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Thin sheets can be assembled into origami tubes to
create a variety of deployable, reconfigurable and
mechanistically unique three-dimensional structures.
We introduce and explore origami tubes with
polygonal, translational symmetric cross-sections that
can reconfigure into numerous geometries. The
tubular structures satisfy the mathematical definitions
for flat and rigid foldability, meaning that they can
fully unfold from a flattened state with deformations
occurring only at the fold lines. The tubes do not need
to be straight and can be constructed to follow a non-
linear curved line when deployed. The cross-section and
kinematics of the tubular structures can be reprogrammed
by changing the direction of folding at some folds. We
discuss the variety of tubular structures that can be
conceived and we show limitations that govern the
geometric design. We quantify the global stiffness of
the origami tubes through eigenvalue and structural
analyses and highlight the mechanical characteristics
of these systems. The two-scale nature of this work
indicates that, from a local viewpoint, the cross-
sections of the polygonal tubes are reconfigurable
while, from a global viewpoint, deployable tubes of
desired shapes are achieved. This class of tubes has
potential applications ranging from pipes and micro-
robotics to deployable architecture in buildings.

1. Introduction
Historically, origami has gained popularity in science
and engineering because a compactly stowed or flat
system can be folded into a transformable three-
dimensional structure with increased functionality.

2016 The Author(s) Published by the Royal Society. All rights reserved.
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Proposed applications in the smaller length scales include biomedical devices [1] and micro-
robotic assembly [2]. In medium sizes, origami techniques have been used in creating compliant
mechanisms [3], actuators [4], toys and educational tools [5]. Large origami structures could
be constructed for aerospace [6] and architectural applications [7]. The applications seem to
be endless.

More recently, innovation with origami has pivoted on its capability to create programmable
and re-programmable systems that can change shape, function and mechanical properties.
For example, Hawkes et al. [8] created a sheet with pre-defined fold lines that can reshape
autonomously into different three-dimensional structures. Marras et al. [9] showed that DNA can
be folded to create nano-scale mechanisms with programmable mechanical functions. Origami
metamaterials that can be reconfigured, and whose mechanical properties can be tuned and
tailored, have also become a popular subject of study [10–13].

Thin-walled origami tubes have been created by folding thin sheets, but they typically
differ from the fundamental definitions of origami. In particular: entire origami tubes are not
developable, meaning they cannot be created from a continuous flat sheet; and they require gluing
or some other connectivity for creating the complete tube. Despite the higher complexity of
manufacturing, origami tubes greatly extend the functionality of engineered thin sheet structures.
For example, they can be used as deployable stents in biomedicine [14], as inflatable structural
booms for space structures [15,16], or as actuators and bellows [4,17,18]. Origami tubes have
a self-constraining geometry that makes them suitable for energy absorption devices [19–22].
Stacking and coupling of origami tubes into more complex geometries can lead to stiffening of
the system and enhanced mechanical characteristics [11,13,23,24].

A variety of origami-inspired tubes exist including the Miura–Tachi polyhedron [17,25,26],
and variations inspired by the Yoshimura pattern [27]. In this paper, we explore and extend upon
origami tubes that employ the Miura-ori pattern; these tubes were first introduced by Tachi and
Miura [28,29]. We generalize these into a new set of polygonal cross-section tubes that possess the
following properties and advantages:

(1) Tube cross-sections can take a variety of polygonal shapes.
(2) The cross-sections can be made reconfigurable to allow for programmable functionality.
(3) A wide variety of new curved tubular forms are possible.
(4) The tubes are compatible and can be coupled into a variety of assemblages.
(5) The mechanical properties of the tubes can be tuned through reconfiguration.
(6) Out-of-plane compression stiffness is enhanced similar to corrugated pipe systems.
(7) The perimeter of the tubes is continuous, allowing for deployment by inflation and for

the potential capability to carry liquids and gases.
(8) Based on idealized zero-thickness kinematics, the tubes are flat foldable, meaning that they

can fold down to a completely flat state allowing for compact stowage.
(9) These systems are rigid foldable, meaning that the origami can fold and unfold with

deformation concentrated only along the fold lines (creases), while the panels (facets)
remain flat. This capability could allow the structures to be constructed with panels of
finite thickness [30–32], and to fold in a controlled motion.

Properties 1, 2, 3, 5 and 6 are possible with the new polygonal tube definitions presented herein.
Some of the advantages are motivated by figure 1, which shows a curved tube that can fold in a
variety of different cross-sections. The versatility, mechanical characteristics and reconfigurability
of these tubes could result in numerous applications in pipelines, architectural structures, robotic
components, bellows, metamaterials and other reprogrammable systems.

The paper is organized as follows: §2 introduces the cross-sections, and §3 provides the
full three-dimensional definition for admissible polygonal tubes. The system kinematics and
reconfigurable characteristics of different tubes are discussed in §4. In §5, we extend the tubular
definitions to cellular assemblages that can also be reconfigured. In §6, we discuss the elastic
modelling and explore the mechanical properties of the tubes through eigenvalue and structural
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Figure 1. A reconfigurable origami tubewithapolygonal cross-section. (a) The tubeand cross-section shownat a fully extended
state. (b) Folding sequence of the tube, where the cross-section is reconfigured using the four initially flat panels or switches
(n= 4). (c) Four other possible cross-sections into which the tube can be reconfigured. (Online version in colour.)

analyses. Tubes with circular cross-sections are investigated in §7, and §8 provides a discussion
and concluding remarks. Appendix A explains folding characteristics of the idealized tubes
assuming zero thickness, appendix B gives an analytical comparison between smooth pipes
and origami tubes, and appendix C gives an outlook for practical implementations and future
extensions of the proposed systems.

2. Cross-section definitions for polygonal tubes
The popular Miura-ori pattern has inspired the development of rigid foldable origami tubes
discussed in several recent articles [13,23–25,28,29,33]. The cross-sections of these tubes are
symmetric, with the most fundamental tube consisting of two equal symmetric Miura-ori strips
placed opposite each other. More advanced cross-sections follow isotropic, anisotropic or star-
shaped cylindrical variations [25,28,29]. In this work, we go beyond the previous tube variations
and introduce a translational symmetry method to create a variety of polygonal-shaped tubes. The
basic cross-section variations for the polygonal tubes are defined in the Y–Z axis, as demonstrated
by figure 2. For our definition, we divide the geometry of the cross-section into an upper (U) and a
lower (L) section. The names of these two sections are only representative and their location may in
fact be side by side, as shown later in figures 3 and 4. The two opposing sections of the tube have
to be continuous and can be composed of m ≥ 2 edge groups. The edge groups are identified by a
unique slope angle θ and are denoted by a lower-case letter (a, b, c . . .). The slope angle is taken
clockwise from the Z-axis of the cross-section and has the admissible range of −180◦ < θ < 180◦.
Each edge group on the upper section can be composed of p ≥ 1 edges, and the corresponding
lower edge group can be composed of q ≥ 1 edges. The length of the ith edge in the b edge group
on the upper (U) section is denoted as bUi.

To create a valid cross-section, each edge group on the upper section must have a
corresponding edge group on the lower section with the same total length and slope angle. This
definition can be written mathematically as:

p∑
i=1

aUi =
q∑

i=1

aLi;
p∑

i=1

bUi =
q∑

i=1

bLi · · ·
p∑

i=1

mUi =
q∑

i=1

mLi. (2.1)

This property ensures that the cross-section will be closed, thus creating a foldable origami tube
with a continuous uninterrupted circumference. The logic of equation (2.1) can also be thought
of as a sum of two groups (sections) of equal direction vectors (edge groups), segmented (into
edges) and rearranged to create the cross-section. The rearrangement of the individual edges can
be performed in any logical manner (e.g. figure 2c), so long as the lower and upper sections do
not intersect. As shown in figure 2d, when an edge group is segmented into several edges, the
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Figure 2. Valid cross-section definitions and basic variations. (a) Six-sided tube cross-section with m= 3 edge groups each
havingaunique slopeangleθ . (b) Folding sequenceof a tube created fromthe cross-section in (a). The cross-section corresponds
to the fully extended configuration. (c) Six-sided cross-sectionwith the same edge groups as in (a), arranged in a different order.
(d) The upper edge group bU is divided in two (p= 2) and rearranged. The corresponding lower edge group bL can be composed
of a single, two or more corresponding edges with an equal total length (q �= p). (Online version in colour.)
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Figure 3. (a) Cross-section with a negative slope angle θ . (b) A tube with that cross-section shown fully extended, and folded
to 95% and 10% extension. (Online version in colour.)

number of edges on the upper and lower sections do not need to be the same (i.e. p �= q). A non-
trivial cross-section with a negative θ is shown in figure 3 and one with a complex outline is
shown in figure 4.

The fundamental tube that was previously studied [28,33] is a unique case of the generalization
proposed here. The tube is created from only four edges that are symmetric about the Y- and
Z-axes; that is, θB = 180◦ − θA, and the edge lengths are aU1 = aL1 = bU1 = bL1. This tube can
be fully flattened in the X–Y plane and can also be folded into a flat state in the Y–Z plane.
However, as will be shown in §4, this most fundamental tube case is not reconfigurable. To
create a reconfigurable tube, the cross-section must have at least three edge groups (m > 2), each
with a unique slope angle θ . Although the slope angles can be arbitrary, in our work we define
reconfigurable cross-sections with one edge group, where θ = 90◦. When this cross-section is
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Figure 4. (a) An admissible cross-sectionwith the shape of a dog, createdwith six different edge groups. The upper section has
22 edges, while the lower section has 29. (b) Dog tube fully extended, and folded to 95% and 10% extension. (Online version
in colour.)

projected in the X–Y plane as per §3a, the θ = 90◦ edge group will be completely flat. As defined,
the tube is at a fully extended state (100% extension), because from this state the flat edge group
can only fold down. When folding, the θ = 90◦ edges serve as programmable bits or switches
to reconfigure the tube cross-section (§4). An m > 2 cross-section that has no edge group with
θ = 90◦ is not fully extended when initially defined, and the edges with θ closest to 90◦ serve as
the switches.

3. Three-dimensional profile definitions
In this section, we discuss the complete three-dimensional definition of the tubes when a
previously defined Y–Z cross-section is used as a basis. The cross-section is projected in X–Y–Z
space to create a closed continuous tube. The tube definitions assume that the origami sheets have
an infinitesimally small or zero thickness. In practice, there is a technique that allows for thickness
to be incorporated into the design of rigid foldable tubes [31], however we do not take these
details into account. In §3a, we discuss the basic projection geometries that preserve the rigid and
flat foldability of the polygonal origami tubes. With these definitions, the capability to reconfigure the
cross-section is preserved allowing for a programmable system. The projection discussed in §3b violates
flat foldability conditions, but maintains rigid foldability and the programmable characteristics.
The projection presented in §3c is the most geometrically unrestricted, but it restricts folding for
non-square, non-symmetric tubes. The programmable characteristics of the tubes are discussed
in §4, and the folding properties are summarized in appendix A.

(a) Admissible projections for rigid and flat foldable polygonal origami tubes
The first geometric variation for the tubes is to project the cross-section in the X–Y plane with a
constant projection angle as shown in figure 5a–d. The projection is defined by an angle φ and
length l. This projection creates a new cross-section that again lies only in the Y–Z plane and is
parallel with the initial cross-section when looked at from above (X–Y plane). The corresponding
edges of the two cross-sections are connected with thin origami sheets creating a system of
fold lines and panels. A different projection angle φ can be used to create a distinctly different
structure (figure 5b,c). The length of individual projected segments can also be varied (figure 5d).
When the base projection with no length variation is used, all panels are parallelograms and are
the same for each cross-section edge. The left vertex angle (α) of each panel (internal angle of
the parallelogram) can be calculated as αL = arccos(− sin(θ ) × cos(φ)). For other more complex
projections discussed herein, we leave the geometric derivations to the reader.
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Figure 5. (a) Cross-section projection in the X–Y direction using a constant projection angle, i.e.φ = φ1 = φ2 = φ3 = 60◦.
(b) Constantφ = 80◦ projection. (c) Constantφ = 40◦ projection. (d) Constantφ = 60◦ projection,with lengths of segment
i defined as: li = 0.4 + 0.2 × i. (e) Projectionwith angle variation. Symmetry between the cross-section andprojection vector
is preserved in the X–Y plane. (f ) A rigid foldable S-shaped tube constructed by following the symmetry rules in (e). All tubes
of this figure use the cross-section in figure 2a. (Online version in colour.)

The basic type of projection is further extended by allowing an angle shift to occur, where the
projection angles are not equal throughout (i.e. φ1 �= φ2 �= φ3 . . .). Figure 5e shows the projection
where the angle is varied in the X–Y plane. Symmetry is enforced such that the adjacent vertex
angles (α) about the cross-section are kept symmetric. This projection can be used to create an
arbitrary geometry in the X–Y plane that is flat and rigid foldable.

(b) Projections for rigid, but non-flat foldable origami tubes
Projection in X–Y space can also be performed without following the symmetry about the cross-
section. In figure 6, we show a projection where the projection angles are φ2A �= φ2B, and thus the
adjacent vertex angles are also not symmetric. The system can undergo rigid folding, but in this
case the folding sequence is restricted and the system cannot fold into a completely flat space
(figure 6b and appendix A).

(c) Extended projections for origami tubes
The final form of projection discussed here is the most general, where the projection is
performed arbitrarily in all three dimensions (X–Y–Z). The vector can be varied in all directions
simultaneously, by using an angle φ to describe the projection vector in X–Y, and γ to vary
the projection vector in Y–Z. Symmetry of the projection is preserved, such that the adjacent
vertex angles on opposing sides of a cross-section are equal. This symmetry can be visualized
as mirroring the structure locally, which is shown using transparent planes in figure 7a–c. For the
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Figure6. (a) Cross-section projection in the X–Y direction that does not preserve symmetry about the cross-section, i.e.φ2A �=
φ2B. (b) The folding sequence of the non-symmetric projection shown in top and isometric views. The structure cannot fold
completely flat. (Online version in colour.)
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Figure 7. Cross-section projection varied in the X–Y–Z directions simultaneously while preserving the symmetry of the
structure about the cross-section. Projection of a six-sided polygon shown in (a) top, (b) side and (c) isometric views. This
polygonal tube cannot fold. (d) Folding sequence of a four-sided origami tube constructed by projecting along a spiral in
three-dimensional space. This tube is rigid and flat foldable. (Online version in colour.)

polygonal cross-section, when this projection is used, the resulting structure is not foldable, and so
it is essentially no longer origami, but a static fully restrained structure (appendix A). However,
if a simple symmetric cross-section is used, the structure remains rigid and flat foldable. The
structure in figure 7d follows an arbitrary spiral in three-dimensional space.

4. Kinematics in reconfiguring polygonal tubes
The folding of the tube can be performed through an analytical [34–37] or numerical method [38],
by changing a fold angle in one vertex, calculating the other angles in the vertex and cycling
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Figure 8. The six-sided tube can be folded into two different configurations by changing the polarity of folds (valley or
mountain) on the single flat segment (n= 1). A cross-section schematic with positive or negative slopes is used to inform the
fold assignment for the first/last fold (0= valley, 1= mountain). The folded cross-sections of the two configurations are not
symmetric because edge groups a and c in the cross-section definition are not symmetric (figure 2a). (Online version in colour.)

through all of the vertices in the pattern until all fold angles, and the new geometric shape, are
calculated. We use the numerical method in [38] to perform the folding. In contrast to more simple
tube structures, the geometry of the tubes presented here can be reconfigured. Figure 8 shows the
two basic geometry reconfigurations that can be obtained from the simple six-sided origami tube.
The initially flat in Y–Z segments can be used as switches to change the structural geometry.

A binary system is used to inform the directional change in cross-section and new geometry.
The upper and lower switches are defined as a 0 or a 1 and indicate negative or positive slope
change in the cross-section, respectively (valley or mountain fold, respectively, between the first
and second panels). The assignments on the upper and lower segments must match to preserve
the translational symmetry in equation (2.1), thus if the [U : 1] then [L : 1] as well. In figure 9a, we
extend these definitions to the eight-sided tube from figure 2d.

The eight-sided tube has two switches of equal length on both the upper and lower sections.
The number of positive switches (1 s) on the upper section has to correspond to the number of
positive switches on the lower section of the tube. Thus, the sum (k) of the L and U switches must
match. Figure 9a shows the six possible switch variations for the eight-sided tube. The number of
possible ways to reconfigure the upper section only follows a binomial coefficient as(

n
k

)
= n!

k!(n − k)!
, (4.1)

where we have n available switches and we want exactly k of them to be positive. For example
in figure 9a there is only one possible way to reach a total of either k = 2 or k = 0, configurations
I and II, respectively. However, there are two possible ways to reach a total of k = 1, i.e. [U : 1 0]
and [U : 0 1]. Because each variation of the upper section can be coupled with a corresponding
lower section with the same polarity sum (k), we need to take the square of these possibilities and
sum them to find the total number of possible variations for the cross-section. This results in the
central binomial coefficient:

n∑
k=0

(
n!

k!(n − k)!

)2
= (2n)!

(n!)2 . (4.2)
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Figure 9. Variations in reconfiguring polygonal tubes. (a) An eight-sided tube with two equal length segments (switches) can
reconfigure into six unique configurations. The three-dimensional models are shown at 10% and 95% extension. (b) Possible
switch variations for the upper section only, with n= 2 and n= 3 switches. The variable k corresponds to the sumof the switch
assignments. (c) A Pascal’s triangle shows the number of variations for the upper section of the tube only. This is the binomial
coefficient with n representing the rows and k the columns. (d) The total number of possible cross-section configurations. This
is equivalent to the central binomial coefficient. (Online version in colour.)

This function gives the total number of unique cross-section variations that can be obtained
when folding a reconfigurable tube with n flat segments or switches. The possible upper
section assignments for an n = 2 and n = 3 tube are shown in figure 9b. The number of
possible upper section variations follow Pascal’s triangle (figure 9c), and the total number of
possible configurations follow the central binomial coefficient (figure 9d). The most basic, four-
sided tube cross-section (e.g. figure 7d) has no switches (n = 0), and thus has only one possible
cross-section configuration. On the other hand, the tube with four symmetric switches (n = 4)
shown in figure 1 can reconfigure into 70 distinct cross-sections.

5. Cellular extensions for reconfigurable origami tubes
The projection technique for creating polygonal tubes can be extended to creating cellular
assemblages that have similar geometric characteristics. When the translational symmetry is used
in the cross-section(s) and an admissible projection is followed to construct the three-dimensional
structure, the folding and reconfigurable characteristics remain similar to before. In figure 10, we
show two assemblages that use a constant angle projection, although it is possible to use more
advanced curved projections as well. The cross-section in figure 10a is created by discretizing
the cross-section into smaller sections. All of the internal cross-sections, as well as the global
external cross-section, follow the translational symmetric rules in equation (2.1). This assemblage
can still be reconfigured as shown in figure 8. In figure 10b, we combine four tubes together,
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Figure 10. Cross-sections, isometric folding sequence andpossible reconfigured cross-sections of cellular origami assemblages.
(a) The basic six-sided polygon has four smaller parallelogram tubes inserted within. This assemblage has two possible
configurations similar to before. (b) Assemblage consisting of two six-sided and two four-sided tubes together. This structure
can reconfigure into four states. (Online version in colour.)

two of which have reconfigurable cross-sections. This assemblage can now be reconfigured
into four different cross-sections, with configurations III and IV being rotationally symmetric.
A variety of new assemblages can be constructed using these ideas, however the initial cross-
sections cannot have overlapping components, and the kinematics of reconfigurations should be
carefully analysed. When multiple tubes and cross-sections are reconfigured, it may be possible
for different components to experience interaction or contact, and some of the reconfigurations
may be obstructed.

Polygonal origami assemblages can be further enhanced by using different projection angles
and projection directions, for the different tubes within the assemblage [13,39]. The most
interesting case is a zipper coupling of tubes, where a positive projection φ is used for one tube and
a negative φ for another. These zipper assemblages can be used to create significantly stiffer thin
sheet origami structures. The assemblages can be generalized in numerous ways, but they also
limit some of the projection directions that can be used to create the system [39]. Furthermore, it
is possible to introduce techniques for locking the origami configuration into a sandwich-like
structure [11,40]. These additions can enhance the structural rigidity of the systems, but can
restrict the deployment and reconfigurable kinematics of the polygonal tubes. Future research
can explore the numerous assemblage variations proposed and determine useful methods for
enhancing the mechanical characteristics of the structures.

6. Elastic behaviour of polygonal tubes
In this section, we explore the global mechanical characteristics of the tubes with finite-element
(FE) analysis software (ABAQUS [41]). Each of the origami panels is discretized with 8 × 8 shell
elements and the folds are modelled using rotational hinges as shown in figure 11. The model uses
standard S4 general purpose shell elements with finite membrane strains that are appropriate for
the small deformation analyses of the thin sheet origami structures. We model the eight-sided
reconfigurable tube from figure 2d. The cross-section edges for the upper section have slopes of
[θa, θb, θc] = [30, 90, 125]◦, and lengths of [bU1, aU1, bU2, cU1] = [0.5, 0.7, 0.5, 1.0] cm. The tube is 10
segments long and is created with a constant projection of φ = 60◦ and l = 1 cm. The configuration
of the structure is defined based on the idealized zero-thickness rigid kinematics; however, to
define the stiffness of the structure, we assign a thickness of 0.1 mm, which translates to roughly
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shell

fold joint
0

a

b

Figure 11. A portion of the eight-sided reconfigurable tube with the corresponding FE discretization. The inset shows the
localized zero-length connectivity at the fold lines. (Online version in colour.)

L/t ≈ 50 − 100. The model does not however account for the detailed effects of the thickness such
as the intersection that may occur when we attempt to fold an origami with finite thickness.
Other model parameters are defined as Young’s modulus E = 5 GPa, Poisson’s ratio ν = 0.33 and
density ρ = 650 kg cm−3. In reality the behaviour and stiffness of the fold lines can depend on the
material and fabrication used to make the origami. Here, we assume linear elastic folds where
the stiffness for a rotation of ρ radians is specified as Kρ = 0.0164 N × cm/rad per 1 cm of fold
line. The fold lines are assumed to be more flexible in bending than the panels, and thus Kρ is
specified to be one-tenth the bending stiffness of an origami panel with a diagonal length of 1 cm.
The dimensions and units used here are chosen arbitrarily but within a realistic range to give
qualitative insight to the origami behaviour. Quantitative results for engineered origami systems
could be obtained using known dimensions and material properties. The analytical model
captures the elastic behaviours of origami-type structures: (1) panels stretching and shearing,
(2) panels bending, and (3) bending along prescribed fold lines. We have evaluated the mesh
convergence for the tube when it is loaded as a cantilever later in this section. The 8 × 8 shell
mesh approximates displacements within 4% of a significantly finer mesh discretized with 32 × 32
shell elements per panel. In this paper, we use elastic and small displacement approximations
for all analyses. Future research will be needed to understand localized behaviours in origami
structures, as well as the large displacement behaviours which could be of significant importance.

We use an eigenvalue analysis to explore the global mechanical properties of the reconfigurable
origami tube. These analyses can be used to determine how flexible or stiff the structure would
be for bending, twisting or other deformations. We obtain the eigenvalues λi and corresponding
eigenmodes vi of the structure using a linear dynamics system of equations Kvi = λiMvi, where
K is the stiffness matrix and M is the mass matrix of the structure. The eigenvalues are arranged
in an incremental order (i) and represent the excitation frequencies that would deform the
structure into the corresponding eigenmode. The eigenvalues are also proportional to the total
energy of each eigenmode (elastic strain energy and kinetic energy), meaning that eigenmodes
with higher eigenvalues require more energy to achieve the given deformation. The structure is
analysed with no boundary conditions, thus the first six eigenvalues are zero, with eigenmodes
representing rigid body motion of the structure in three-dimensional space (three displacement
and three rotational modes). We start by considering the seventh and subsequent eigenmodes of
the structure.

For the eight-sided reconfigurable tube, the seventh eigenmode follows the kinematic folding
and unfolding of the structure (figure 12a,b). The seventh mode has the least energy, indicating
that it is easiest to deform the structure by following the prescribed folding sequence. The
eighth mode is a squeezing mode, where one end of the tube is folding and the other end is
unfolding. By changing the geometry or through the tube coupling described in §5, it could be
possible to substantially increase the band-gap λ8 − λ7, creating a structure that is easy to deploy,
but is substantially stiffer for other deformations. The ninth mode of the structure is another
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Figure 12. Eigenvalue analyses of the eight-sided reconfigurable tube with two switches presented in figure 9. (a) Eigenvalue
versus the extension of the tube in configuration I. (b) Corresponding eigenmodes at 75% extension. (c) Eigenvalues 7–10
presented for each of the six possible geometric reconfigurations of the tube. (Online version in colour.)

manifestation of squeezing with the centre unfolding and the ends folding . The tenth mode is a
localized mode, where the panels at the end of the tube fold. The ninth and tenth eigenvalues are
substantially higher, meaning the structure is stiffer for these and other types of deformations.

Because the geometry of the system changes, the magnitudes of the eigenvalues also change
with respect to the extension of the system. Extension here is defined as a percentage of the fully
extended length. When the structure is at 0% extension it is completely folded down, while at
100% extension the switches flatten and the system can be reconfigured. The eigenvalues for
rigid folding and squeezing remain essentially the same regardless of the folded configuration,
although there are some small differences in magnitude. However, the ninth and tenth mode
are greatly affected by the different folding configurations (figure 12c). This is because the cross-
sectional geometry has a higher influence in determining the more complex localized and global
bending modes.

In figure 13, we present a cantilever analysis of the eight-sided tube in different configurations.
One end of the cantilever is fixed and a small uniformly distributed load (summing to a total
of 0.001 N, e.g. FX = 0.001 N) is applied on the other end. We perform static, linear elastic,
small displacement analyses of the structures, with the main objective of exploring the global
behaviours and anisotropy of the tubes. The system displacements (	X, 	Y, 	Z) are calculated
using the equation F = K	, where F is a vector of forces. Subsequently, the system stiffness is
calculated as KX = FX/δX, where δX is the mean X direction displacement of the loaded nodes.
A squeezing-type deformation occurs for some of the loaded cases, and this is believed to
result in lower stiffness than if the origami was engaged in stretching and shearing. Different
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Figure 13. Structural cantilever analyses of an eight-sided tube. (a) Representative deformed shapes scaled ×1000 for the
tube in configuration I at 95% extension. (b) The stiffness of different tube configurations in the three Cartesian directions with
respect to the extension. (c) The tube stiffness for different loading directions in the Y–Z plane represented as a radial plot. The
tubes are at an extension of 95%. (Online version in colour.)

cross-section configurations can have drastically varying stiffness characteristics, with up to
an order of magnitude between different cross-sections (figure 13b). Typically, configurations I
and V are the stiffest, while configurations II and IV are the most flexible. We also show the
stiffness perpendicular to the X-axis, as a radial plot in figure 13c. The I and V configurations
have large oval plots, meaning they have relatively higher stiffness in most directions. Each
of the cross-sections also has a different direction (in Y–Z) where it has a lower or higher
stiffness. This phenomenon indicates that the reconfigurable tubes have a highly adjustable
anisotropy when used as cantilevers. The behaviours observed in this section show that the cross-
section geometry can have a significant influence on the mechanical properties of the system.
Thus, the reconfigurable polygonal tubes can be used to create highly tuneable and adaptive
structural systems. Detailed research is needed in this area to determine the influence of different
cross-section geometries, as well as the tuneability achieved from each reconfiguration.

7. Cylindrical origami tubes
We explore a uniform circular pipe (made from a thin sheet) experiencing uniform out-of-plane
loading and compare it with similar origami tubes. Figure 14a shows the pipe, which is L = 10 cm
long, loaded in space with a symmetric out-of-plane distributed load equal to F/L. In this section,
we use a total force of F = 0.001 N, and we assume linear elastic, small displacement behaviours.
The radius of the pipe is r = 2 cm, and all other parameters (i.e. t and E) are the same as for
the origami analysis in §6. An analytical solution for this problem is found using Castigliano’s
theorem, where the pipe is simplified to a two-dimensional bending of a thin beam (appendix B).
The total diametric deflection (δd), coaxial with the applied load, is found to be

δd =
(

π

4
− 2

π

)
12Fr3

ELt3 = 0.00286 cm. (7.1)

Subsequently, we perform similar analyses on the origami tubes with the same parameters,
and dimensions defined to match the pipe as closely as possible. All cross-sectional edge lengths
are defined as 2πr/NEdge, where NEdge are the total number of edges on the circular tube. As
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Figure 14. Out-of-plane compression on a pipe. (a) Problemdefinition and analytical approximations (appendix B). (b) Origami
tubeswithNEdge = 6, 10 and 14. The origami tube cross-sections are overlaidwith an r = 2 cm circle. The loading is only shown
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and the lower views show the deformed shapes. The deformed shapes are scaled×10 000 for the stiffer φ = 65◦ tube and
×200 for themore flexibleφ = 85◦ tube. (e) The out-of-plane stiffness of tubes versus the projection angleφ. (f–h) Physical
models of a uniform sheet,φ = 65◦ andφ = 85◦ tubes, respectively, loaded out-of-plane with 400 g. Theφ = 85◦ tube is
only loaded with one 100 g weight due to the much larger deformation. (Online version in colour.)

such, the tube perimeter is the same as the analytical case. The edges are arranged in a symmetric
fashion so that the cross-section becomes a regular polygon (figure 14b). Three cases with NEdge =
6, 10 and 14 are used, such that there is a single flat segment in the initial configuration, meaning
that the initial configuration is the fully deployed state. The number of panels in the X direction
is chosen as 6, 8 and 12 for the three cases, respectively, so that the structure is symmetric and the
panels are approximately square. The projection angle defining the three-dimensional shape is
varied, and a consistent projection length is used so that the origami tube is L = 10 cm long in the
fully deployed (same as initial) configuration. We perform a static analysis by loading the vertices
on the top flat segment with a downward force, such that the edge vertices carry half the load
of the internal vertices (grey versus black triangles in figure 14b). The loads are defined such that
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the total applied load sums to F = 0.001 N. The bottom vertices of the tubes are restrained in the
Z-direction, representing a symmetric loading similar to figure 14a.

We use static, linear elastic, small displacement analyses to evaluate the mechanical properties
of the origami tubes. Scaled deformed shapes of NEdge = 10 tubes with two different projection
angles are shown in figure 14c,d. The tube with φ = 65◦ is much stiffer and has an irregular
deformed shape where panels bend and stretch. The tube with φ = 85◦ has a more regular
deformed shape, similar to what we would expect from a thin pipe, and, in this case, deformation
occurs primarily by bending along the longitudinal fold lines. Stiffness with respect to the
projection angle φ of the tubes with different NEdge is shown in figure 14e. The origami stiffness is
calculated as in §6, and the analytical stiffness solution for the circular pipe is calculated as F/δd.
Similar to the deformed shapes, tubes with lower projection angles have lower displacement and
are stiffer, while tubes with a projection angle close to 90◦ are more flexible because they permit
folding along the longitudinally oriented fold lines. The origami tubes with projection angles
between φ = 45◦ and 75◦ are stiffer than the analytical solution for a circular pipe. This behaviour
is similar to that of corrugated pipes and sheets [42]. Corrugated pipes have a higher stiffness
for out-of-plane loadings, which makes them suitable for many applications such as culverts.
Tubes with more edges, e.g. NEdge = 14, have more fold lines along their cross-section perimeter,
making them more flexible. The results are verified with physical models (figure 14f –h). The
stiffness of the fold lines RFP factor does not influence the deflection significantly for cases with
lower projection angle φ < 75◦. However, for higher φ, the fold lines are the primary location of
deflections, and thus their stiffness greatly affects the tube stiffness.

8. Concluding remarks
We introduce a new category of origami tubes that have reconfigurable polygonal cross-sections.
The tubes are rigid and flat foldable and have a continuous perimeter. The cross-sections of the
tubes can be a wide variety of convex or non-convex polygonal shapes that follow translational
symmetry. Projection is used to define the three-dimensional shape of the tube, but non-
admissible (e.g. non-symmetric) projections may limit the flat and rigid foldability of the system.
The cross-section geometry can contain any number of n switches that can be used like binary bits
to program the geometric reconfiguration of the cross-section. We show that the total number of
possible cross-section variations for a tube follow the central binomial coefficient of n. A cellular
cross-section or coupling of multiple tubes can be used to create a new variety of assemblages
that enhance the functionality and reconfigurable properties of the tubes.

In addition to the geometric variations and reconfigurable kinematics, this paper also explores
some mechanical properties of the polygonal tubes. We show that the tubes have only one
flexible mode for kinematic deployment for which the stiffness is not significantly influenced by
reconfiguring the cross-section. On the other hand, the cross-section configuration can influence
other deformation modes and the out-of-plane stiffness of the tubes. This property can be used
to make tuneable structures that can change their mechanical properties. If the origami tubes
are used as circular pipes, they can be designed to have a high out-of-plane stiffness similar
to that of corrugated pipes. Appendix C proposes future research directions on applications,
fabrication and non-linear deformations, all of which will enhance the practicality, functionality
and capability of the reconfigurable tubes. We envision that the physical attributes, versatility
and programmable characteristics of the polygonal origami tubes will enable solutions of varying
scale in science and engineering.
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Appendix A. Foldability of origami tubes
In this appendix, we verify the developability, flat foldability and initial rigid foldability using
the approach introduced by Tachi [43]. We assume that the origami panels have an infinitesimally
small or zero thickness to satisfy the mathematical definitions. The origami tubes defined by §§2
and 3 contain a total number of nvert internal vertices where four fold lines meet, and a number of
npanel four-sided panels. The folding characteristics of the origami can be explored by performing
the following vector calculations for the vertices and panels:

cdev =
[

2π −
4∑

k=1

αk,i

]
nvert×1

= 0, (A 1)

cflat =
[ 4∑

k=1

(−1)kαk,i

]
nvert×1

= 0 (A 2)

and cplanar = [ρj]npanel×1 = 0, (A 3)

where αk,i represents the kth vertex angle in the ith vertex, and ρj represents the dihedral angle
between the normals of two triangles that together create the jth panel of the tube. When cdev = 0
for all vertices, then the origami is developable, meaning it can be created from a single flat piece
of material. The origami tubes presented here have mostly non-developable vertices, and thus
they cannot be folded from a single flat piece of material. However, some of the vertices may be
developable and thus a portion of the tube may be constructed from an initially flat sheet (e.g. the
single four-sided tube can be constructed from two flat sheets [28]). When cflat = 0, then all vertices
of the origami are flat foldable, meaning that they can fold down to a flat two-dimensional state.
The definitions in §3a,c intentionally ensure symmetry when preforming a projection of the cross-
section, thus they ensure that all vertices are flat foldable. However, in §3b, where symmetry is
not preserved, we lose the flat foldability (cflat �= 0). Equation (A 3) indicates that all panels are
planar or flat for a given configuration. The dihedral angle (ρj) can be calculated using the four
nodes on the corners of the panel and will always equal 0 at the initial projected configurations
defined using §3. Thus all tubes satisfy cplanar = 0; however, this is only a necessary condition
for rigid foldability and is not sufficient. For rigid foldability, folding along fold lines should
permit the structure to transition between states while cplanar = 0 is continuously satisfied. The
analytical derivations of the kinematics and geometric characteristics of foldability (including
rigid foldability) have been previously discussed [34–37], however these tend to be cumbersome
for verifying the rigid foldability of complex origami systems. A more straightforward method
to check rigid foldability is to perform the eigenvalue analyses described in §6 with the fold
stiffness (Kρ ) substantially reduced (e.g. to 10−7), representing fold lines with no stiffness. In
these analyses, the seventh and possibly higher eigenvalues will be near zero, indicating a rigid
folding motion where a kinematic transition is permitted by folding along the fold lines. Figure 15
shows the eigenvalues and eigenmodes for the basic origami assemblies studied in this paper. All
cases except symmetric X–Y–Z projection have a λ7 that is low (≈10−2), indicating a rigid folding
motion. For the X–Y–Z projection case, λ7 is of much higher order, indicating that bending of the
panels must occur to deform the structure and that the tube does not have a rigid folding mode.
For the structures in figure 15a–c, λ8 is substantially higher than λ7, indicating that only one rigid
folding motion exists; these systems can be classified as 1 d.f. for rigid folding.

In figure 16, we show the eigenvalue and eigenmodes of the eight-sided tube with two switches
(n = 2). Curiously, for this case, the system has three soft modes where the rigid folding can occur,
and the tenth mode is the first to engage the origami panels in bending. These rigid folding
modes each correspond to one of the system configurations shown in figure 9, and each one
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Figure 15. Schematic (top row), seventh mode (middle row) and eighth mode (bottom row) of basic projection definitions.
(a) Constant angle projection in X–Y . (b) Projection in X–Y with symmetry enforced. (c) Projection in X–Y without preserving
symmetry. (d) Simultaneous projection in X–Y–Z. Low eigenvalues correspond to a soft, rigid folding mode of the origami.
(Online version in colour.)

l7 = 3.2 × 10–2 s–2 l8 = 4.8 × 10–2 s–2 l9 = 1.1 × 10–1 s–2 l10 = 6.3 × 106 s–2

Figure 16. The seventh to tenth eigenvalues and eigenmodes of the eight-sided tubewhen it is at a fully extended state.Mode 7
corresponds to configuration II and is the symmetric inverse to configuration I; mode 8 corresponds to configuration IV and is
symmetric to V; and mode 9 corresponds to configuration VI and is symmetric to III. Mode 10 is the squeezing mode. (Online
version in colour.)

of them also has a symmetric inverse that corresponds to another system configuration. These
results indicate that the system has three non-symmetric degrees of freedom for rigid folding.
However, once the structure enters one of the folding configurations (extension < 100%), it
behaves like a 1 d.f. system, where it only has a single flexible mode for rigid folding (figure 12).
This phenomenon of the eight-sided tube is similar to a flat sheet that can enter numerous
different folding patterns when initially folded. Future research could investigate differences in
rigid folding configurations, the symmetric inverse eigenmodes and the varying programmability
possible with the polygonal tubes.

Appendix B. Analytical solution for a pipe loaded out-of-plane
The exact analytical solution for the out-of-plane bending of a pipe can be calculated using
Castigliano’s theorem where we simplify the problem to a two-dimensional bending of a thin
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curved beam. The theorem states that the displacement δq at the point where a load Q is applied
can be found by

δq = ∂U
∂Q

=
∫ l

0

Mx

EI
∂Mx

∂Q
dx, (B 1)

where U is the elastic strain energy, Mx is the bending moment, I is the area moment of inertia
and x is the distance along the beam. By using symmetry, we only consider a quadrant of the
pipe’s cross-section which is loaded with a force V = F/2 (figure 14a). The idealized thin beam
has a width equal to the length of the pipe L (X-direction), and a depth of t in the bending axis
(perpendicular to X), resulting in the area moment of inertia I = Lt3/12. A point along the beam
is defined as a function of the angle θ , and the bending moment (Mθ ) and the partial derivatives
are calculated as

Mθ = Vr sin θ − M0,
∂Mθ

∂V
= r sin θ and

∂Mθ

∂M0
= −1. (B 2)

Using the theorem, we can now calculate

δM0 =
∫ l

0

Mx

EI
∂Mx

∂M0
dx = 1

EI

∫π/2

0
(Vr sin θ − M0) × (−1) × r dθ =

(π

2
M0 − Vr

) r
EI

(B 3)

and δV =
∫ l

0

Mx

EI
∂Mx

∂V
dx = 1

EI

∫π/2

0
(Vr sin θ − M0) × r sin θ × r dθ =

(π

4
Vr − M0

) r2

EI
. (B 4)

By enforcing symmetry, the rotation at the unrestrained end of the beam will be M0 = 0, and using
equation (B 3) we find that M0 = 2Vr/π . Substituting M0 into equation (B 4), the total diametric
deflection coaxial with the applied load is found to be

2δV = 2
(

π

4
− 2

π

)
Vr3

EI
=
(

π

4
− 2

π

)
12Fr3

ELt3 . (B 5)

If we wish to find the total diametric deflection perpendicular to the applied load, we can use
a fictitious load H applied horizontally at the free end of the curved beam, and use the same
methodology to find

2δH = 2
(

2
π

− 1
2

)
Vr3

EI
=
(

2
φ

− 1
2

(12Fr3)
(ELt3)

)
12Fr3

ELt3 . (B 6)

Appendix C. Practical considerations and future extensions for reconfigurable
origami tubes
In this appendix, we propose future research on the reconfigurable tubes to explore (a) practical
applications, (b) considerations for physical fabrication, and (c) non-linear behaviours that can
extend capabilities. This section is meant to inform and motivate future research, rather than to
provide a holistic discussion on the different topics.

(a) Practical applications
The polygonal cross-section origami tubes discussed in this paper open up a variety of
applications in science and engineering. The continuous perimeter of the cross-sections could
enable the tubes to be used in fluid flow applications. More traditional applications would involve
primarily using these tubular origami as deployable pipe-like [4,15,16] or bellow systems [17,18].
These could have wide and varied applications including deployable pipes for construction,
biomedical devices or inflatable space structure components. The new projection definitions
introduced in §3 provide a new capability where the origami tubes can follow a curved profile
when deployed, versus the straight profile of previously introduced tubes. An example of taking
advantage of this benefit would be constructing a ventilation system, where the entire origami
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Figure 17. Potential application of origami tubes used as a robotic arm with reconfigurable components. The cross-section
shown on the bottom reduces in area and could be used as a gripper when the tube is retracting. (Online version in colour.)

tube is deployed to carry air through a congested area, rather than connecting multiple straight
and curved pipe segments. The properties studied in §7 show added benefits where the polygonal
tubes have more stiffness for out-of-plane loading than a conventional pipe with a constant cross-
section. This property could allow for the deployable construction of culverts, or other pipes that
need to carry large loads.

The programmable capability of the tube cross-sections offers novel applications where the
structure can morph and adapt. The tubes can have an adaptable volume, surface properties,
mechanical characteristics and more, simply through reconfiguring the polygonal cross-section.
For example, components placed inside an aircraft wing could be used to change the lift and
drag properties of the wing for different stages of flight [6]. The variable stiffness properties of
the origami tubes discussed in §6 could allow for new devices in aerospace, mechanical and civil
engineering. Robotic components, such as the deployable and reconfigurable arm in figure 17,
could be designed to simultaneously fulfil multiple functions. A gripper can be used with the
reconfigurable cross-section, while the cellular divisions could add stiffness and carry electrical
wiring, pneumatic tubes or other utilities (e.g. similar to multi-functional dental tools). Although
these applications are still far from reality, they offer many potential advancements from current-
day engineering approaches.

(b) Design and fabrication
There is currently a tremendous amount of research aimed at making origami feasible for
real-world applications. The geometric origami design, fabrication methods, materials and
deployment mechanisms all depend on the scale and function of the origami system. For small
applications, origami can be three-dimensionally printed with living hinges [44]. More simply,
however, it is possible to cut out the origami from a flat sheet and fold the system along perforated
or etched fold lines. As a proof of concept, we have fabricated several small (≈30 cm) paper
models (figures 14, 18 and 19) to highlight the capabilities of the reconfigurable polygonal tubes.
All models are manufactured from 160 g m–2 paper that has an approximate thickness of 0.25 mm.
Panel heights and widths vary from 1 to 3 cm, thus maintaining a relatively high length/thickness
ratio that is typical for origami. The folds are created by perforating the paper with 0.5 mm cuts
spaced evenly at 1 mm. Because the tubes are not developable, we cut out a flat sheet for each of
the cross-section edges, and use tabs to adhere the multiple sheets together (figure 18a). This or a
similar methodology would need to be used for manufacturing the polygonal origami tubes out of
flat sheets. When extending origami to the medium scale, it is possible to use layered composites
where a flexible sheet that allows folding is sandwiched between more rigid panels [2,8,45]. Large
origami structures could be constructed by using thickened panels interconnected by hinges
rather than fold lines. For various applications in the real world, the finite thickness of origami
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(a)

(c)

(b)

Figure 18. (a) Strips of panels cut out from flat sheets can be used to construct the three-dimensional, non-developable tube.
Dashed lines indicate fold lines, and the tabs at the sides of the sheets can be used to attach sheets together. (b) Physical model
of a six-sidedpolygonal tube that forms a starwhen fully deployed. (c) Physicalmodel of the reconfigurable origami fromfigure 1
is shown in different configurations. The tabs for attachment are visible on the bottom. (Online version in colour.)

Y

X

(a) (b) (c)

X

T T

T

T

T

X

Y Z

Figure 19. Localized distortion in the six-sided origami tube (left) can bring about new non-linear behaviours similar to those
of bendable drinking straws (right). (a) Unfolding of the structures in the prescribed straight direction. (b) A single transition
point indicated by a T is introduced in the origami tube. At this point, a panel of the reconfigurable segment bends across its
diagonal, allowing for a change in configuration to occur in themiddle of the tube. (c) Multiple transition points lead to a global
curvature over the length of the tube. (Online version in colour.)
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sheets begins to affect the system behaviour, and the idealized zero-thickness assumptions are
no longer valid. Current research aims to account for thickness in kinematics and manufacturing
in order to prevent self-intersection while minimizing the size of the stowed structure [30–32].
To make the reconfigurable polygonal tubes reliable and cost effective for industrial applications
more innovation will still be needed. In particular, research should explore: materials and systems
to allow multiple folding/unfolding cycles; rapid fabrication methods; mechanisms to facilitate
deployment; and incorporating thickness into the tube design. The programmable switches of the
polygonal tubes may also require new methods for rapid or remote actuation and reconfiguration.

(c) Non-linear deformations and extensions
Most research on origami, as well as the body of this paper, takes advantage of only the rigid
and prescribed folding mechanisms of the system. However, some recent findings have shown
that there exists a wide range of origami deformations where bending in the panels is encouraged
[12,46]. These deformations could be substantially more complex than the rigid kinematics and
could correspond to highly non-linear behaviours of the thin sheet origami. In figure 19b, we
show localized bending that occurs on one of the switch panels of a polygonal tube with six
edges. This allows the tube to have different cross-section configurations at different locations
of the tube, i.e. configuration I, below the transition point T, and configuration II, above it. The
tube is initially constructed straight with 30 constant angle projections, but with the transition
point there is a shift in the direction that the tube follows. Although each transition point causes
a localized change in direction, as more transition points are included, the origami tube can
go from a straight to a curved structure. This phenomenon is similar to conventional bending
drinking straws (figure 19c). The physical models of the polygonal tubes also showed some
bistable and multi-stable effects, similar to other origami structures [46–48]. Multi-stability with
the reconfigurable tubes could provide new ideas and applications. More complex tube cross-
sections where more switches could be augmented, or longer tubes could lead to other interesting
bending and non-linear effects.
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