked if

the mid points of all of its facets are outside of an existing

refinement region (lines 4–5 in Algorithm 2). This is done

by verifying if the cell counter is equal to zero and if its

level of refinement is greater than zero. After bulk elements

are marked, the nodes are visited through a kernel call by

launching one thread per node. An interior node is marked

for coarsening if (1) four of its adjacent bulk elements were

marked as being outside a refinement region, and (2) two of

the facets emanating from it are labeled with values greater

than that of any other facets on adjacent elements (lines

9–10 in Algorithm 2). Nodes of boundary elements are

handled similarly.

Once the nodes are marked for coarsening, a kernel call

is used to update the adjacent elements’ reference element

by choosing one of the adjacent elements that will merge

into the coarser element (line 11 in Algorithm 2). The

kernel launches one thread per node and traverses the

node’s incident elements The reference element is updated

using atomic operations to avoid concurrency in updating

the elements. Finally, the element is coarsened, which

involves updating the adjacent element to the node in the

node table, the nodes defining the adjacent elements, the

elements opposite to the corner nodes of the adjacent ele-

ments in the element table, and the level of refinement of

the adjacent elements (line 12 in Algorithm 2).

Engineering with Computers (2016) 32:533–552 543

123

4 Numerical investigations

The adaptive mesh refinement and coarsening scheme im-

plemented here is applicable for many types of fracture

problems; however, the benefits of the approach are most

realized for problems dominated by few cracks. Consider

the contrary example of pervasive fracture problems [25].

All or most of domain needs high levels of mesh refine-

ment to capture the fracture behavior, thus an adaptive

refinement scheme would not have any effect. The fol-

lowing investigations are intended to examine implications

of the GPU implementation on the physics of the problem,

push the limits of the GPU to determine the maximum

problem size that can be simulated, and to explore the

response of systems through parametric studies in an effi-

cient manner.

4.1 Reduced-scale micro-branching specimen

We verify the implementation of the adaptive scheme on

the GPU through a series of numerical investigations on a

well-known micro-branching problem. This model prob-

lem is inspired by the experimental work of [26] and has

been simulated by many authors [10, 27–29]. Similar to the

previous investigations, we utilize a reduced-scale model

for direct comparison purposes. Later we will address the

issue of the full-scale model. The problem features few

major cracks, which makes it a good candidate for the

adaptive scheme, and several minor cracks that results in a

complex fracture pattern. The simple geometry and loading

conditions are shown in Fig. 9. For the reduced-scale

model, the geometry is given by x ¼ 16 mm, y ¼ 4 mm,

the applied strain is 0.015 and we use the material

parameters suggested in [27]. Due to the reduction of the

model size and known issues related to representing an

experimental system on a numerical model, we adopt the

following: Young’s Modulus of 3.24e9 Pa, density of 1190

kg/m3, and a Poisson ratio of 0.3 for the bulk elements and

a fracture energy of 352.3 N/m and cohesive strength of

129.6e6 Pa for the cohesive elements. The shape of the

softening curve is linear, as given by the PPR shape

parameter of 2 in each opening direction. Unloading is

x

ε

y/2
y

y/2

Fig. 9 Micro-branching problem geometry and loading conditions

544 Engineering with Computers (2016) 32:533–552

123

assumed to occur linearly back to the origin, i.e., perma-

nent deformation is not sustained. To prevent interpene-

tration of materials, a penalty stiffness is applied if

cohesive tractions become negative.

First, it is useful to compare the results using AMR and

AMR?C to that of an equivalent uniformly refined mesh.

For the reduced-scale model, the uniform mesh comprised

192�48 4k patches, or 36,864 T6 elements. The AMR- and

AMR?C-enabled meshes are initially discretized into

48�12 4k patches, or 2,304 T6 elements, then adaptively

refined to a level 4 in the region of the crack tips. Elements

are removed in the AMR?C case in regions far away from

the crack tips when the root mean error in the strain on a

patch of elements falls below the user-defined threshold of

0.01.

The final crack patterns for each case are shown in

Fig. 10. The finite element meshes are visible and various

levels of refinement are clear in the AMR and AMR?C

cases. Cohesive elements that are open greater than a

certain threshold of the critical opening distance in either

the normal or tangential direction are plotted in blue.

Cohesive elements that are inserted but not open greater

than the threshold are plotted in red. The threshold by

which a cohesive element is considered open is important

when quantifying the fracture pattern. For visualization

purposes, we show the fracture pattern with the relatively

low threshold of 10 %, but in the quantifications reported

later in this section we also examine a higher threshold.

Table 1 shows the final number of elements and nodes

(after adaptivity and insertion of cohesive elements) and

Fig. 10 Final crack pattern for the reduced-scale micro-branching

problem for a uniform mesh, b AMR-enabled mesh, c AMR?C-

enabled mesh. Cohesive elements opened greater than 10 % of the

normal or tangential critical opening distance are shown in blue, other

cohesive elements are shown in red (color figure online)

Engineering with Computers (2016) 32:533–552 545

123

quantitative differences between the simulations, namely

the crack tip velocity, total crack length, and number of

branches off the main crack. The crack tip velocity is

computed by performing a linear regression of the crack tip

versus time, where the crack tip is defined at the right-most

non-duplicated node of a cohesive element. The crack tip

velocity is quite stable throughout the simulation, so the

linear regression agrees well with the raw data. Notice that

the crack tip velocity is the same for both tolerances,

because by our definition the crack tip for the purposes of

the velocity calculation is independent of the amount of

element opening. The total crack length is total distance

covered by all of the cohesive elements open greater than a

certain fraction of the critical normal or tangential opening

length (denoted Tol in Table 1). We see good quantitative

agreement between the uniform, AMR and AMR?C cases

in terms of the crack tip velocity and total crack length.

The number and length of branches was post-processed

using a simple algorithm performed on the final fracture

pattern. Starting from the notch tip node, the main branch is

detected by traversing cohesive elements using the adja-

cency information stored in the data structure. The main

branch consists of the path of full open elements that reach

the right end of the specimen. Once the main crack is

detected, the secondary branches are found by again

traversing the main crack. Every point where the crack

branches, the path is followed using adjacent information

until it terminates. Primary branches are those with the

longest length emanating from the main branch. A shorter

branch emanating from a primary branch is denoted as a

secondary branch, see Fig. 11. This algorithm excludes

cohesive elements that are not connected to the main crack.

We chose this approach so that the process of counting

branches would be controlled and consistent between

specimens. The procedure of quantifying number and

length of branches is too subjective to be evaluated by a

visual inspection. There is quite a difference in the number

and average length of branches and between the uniform,

AMR and AMR?C cases. We report this information,

because when visualizing a fracture pattern, one often

focuses on the number and length of branches; however,

this data can be misleading, because it is not an accurate

representation of the crack velocity or the total crack

length, which includes the main crack and the many kinks

it may have, as illustrated in Fig. 11. Instead, we choose

total crack length as the important quantity on which to

compare the cases because it is directly related to the total

energy released during the fracture process, and this is

quantity that should remain similar between different

numerical representations of the same process.

The quantities shown in Table 1 for the AMR and

AMR?C cases are average over 20 simulations. This is

because the massively parallel nature of the adaptivity in

GPU implementation introduces some variation into the

fracture simulation. New elements resulting from mesh

refinement are inserted to the mesh in a random order, so

from one simulation to the next the order in which new

bulk elements are inserted will be different. The impact on

the simulation is realized when nodal quantities are com-

puted. Recall that we avoid graph coloring and concurrency

issues, we traverse nodes and gather necessary data from

Table 1 Comparison of final quantities between Uniform, AMR and AMR?C simulations

Tol Mesh type Elements

initial/final

Nodes

initial/final

Crack tip

velocity (m/s)

Total crack

length (m)

Num

branches

Avg. branch

length

0.1 Uniform 36,864/36,864 74,257/76,268 777.5 0.034 2 2.2e�4

0.1 AMR* 2,634/13,277 5,411/28,506 754.3 0.036 1 5.2e�4

0.1 AMR?C* 2,634/8,303 5,411/18,296 755.5 0.039 2 5.1e�4

0.75 Uniform 36,864/36,864 74,257/76,268 777.5 0.019 14 4.6e�4

0.75 AMR* 2,634/13,277 5,411/28,506 754.3 0.021 19 4.1e�4 m

0.75 AMR?C* 2,634/8,303 5,411/18,296 755.5 0.021 20 4.7e�4 m

* The AMR and AMR?C quantities are averaged over 20 simulations

 Main crack
 Crack branch
 Secondary branch Kink in

main crack

Fig. 11 Details of crack branching including kink in the main crack,

crack branches, and secondary branches

546 Engineering with Computers (2016) 32:533–552

123

elements as opposed to traversing elements and writing to

nodes. When we gather information onto a node from a

neighboring element, the random order in which the ele-

ments were inserted affects the order in which we visit the

elements adjacent to a node. Since we only have a certain

level of accuracy in floating point operations, we cannot, in

general, guarantee Aþ B 6¼ Bþ A. So, when computing

quantities on a node 1, we may pull data from elements

100, 101, 102 and 103 in one simulation, and from ele-

ments 101, 100, 103, 102 in a second simulation, which is

not equal in a precise sense. These variations accumulate

over all of the computations, nodes, time steps, etc., and the

result is a variation in final fracture patterns.

It should be noted that we also examined an imple-

mentation in which the order of element/nodal computa-

tions is prescribed and the same from one simulation to

another and verified that the results are identical. This does

not imply that the implementation with no variation is

correct and the one with variation is incorrect. The same

randomness is present in the consistent implementation and

if we chose to access the elements in a different order, we

would have a similar effect as the implementation with

variation. We chose to pursue the implementation that

introduces randomness, because it is much more compu-

tationally efficient.

Using the reduced-scale micro-branching problem, we

investigate the impact that the randomness has on the final

result. We performed the simulation 20 times on each of an

AMR- and AMR?C-enabled mesh, then quantified the

variation in fracture patterns in Table 2.

As before, we notice a large difference in the number

of crack branches especially for the low crack tolerance,

which emphasizes the point that number of branches is

not an ideal measure to by which to compare fracture

patterns resulting from the same process, e.g., same

geometry, material properties, and loading conditions. The

variance on the total crack length is quite low, suggesting

that the variation caused by the numerical implementation

is low. The crack tip velocity also shows low variation

amongst the 20 iterations, for the AMR and AMR?C

cases the crack tip velocities are 754:3� 9.8 and

755:6� 10.1 m/s, respectively. Additionally, the total

energy released during the fracture process is quite

comparable, 75:0� 2.6 and 77:0� 2.0 N/m for the

AMR and AMR?C cases, respectively. The total energy

released considers all cohesive elements, regardless of

their amount of opening, thus this quantity is also inde-

pendent of the threshold.

We observe some other additional fracture pattern

characteristics. The branch spacing is fairly regular among

all simulations and the main cracks kinks about 3–6 times

during the simulation. Most of the branches are 1–3 ele-

ments in length, then the frequency drops significantly, as

shown in Fig. 12. Secondary branches occurred in about

half of the adaptive. Thus we concluded that the variation

caused by the massively parallel GPU implementation is

not significant.

The variation caused by the GPU could alternatively be

viewed as a way to induce randomness into the numerical

model, which in other similar studies was achieved by

perturbing a structured mesh [28] or by using a completely

random mesh [29]. The adaptive GPU implementation

allows the use of structured mesh with variability that

would be expected of a random mesh.

Finally, we compare the computational time of the

proposed scheme with other platforms (serial CPU, single

GPU) and different types of implementation (adaptive vs.

non-adaptive). The serial CPU versions were run on a 1.3

GHz Intel Core i5 processor and the GPU version imple-

mented here was done on a GeForce GTX TITAN with

2688 CUDA cores and 6Gb memory. To the best of the

authors’ knowledge there has been no other implementa-

tion of an adaptive mesh refinement and coarsening

scheme done on a parallel platform. Table 3 shows the run

times and speedups over the serial implementation without

adaptivity.

Table 2 Variation in crack tip

velocity, energy released, and

occurrence of branching for 20

simulations of each the AMR-

and AMR?C-enabled meshes

Tol = 0.1 Tol = 0.75

AMR AMR?C AMR AMR?C

Total crack length

Mean 0.036 m 0.039 m 0.021 m 0.021 m

Standard deviation 8.8e�4 m 6.8e�4 m 9.2e�4 m 9.4e�4 m

Number of branches

Mean 17 19 1 2

Standard deviation 3 4 1 1

Average branch length

Mean 5.2e�4 m 5.1e�4 m 4.1e�4m 4.7e�4m

Standard deviation 4.2e�4 m 4.6e�4 m 4.2e�4 m 6.1e�4 m

Engineering with Computers (2016) 32:533–552 547

123

Of course, the GPU is much faster than the serial CPU,

thus adaptivity also performs faster on the GPU than the

CPU. It is interesting to note that the cases of adaptivity

on the GPU actually take longer than the uniform case.

This is because for this small problem, the percentage of

time spent on updates related to adaptive mesh refinement

and coarsening on the GPU is greater than that spent on

the finite element calculations. When the problem is larger

on the GPU, then we begin to see a difference in execution

time between the uniform and adaptive simulations. More

important, however, is that the size of the problem is

severely limited for the uniform case on the GPU; this

limitation is alleviated by adaptivity, which makes large

problems feasible because we store much less information

than we would on a uniform mesh. So, we may not

achieve a large speedup between the uniform and adaptive

cases on the GPU, but adaptivity gives the ability to

examine problems that we could not be able to simulate

otherwise.

4.2 Full-scale micro-branching specimen

Next, we are interested in comparing the fracture pattern

from the reduced-scale model with that of the actual

experimental setup proposed in [26]. The full-scale prob-

lem size has dimensions 50� 200 mm (12.5 times larger

than the reduced-scale case from the previous section).

Previous numerical simulations of this work using the

inter-element cohesive zone model have only simulated

reduced-scale problems due to limitations of computation

resources and sophisticated algorithms. The adaptivity

algorithm implemented on the GPU architecture makes

simulation of this full-scale problem possible. We should

note, that even with the GPU and adaptive mesh

0 1 2 3 4
0

5

10

15

20

25

30

35

40

Length of branches (mm)
F

re
qu

en
cy

(a)

0 1 2 3 4
0

5

10

15

20

25

30

35

40

Length of branches (mm)

F
re

qu
en

cy

(b)

0 1 2 3 4
0

50

100

150

200

Length of branches (mm)

F
re

qu
en

cy

(c)

0 1 2 3 4
0

50

100

150

200

Length of branches (mm)

F
re

qu
en

cy
(d)

Fig. 12 Histogram of branch

lengths over 20 simulations for

the a AMR-enabled meshes

with an open crack tolerance of

75 % of critical normal

opening, b AMR?C-enabled

meshes with an open crack

tolerance of 75 % of critical

normal opening, c AMR-

enabled meshes with an open

crack tolerance of 10 % of

critical normal opening and

d AMR?C-enabled meshes

with an open crack tolerance of

10 % of critical normal opening

Table 3 Comparison of execution time of the reduced-scale micro-

branching problem on different platforms (the speedup factor is

shown with respect to the no adaptivity case on the serial CPU)

Platform Implementation Execution time (s) Speedup

Serial CPU No adaptivity 1196 –

Serial CPU AMR 83 14 times

Serial CPU AMR?C 57 21 times

Single GPU No adaptivity 12 100 times

Single GPU AMR 18 66 times

Single GPU AMR?C 20 60 times

548 Engineering with Computers (2016) 32:533–552

123

refinement, computational times for the following simula-

tions were on the order of 3 h.

In scaling up the problem, not only does the geometry of

the specimen change, but also the applied load and material

properties. For the full-scale model, the goal was to keep

the numerical representation as close to the experiment.

Thus specimen dimensions are those of the experiment, and

the material properties are those of PMMA, the material

used in the experiment. The Young’s Modulus is 3.24e9

Pa, the density is 1190 kg/m3, and the Poisson ratio is 0.3

for the bulk elements, while and a fracture energy of 352.3

N/m and cohesive strength of 62.1e6 Pa is used for the

cohesive elements. As before, linear softening, linear

unloading back to the origin, and a penalty stiffness to

prevent interpenetration are utilized. We examined a range

of externally applied loads: a low strain of 0.003, mid strain

of 0.004, and a high strain of 0.005, which are similar to the

loads applied in the experiment.

The difference between the full-scale and the reduced-

scale model is the applied load and the cohesive strength.

For the reduced-scale model, the loading was increased

such that the strain energy per unit length felt by the

specimen would match that of the experiment. The

adjustment of the material properties for the reduced-scale

model, namely the cohesive strength, is not as straight-

forward as has been demonstrated by other authors [27,

30]. A cohesive strength that is too large means that

fracture never initiates, while a low strength results in the

insertion of an excessive number of cohesive elements,

which is not physically realistic. Thus, we used the value

recommended in [31] and [10]. However, for the full-

scale problem, we do not adjust the material properties,

and use the experimentally obtained cohesive strength of

PMMA.

The model is initially discretized with 300� 75 4k mesh

patches, or 90,000 elements. We use the AMR to reduce

the element size at the notch tip by 4 times (e.g., the largest

elements have a maximum length of 0.67 mm and the

smallest elements have a maximum length of 0.167 mm).

Note that a uniform mesh of comparable size would con-

tain 1,440,000 elements, which is well beyond the size

capacity of the GPU, thus adaptivity is essential.

The selection of element size was based on the results of

a parametric study of element size and the limitations of

the GPU storage capabilities. The full study is omitted here

for brevity, but the results are summarized. Essentially, we

selected the highest level of refinement to be as small as

possible while not exceeding the capacity of the GPU. An

overall coarser mesh where the ratio between the size of the

coarsest and finest elements are the same as those chosen

for this study was not sufficiently fine for the crack to

initiate. We also investigated using coarser elements in the

far field such that the difference between the courts and

finest elements was greater than what is presented here. In

this case, we found that the cracks were not initiating

because the far-field discretization was too coarse to

transfer the strain from the load application points to the

crack tip. Finally, we investigated finer levels of dis-

cretization. We found that while it performed well initially,

the simulation could not be complete because the total

numbers of elements exceeded that which we could store

on the GPU as cracks propagated. At this higher level of

refinement, the characteristics of the initial fracture pattern

were similar to that of the coarser mesh, thus giving us

confidence that the level selected is adequate.

The fracture patterns for three different strains are

shown in Fig. 13. Here we plot cohesive elements that have

opened more the 75 % of the critical opening distance. The

numerical results obtained here agree well with those

shown in the original experiment [26]. At lower strains the

fracture surface is smoother and features one predominate

crack; however, the crack arrested before it reached the end

of the domain. As the load increases, branches appear and

the fractured surface becomes rougher. Finally, at the

highest strain, many branches are present and are increased

in length.

As a proof of concept for the computational gains of the

AMR?C, we also included coarsening for the low strain

case. The computation time for the AMR was 4.63 and

3.65 h for the AMR?C. Of course, we cannot compare the

computational time to the uniform case because the prob-

lem would be too large to execute on the GPU; however,

we clearly see that when the model is sufficiently large, the

AMR?C improves computational efficiency, by 21 % in

this case.

The velocities of the three cases also increase with

increased applied strain. The average velocity for the low,

mid, and high strain cases are 611, 625, and 706 m/s,

respectively, all of which are well below the Rayleigh

wave speed of the material, as expected. It is important to

note that these numeric velocity values may have been

impacted by the small deformation assumption. Generally,

dynamic crack tip velocities in small deformation formu-

lations are higher than in finite deformation cases because

less energy is dissipated. See Sect. 3.1 for the explanation

of the use of small deformation and the impacts on GPU

memory availability. The velocity versus time plots for

each case are shown in Fig. 14. Clearly there is overlap in

the velocity versus time plots; however, the general trend is

evident. There is a drop in the velocity of the high strain

case around 1/3 of the way through the simulation, which

corresponds to the growth of three branches simultane-

Engineering with Computers (2016) 32:533–552 549

123

ously. Then, once the branches arrest and the main crack

progresses again at the higher velocity.

The details of the crack pattern and the adaptive mesh

refinement scheme are shown in Fig. 15 for the low strain

case. Elements that are open less than 75 % of the critical

opening distance are shown in the zoom-in view in red.

Notice that in relation to the crack branch, the branches

comprised partially open elements are quite small. The

details of the refinement scheme are clear, elements within

the user-defined radius of a crack tip are refined. The radius

of refinement is sufficiently large such that new cohesive

elements will be inserted within the bounds of the refined

elements.

When comparing the reduced-scale model results and

the full-scale model results, we notice some qualitative

similarities, but the details are not evident in the smaller

model. Thus, whenever possible, it is recommended to use

a numerical model that closely resembles the actual

experiment. However, in many cases, that is not entirely

feasible due to lack of access to powerful and sophisticated

computational resources.

5 Concluding remarks

Investigation of adaptive refinement and coarsening

schemes on the structured 4k mesh for dynamic fracture

simulation on the massively parallel GPU architecture

reveals insight into intricacies of the numerical simulation.

First, a specialized data structure and new approach to

performing finite element calculations in parallel was

detailed. The race condition and expensive graph coloring

Fig. 13 Final fracture patterns for full-scale micro-branching problem with an externally applied strain of a 0.003, b 0.004, and c 0.005

550 Engineering with Computers (2016) 32:533–552

123

algorithms are avoided by performing finite element cal-

culations on a nodal basis. Nodal quantities are gathered by

launching threads per nodes and accumulating element

contributions rather than by launching threads per ele-

ments. Using the assumption that areas near crack tips need

to be the most refined and a strain criterion to determine

where elements can be coarsened, we adaptively change

the mesh resolution during the simulation. We detail the

parallel algorithms to systematically change the topology

of the mesh.

The variations that normally occur during floating point

operations are not usually apparent in serial or even parallel

fracture simulations on structured meshes. This is because

the order in which operations are performed, and thus the

accumulation of variation, is usually the same from one

simulation to the next. However, in the present imple-

mentation, new elements and nodes are inserted in a ran-

dom order, meaning that the quantities added to the node

are not done so in the same order from one simulation to

another. While not incorrect, the result is that fracture

patterns are different from one simulation to the next. To

demonstrate the validity of the approach given the very

different appearance of the fracture pattern, we quantified

the crack patterns through several parameters and showed

that those that are physically based agree well between

simulations. Interestingly, the parallel approach adds some

randomness into the finite element simulation on the

structured mesh in a similar way as a would be expected

from a random mesh.

Lastly, thanks to a data structure and adaptive mesh

modification scheme developed specially for the GPU

architecture, we are able to represent much larger finite

element meshes than without adaptivity. With the large-

scale simulation of the micro-branching problem, we are

able to make more direct comparisons to the original

experiment and find excellent agreement with those results.

A natural extension of this work would be include all

three dimensions; however, on a single GPU the problem

size would be quite limited, which is not well suited for

three-dimensional finite element applications. Thus,

0 0.05 0.1 0.15 0.2 0.25 0.3
0

100

200

300

400

500

600

700

800

900

1000

Time (µs)

V
el

oc
ity

 (
m

/s
)

High strain
Mid strain
Low strain
Rayleigh Wave Speed

Fig. 14 Magnitude of the crack tip velocity versus time for the high,

mid, and low strain loading. The average velocity increases with

increasing strain, but remains well below the Rayleigh wave speed as

expected

Fig. 15 Detailed view of fracture pattern for the full-scale micro-branching problem with an externally applied strain of 0.003

Engineering with Computers (2016) 32:533–552 551

123

current development is on distributed computing where

different parts of the model would be simulated on dif-

ferent GPUs.

Acknowledgments Andrei Alhadeff and Waldemar Celes thank the

support provided by the Tecgraf Institute at PUC-Rio, which is

mainly funded by the Brazilian oil company, Petrobras. They also

thank the Brazilian National Council for Scientific and Technological

Development (CNPq) for the financial support to conduct this

research. Sofie E. Leon and Glaucio H. Paulino gratefully acknowl-

edge the support of the Philanthropic Education Organization (PEO)

Scholars Award, and the Raymond Allen Jones Chair endowment at

the Georgia Institute of Technology, respectively. They also

acknowledge the support of the National Science Foundation (NSF)

through grants CMMI #1321661 and CMMI #1437535.

References

1. Alhadeff A, Celes W, Paulino GH (2015) Mapping cohesive

fracture and fragmentation simulations to GPUs. Int J Numer

Methods Eng 103:859–893. doi:10.1002/nme.4842

2. Kirk DB, Wen-mei WH (2010) Programming massively parallel

processors: a hands-on approach. Morgan Kaufmann, San

Francisco

3. Brodtkorb AR, Hagen TR, Sætra ML (2013) Graphics processing

unit (GPU) programming strategies and trends in GPU comput-

ing. J Parallel Distrib Comput 73(1):4–13

4. Dziekonski A, Sypek P, Lamecki A, Mrozowski M (2012)

Generation of large finite-element matrices on multiple graphics

processors. Int J Numer Methods Eng 94(2):204–220

5. Cecka C, Lew AJ, Darve E (2010) Assembly of finite element

methods on graphics processors. Int J Numer Methods Eng

85(5):640–669

6. Wang L, Zhang YS, Zhu B, Xu C, Tian XW, Wang C, Mo JH, Li

J (2012) GPU accelerated parallel cholesky factorization. Appl

Mech Mater 148–149:1370–1373

7. Dooley I, Mangala S, Kale L, Geubelle P (2008) Parallel simu-

lations of dynamic fracture using extrinsic cohesive elements.

J Sci Comput 39(1):144–165

8. Lawlor OS, Chakravorty S, Wilmarth TL, Choudhury N, Dooley

I, Zheng G, Kalé LV (2006) ParFUM: a parallel framework for

unstructured meshes for scalable dynamic physics applications.

Eng Comput 22(3–4):215–235

9. Radovitzky R, Seagraves A, Tupek M, Noels L (2011) A scalable

3D fracture and fragmentation algorithm based on a hybrid,

discontinuous Galerkin, cohesive element method. Comput

Methods Appl Mech Eng 200(1–4):326–344

10. Espinha R, Park K, Paulino,GH, Celes W (2013) Scalable parallel

dynamic fracture simulation using an extrinsic cohesive zone

model. Comput Methods Appl Mech Eng 266(C):144–161

11. Park S, Shin H (2012) Efficient generation of adaptive Cartesian

mesh for computational fluid dynamics using GPU. Int J Numer

Methods Fluids 70(11):1393–1404

12. Dugdale D (1960) Yielding of steel sheets containing slits.

J Mech Phys Solids 8(2):100–104

13. Barenblatt GI (1962) The mathematical theory of equilibrium

cracks in brittle fracture. Adv Appl Mech 7(55–129):104

14. Park K, Paulino GH, Roesler JR (2009) A unified potential-based

cohesive model of mixed-mode fracture. J Mech Phys Solids

57(6):891–908

15. Park K, Paulino GH (2011) Cohesive zone models: a critical

review of traction-separation relationships across fracture sur-

faces. Appl Mech Rev 64(6):060802

16. Camacho G, Ortiz M (1996) Computational modelling of impact

damage in brittle materials. Int J Solids Struct 33(20–22):

2899–2938

17. Newmark NM (1959) A method of computation for structural

dynamics. J Eng Mech Div 85(7):67–94

18. Boyalakuntla DS, Murthy JY (2002) Hierarchical compact

models for simulation of electronic chip packages. Compon

Packag Technol IEEE Trans 25(2):192–203

19. Ducros F, Ferrand V, Nicoud F, Weber C, Darracq D, Gacherieu

C, Poinsot T (1999) Large-eddy simulation of the shock/turbu-

lence interaction. J Comput Phys 152(2):517–549

20. Fryxell B, Olson K, Ricker P, Timmes FX, Zingale M, Lamb DQ,

MacNeice P, Rosner R, Truran JW, Tufo H (2000) FLASH: An

adaptive mesh hydrodynamics code for modeling astrophysical

thermonuclear flashes. Astrophys J Suppl Ser 131(1):273

21. Celes W, Paulino GH, Espinha R (2005) A compact adjacency-

based topological data structure for finite element mesh repre-

sentation. Int J Numer Methods Eng 64(11):1529–1556

22. Welsh DJ, Powell MB (1967) An upper bound for the chromatic

number of a graph and its application to timetabling problems.

Comput J 10(1):85–86

23. Park K, Paulino GH, Celes W, Espinha R (2012) Adaptive mesh

refinement and coarsening for cohesive zone modeling of

dynamic fracture. Int J Numer Methods Eng 92(1):1–35

24. Velho L, Gomes J (2000) Variable Resolution 4-k Meshes:

Concepts and Applications. Comput Graph Forum 19(4):195–212

25. Bishop JE (2009) Simulating the pervasive fracture of materials

and structures using randomly close packed Voronoi tessellations.

Comput Mech 44(4):455–471

26. Sharon E, Fineberg J (1996) Microbranching instability and the

dynamic fracture of brittle materials. Phys Rev B Condens Matter

Mater Phys 54(10):7128–7139

27. Zhang ZJ, Paulino GH, Celes W (2007) Extrinsic cohesive

modelling of dynamic fracture and microbranching instability in

brittle materials. Int J Numer Methods Eng 72(8):1017–1048

28. Paulino GH, Park K, Celes W, Espinha R (2010) Adaptive

dynamic cohesive fracture simulation using nodal perturbation

and edge-swap operators. Int J Numer Methods Eng

84(11):1303–1343

29. Spring DW, LeonSE, Paulino GH (2014) Unstructured polygonal

meshes with adaptive refinement for the numerical simulation of

dynamic cohesive fracture 189(1):33–57

30. Miller O, Freund LB, Needleman A (1999) Energy dissipation in

dynamic fracture of brittle materials. Model Sim Mater Sci Eng

7(4):573

31. Zhang Z (2007) Extrinsic cohesive modeling of dynamic fracture

and microbranching instability using a topological data structure,

Ph.D. thesis

552 Engineering with Computers (2016) 32:533–552

123

http://dx.doi.org/10.1002/nme.4842

	Massively parallel adaptive mesh refinement and coarsening for dynamic fracture simulations
	Abstract
	Introduction
	Numerical representation of dynamic fracture
	Adaptive mesh modification
	Data structure for 4k adaptive finite element mesh representation
	Nodal data
	Element data
	Data storage necessary for mesh refinement
	Data storage necessary for mesh coarsening
	Non-topological data storage
	Node and element calculations
	Adaptive insertion of cohesive elements
	Adaptive mesh refinement
	Adaptive mesh coarsening

	Numerical investigations
	Reduced-scale micro-branching specimen
	Full-scale micro-branching specimen

	Concluding remarks
	Acknowledgments
	References

