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Abstract This paper presents an efficient scheme to filter
structures out of ground structures, which is implemented
using a nested elastic formulation for compliance minimiza-
tion. The approach uses physical variables and allows control
of the minimum ratio between the minimum and maximum
areas in the final topology. It leads to a singular problemwhich
is solved using a Tikhonov regularization on the structural
problem (rather than on the optimization problem). The filter
allows a multiple choice solution in which the user can control
the global equilibrium residual in the final structural topology
and limit variations of the objective function between consec-
utive iterations (e.g., compliance). As a result, an unambigu-
ous discrete solution is obtained where all the bars that belong
to the topology have well-defined finite areas. This filter fea-
ture, with explicit control of member areas, allows the user
(e.g., engineer or architect) to play with different alternatives
prior to selecting a specific structural configuration. Examples
are provided to illustrate the properties of the present approach
and the fact that the technique does not always lead to a fully
stressed design. The method is efficient in the sense that the
finite element solution is computed on the filtered structure
(reduced order model) rather than on the full ground structure.

Keywords Ground structures . Filter . Topology
optimization . Potential energy . Least Squares . Tikhonov
regularization . Generalized inverse . Pseudo inverse

1 Introduction

We present a discrete (as opposed to continuum) filtering
scheme, which is applicable to ground structures composed
of truss networks. The key idea consists of filtering structures
out of ground structures so that we obtain clearly defined
structures during the topology optimization process. Here we
concentrate on complianceminimization using a nested elastic
formulation (see, for example, Christensen and Klarbring
2009 and Ohsaki 2011). The motivation for such filtering
scheme is outlined below.

The conventional elastic formulation for compliance mini-
mization considers a filter at the end of the optimization pro-
cess, in which a lower bound is selected for the minimum
member areas, i.e., xj

min = ϵ>0, j = 1, …, n where n is the
number of bars of the ground structure (see Appendix A for
Nomenclature). When using this approach, bars that have
cross sectional area equal to ϵ are deleted when the optimal
solution that defines the topology is obtained. According to
Christensen and Klarbring (2009), this sounds simple, how-
ever, it also introduces peculiarities in the solution as it can be
cumbersome to find a proper value for ϵ. For instance, if ϵ is
too small, then there will be undesirable thin bars in the final
solution and, in addition, the stiffness matrix will be ill-con-
ditioned. On the other hand, if ϵ is too large, then bars that are
structurally important might be deleted and global equilibrium
may not be satisfied. Thus application of the filter at the end of
the optimization process can lead to undesirable thin bars and/
or violation of equilibrium. This situation is illustrated by the
simple example of Fig. 1. The corresponding results are
shown in Fig. 2 where Fig. 2a illustrates a situation where a
proper ϵ is chosen and Fig. 2b illustrates a situation where
global equilibrium is violated.

As a further motivation to this work, it is worth investigat-
ing what happens if there is no filter at all in the process.
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Figure 3a illustrates the results without filter using the con-
ventional elastic formulation for compliance minimization
with an arbitrarily low cross-sectional area selected as, for
example, xmin=5.91 10-13 m2. Notice that, in this case, the
entire ground structure is obtained as part of the solution and
there are many bars with small areas in the final topology. On
the other hand, Fig. 3b illustrates results considering xmin=0-
m2, which leads to a singular stiffness matrix. In this case, the
equilibrium solution was obtained by means of the potential
energy approachwith Tikhonov regularization (TR), however,
similar solutions could be obtained with a pseudoinverse
(Bruns 2006) or iterative solvers (Washizawa et al. 2004;
Wang et al. 2007). Even though xmin=0 m2, not all the cross

sectional areas of thin members go to zero, i.e., there are many
bars of small area in the final topology. Such examples justify
the adoption of an effective filtering scheme to filter structures
out of ground structures. The adopted filtering scheme allows
enforcement of the global equilibrium and structural resolu-
tion (ratio between the minimum andmaximummember areas
in the topology) while also allowing control of the variation of
the objective function between consecutive nonlinear itera-
tions. This leads to a well-defined topology in which all struc-
tural members have a finite area. Such approach with member
sizing control can also be found in some additive manufactur-
ing publications (Gaynor et al. 2014; Ge et al. 2013; Zegard
and Paulino 2015). This filtering scheme is the main contri-
bution of this paper.

The ability to deal with singular systems is important
in its own merit (Ben-Israel and Greville 2003) and is
employed here to identify non-equilibrium solutions dur-
ing the filtering process. As shown by Achtziger (1997),
the compliance problem is convex even when the stiffness
matrix is singular. The filter requires the solution of a
singular problem, which is solved using a Tikhonov reg-
ularization on the structural problem (rather than on the
formal optimization problem). For instance, Fig. 4 illus-
trates a singular structure displaying members with
aligned hinges, which was filtered out of the ground struc-
ture. Another situation (not illustrated by Fig. 4) is the
appearance of non-connected (or floating) members. The
need to solve singular systems is further motivated by
Fig. 5, which shows a self-equilibrated initial ground
structure; and by Fig. 6, which shows a self-equilibrated
filtered structure. It is also useful when dealing with ill
conditioned systems that might arise when a thin member
(small area) is connected to a thick member (large area) –
see Appendix B.

Fig. 1 Design domain where the ground structure (GS) is defined
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Fig. 2 Conventional elastic formulation using different filter levels: a Global equilibrium holds; b Global equilibrium does not hold (notice that each
circled node is not collinear with its adjacent nodes, leading to a mechanism). Blue denotes bars in tension and red denotes bars in compression
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As inferred from the aforementioned discussion, the pro-
posed filtering scheme allows well-defined structures to be
filtered out of ground structures during the topology optimi-
zation process. Thus the problem of small member areas (see,
for example, Christensen and Klarbring 2009 and Ohsaki
2011) is solved. In addition, the resolution of the structural
topology can be controlled by the user by specifying the min-
imum ratio between the minimum and maximum areas
(αf=min(x)/max(x)). Some advantages of the present filtering
scheme include:

& Global equilibrium is enforced by checking the global
equilibrium residual

& The user can control the variation of the objective function
between consecutive iterations (compliance)

& It leads to efficient solutions because smaller structures
(avoiding arbitrarily small member areas) are extracted
out of the ground-structure. In this sense, the filter is es-
sentially a reduced order model (of the ground structure).

& It provides an additional degree of freedom to the analyst/
designer – different filtering levels lead to different struc-
tural realizations (which satisfy global equilibrium).

& The relative sizing of members can be controlled (the fil-
tering level is specified by the user), which provides an
indirect means to control the number of members.

The remainder of this paper is organized as follows.
Section 2 presents the adopted topology optimization for-
mulation, including a flowchart illustrating our discrete
filtering philosophy. Section 3 addresses the sensitivity
analysis for the present approach. Section 4 presents nu-
merical examples in which the filtered topologies are in
equilibrium (i.e., equilibrium residual is below a certain
tolerance) and which also allow control of the variation in
the objection function (the latter being an optional param-
eter). Finally Section 5 presents concluding remarks and
potential extensions of this work. Four appendices (A
through D) complement the manuscript.
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Fig. 3 Results without filter: a Conventional approach considering a
relatively small lower bound ((xmin = 5.91 10− 13 m2); b Singular
approach with zero lower bound ( xmin = 0) where the initial ground

structure has 2008 members and the final topology illustrated above has
814 members with non-null area. Blue denotes bars in tension and red
denotes bars in compression

Fig. 4 Filtering out the structural
model from the ground structure.
The structural model is singular
because of the aligned hinges;
however, it satisfies global
equilibrium
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2 Optimization formulations

For comparison purposes, we first present the standard topol-
ogy optimization formulation (nested elastic) and then the
proposed one. Both formulations consist of determining the
cross sectional areas of the truss members using a ground
structure (GS) approach. In the standard formulation, there is
no clear definition of the structural topology, while in the new
formulation there is.

2.1 Standard formulation

We consider the following nested formulation for the optimi-
zation problem:

min
x

C xð Þ ¼ FTu xð Þ

s:t:
Lt x −Vmax≤0

0 < ϵ ¼ xminj ≤x j≤xmaxj ; j ¼ 1;…; n

�
8><
>:
with
K xð Þu ¼ F

ð1Þ
where C(x) is the objective function, x and L are the
vectors of area and length, respectively, Vmax is the

maximum material volume, ϵ is a small positive number,
and xj

min and xj
max denote the lower and upper bounds for

the areas, respectively. The algorithm corresponding to
the formulation (1) is shown in Fig. 7. The members
which belong to the final topology are defined at the
end of the optimization process and these areas satisfy
the following criterion:

xn
max xð Þ≥α f ð2Þ

where αf < 1 is a non-dimensional parameter and n is the
member number, as illustrated by Figs. 8 and 9. From a
practical point of view, αf is usually adopted in the range
of 1 %.

2.2 Filter formulation

Rather than regularizing the optimization problem, we
choose to regularize the structural problem. Thus we
apply the Tikhonov regularization (TR) to the total po-
tential energy in order to solve a singular structural

a b

Fig. 5 a Self-equilibrated ground
structure; b filtered structure. Blue
denotes bars in tension and red
denotes bars in compression

a b

Fig. 6 a Ground structure; b
filtered structure

98 A. S. Ramos, G. H. Paulino



problem. The regularized formulation for the optimiza-
tion problem is given by:

min
x

C xð Þ ¼ FTu xð Þ

s:t:
Lt x −Vmax≤0

0≤x j≤xmaxj ; j ¼ 1;…; n

�
8><
>:
with
x ¼ Filter x;α f

� �
and

min
u

Π x; u xð Þð Þ þ λ
2
uTu

ð3Þ

where Π denotes the potential energy of the system, λ
is the Tikhonov regularization parameter, and the pro-
posed Filter is defined by

Filter x;α f

� � ¼ 0 if
xn

max xð Þ < α f < 1

xn otherwise

(
ð4Þ

and illustrated by Fig. 8.
In this case, the structural topology is defined by the

members with non-null areas. The parameter αf can as-
sume different values and thus allows the user to control

the final resolution of the topology, which is defined by
the parameter αTop, given by

αTop ¼
min xTop

� �
max xTop

� � ≥α f ð5Þ

where xTop is the vector of member areas which belong
the final topology. The corresponding flowchart for the
formulation shown in (3) is given by Fig. 10, where
ΔC(x) = C(xk + 1) −C(xk) denotes the increment of the
objective function.

2.3 Filtering out

To solve the structural problem, we filter out the topology
from the ground structure (see Fig. 4) based on the following
mapping of variables:

u ¼ T uTop ð6Þ

The matrix T maps the degrees of freedom between the
ground structure (u) and the actual topology (uTop). This
matrix is defined based on the nodes connected to ele-
ments of finite area (larger than zero) and loaded nodes
with respect to the new set of degrees freedom associated

Fig. 7 Standard topology optimization approach – notice that the filter is
applied just once at the end of the process

Fig. 8 Filter

Fig. 9 Illustration of the filter with αf= 1/16 = 0.06
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with them (see Fig. 4 and Appendix D). Based on this
mapping, we establish the associated structural problem

KTopuTop ¼ FTop ð7Þ

where KTop and FTop are the stiffness and load vector
respectively associated with the actual topology, which
are defined by

KTop ¼ TTK T ð8Þ

and

FTop ¼ TT F ð9Þ

As illustrated by Figs. 4 to 6, the structural problem
defined by (7) can be singular and thus we need to
check the equilibrium condition (see Appendix B for
the near-singular case). In other words, we need to ver-
ify if the load vector FTop is in the range of KTop (i. e.
FTop ∈ ℛ(KTop)). As indicated above, to solve the sin-
gular problem, we minimize the potential energy with
Tikhonov regularization. After solving for uTop, we ob-
tain the displacements on the ground structure (u) using
(6). This displacement field is used to calculate the sen-
sitivity on the actual ground structure (see Section 4).

For the sake of simplicity of notation, we drop the subscript
(Top) from (7) and rewrite it as the following linear system:

Ku ¼ F ð10Þ

where K∈ℝn × n is a symmetric semi-definite stiffness matrix
with rank r≤n, and u and F are the displacement and force
vectors defined on the structural topology, respectively. The
general solution of the system (10) (Ben-Israel and Greville
2003) is given by

u ¼ up þ uh ð11Þ

The terms up and uh are the particular and homogeneous
solutions, respectively, of the system (10). The particular so-
lution is of special relevance in the optimization process be-
cause it is associated with non-null energies modes and the
sensitivities depend on this term only and thus are not impact-
ed by the homogeneous solution (considering that equilibrium
holds) – this aspect is addressed in the next section. Below we
discuss techniques to obtain the solution of interest. We inves-
tigate several alternatives, namely generalized inverses, least
squares with Tikhonov regularization and potential energy
with Tikhonov regularization, the latter being the method of
choice in this work. These alternatives are compared with
respect to their ability to identify relevant features of the sin-
gular system of equations in connection with their physical
interpretation, as discussed below.

Fig. 10 Flowchart to filter a
structure out of the ground
structure – the technique provides
a structural topology in
equilibrium and allows control on
the variation of the objective
function between consecutive
iterations (ObjTol)
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2.4 Addressing singular problems

This section address singular solutions, which represents the
cornerstone of the present development. First, we address gen-
eralized inverses, namely the reflexive inverse and theMoore-
Penrose inverse. Then we address Tikhonov regularization
approaches, namely least squares and potential energy, the
latter being the method of choice in this work.

2.4.1 Generalized inverses

The aforementioned system (10) has solution if

NT F ¼ 0 ð12Þ
where N ∈ℝn ×m is a rectangular matrix whose columns
form an m dimensional base of null space of K(∈ ℝn × n).
The general solution of the system (10) is given by (see,
for example, Ben-Israel and Greville 2003; Farhat and
Géradin 1998)

u ¼ up þ uh ¼ K−F þ I−K−Kð Þt ¼ K−F þ N t ð13Þ

where K− is a generalized inverse of K, t ∈ℝm is a vector
of arbitrary constants, and I is the identity matrix. The
terms up=K

−F and uh=N t are the particular and homo-
geneous solution, respectively, of the system (10).

Remark 1 Using (13), the compliance C(x) can be obtained
by

C xð Þ ¼ FTu ¼ FTK−F þ FTN t ð14Þ

If the equilibrium condition holds (see (12)), the compli-
ance is defined only by the particular solution

C xð Þ ¼ FTup ð15Þ

Remark 2 In general, the generalized inverse is not unique
and can be used for non-square matrices that satisfy the rela-
tionship KK−K=K. The Moore-Penrose inverse, denoted K+,
is a stricter generalized inverse that satisfies the following
three additional relationships: K−KK−=K−; (KK−)T=KK−;
and (K−K)T=K−K (Ben-Israel and Greville 2003).

Generalized (Reflexive) inverse: K− If we partition K as
shown

K ¼ K11 K12

K21 K22

� �
ð16Þ

such that K11 is an r× r submatrix of rank r, then we
obtain the generalized (reflexive) inverse by (Ben-Israel

and Greville 2003; Farhat and Géradin 1998; Yanai
et al. 2011):

K− ¼ K11
−1 0

0 0

� �
ð17Þ

where the particular solution is given by

up ¼ K−F ð18Þ

Moore-Penrose inverse:K+ The particular solution of interest
can be obtained using a special class of the generalized inverse,
called pseudo-inverse or Moore-Penrose inverse (K+), which is
obtained using the singular value decomposition (SVD). In this
case, the particular solution is also the minimum norm solu-
tion of u (Ben-Israel and Greville 2003). In general, the SVD
solution is computationally expensive, especially for large
scale topology optimization problems (Bruns 2006).
Alternatively, iterative methods can be used for the solution
of singular problems in topology optimization problems
(Washizawa et al. 2004). Using the SVD approach for the
particular case of symmetric positive semi-definite square ma-
trices with rank r, we obtain (Ben-Israel and Greville 2003)

K ¼ VSVT ð19Þ

where S is a diagonal matrix of the singular values, i.e.,
S=diag(σ1,σ2,…,σr, 0…, 0) ordered with σ1≥σ2…≥σr>0
and V are a square n×n orthogonal matrices. In this particular
case, σk are the eigenvalues of K and the columns of V are the
associated eigenvectors. The generalized inverse is given by

Kþ ¼ VSþV T ð20Þ

where S+=diag(1/σ1, 1/σ2,…, 1/σr, 0…, 0). In such case, we
can get the particular solution by

up ¼ umin ¼ KþF ð21Þ

or

umin ¼ VSþVT F ¼
Xr

i¼1

vTi F
σi

vi ð22Þ

where umin is the minimum norm solution and vi denotes the
column i of V.

2.4.2 Tikhonov regularization

The Tikhonov-type regularization is a common type of regu-
larization of ill-posed problems (see, for example, Engl et al.
1996, and Tikhonov and Arsenin 1977). Here we investigate
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Tikhonov-regularization to address the singularity of a general
functional that needs to be regularized:

f r uð Þ ¼ f uð Þ þ λ uTu ð23Þ

where λ is the Tikhonov regularization parameter. Below we
address the regularization in the context of least squares and
potential energy problem statements.

Least squares The particular solution can be obtained using
the least squares method with Tikhonov regularization (TR).
In this case, we minimize the function given by (Ben-Israel
and Greville 2003):

ϕ uð Þ ¼ Ku − Fk k2 þ λ uTu ð24Þ

where ‖* ‖ denotes the Euclidian norm and λ is a small pos-
itive number. Minimizing (24), we obtain

up ¼ KTK þ λ I
� �−1

KT F ð25Þ

Notice that, in this approach, the typical sparsity pattern of
the original system is lost. We obtain the Moore-Penrose in-
verse of K using the following limit approach (Ben-Israel and
Greville 2003):

Kþ ¼ lim
λ→0

KTK þ λ I
� �−1

KT ð26Þ

and thus the particular solution can be obtained by (21).

Potential energy The particular solution can be obtained by
minimizing the total potential energy with Tikhonov

regularization (TR). The regularized expression for the poten-
tial energy is given by

ΠR uð Þ ¼ Π uð Þ þ λ
2
uTu ¼ 1

2
uTKu − uT F þ λ

2
uTu ð27Þ

where λ is a small positive number as before. In the case of
singular K and when there is no solution, the total potential
energy Π(u) becomes unbounded. Minimizing ΠR(u) (with
respect to u), we obtain

K þ λ Ið Þup ¼ F ð28Þ

In the examples below, we select the value of λ as λo=10
− 8 to

10− 12 times the mean of the diagonal of K.
Considering the spectral decomposition of (28) and using

(19) and the orthogonality condition VVT= I, we obtain

VSVT þ λ I
� �

up ¼ V S þ λ Ið ÞVTup ¼ F ð29Þ

The particular solution is given by

up ¼ V S þ λ Ið ÞþVT F ¼
Xr

i¼1

vTi F
σi þ λ

vi

þ
Xn

j¼rþ1

vTj F

λ
v j ð30Þ

If the force vector F is in the range of K (equilibrium con-
dition holds) than vj

TF=0 for j= r+1..n. Taking the limit in
the equation (30), we obtain

up ¼ lim
λ→0

Xr

i¼1

vTi F
σi þ λ

vi þ
Xn

j¼rþ1

vTj F

λ
v j

¼ umin if F ∈ ℛ Kð Þ
∞ if F ∉ℛ Kð Þ

�
ð31Þ

Fig. 11 Structure leading to a singular stiffness matrix: the system is in equilibrium for β= 0 and in non-equilibrium for β≠ 0. Here the member
stiffnesses are k1 ¼ 20 kN

m ; k2 ¼ 10 kN
m and the load is P = 10 kN

Table 1 Self equilibrated case (β= 0; k1 = 20kN/m, k2 = 10kN/m; P = 10 kN)

Method up(m) C =FTup(kN m) ‖Kup−F‖/‖F‖

Gen. (Reflexive) Inverse f−1:5000 −1:0000 0:0000gΤ 15.00 3.5527 10–16

Moore-Penrose Inverse f−0:6667 −0:1667 0:8333gΤ 15.00 3.5527 10–16

Least square + TR f−0:6667 −0:1667 0:8333gΤ 15.00 4.8074 10–8

Potential Energy + TR f−0:6667 −0:1667 0:8333gΤ 15.00 1.5275 10–8
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An alternative solution of (28) can be done through an
iterative process, as shown in the Appendix C. As indi-
cated above, a proper value λ needs to be chosen in the
numerical procedure (24), however, in the iterative pro-
cess, the solution does not have such explicit dependence
on the parameter λ. As expected, the computational cost
of the iterative process is higher than the direct solution of
(28).

2.5 How to detect non-equilibrium solutions?

We provide the answer to this question by means of the ex-
ample illustrated by Fig. 11. We check the global equilibrium
error by

∥Ku−F∥≤ρ∥F∥ ð32Þ
where ρ is a specified tolerance (e.g., ρ =10−4). We obtain
numerical results using the generalized (reflexive) inverse,
Moore-Penrose inverse, least squares with Tikhonov regular-
ization, and total potential energy with Tikhonov regulariza-
tion. We employ λo=10

− 8 and check the global equilibrium
error and compliance for each case.

For the structure of Fig. 11, the stiffness matrix is given by

K ¼
k1 −k1 0
−k1 k1 þ k2 −k2
0 −k2 k2

2
4

3
5 ð33Þ

and the generalized inverse is given according to (17):

K− ¼ K11
−1 0

0 0

� �
¼

0:15 0:1 0
0:1 0:1 0
0 0 0

2
4

3
5 ð34Þ

whereK11 is obtained removing the last line and column of the
stiffness matrix (33).

First, we consider a singular and self-equilibrated system
(Fig. 11 considering β=0), and obtain the results shown in
Table 1. In this case, we obtain the minimum norm solution
for all cases, except for the generalized (reflexive) inverse.
The residual in equilibrium is smaller when we do not use
Tikhonov regularization but, in all cases, the residual is small-
er than the adopted equilibrium tolerance (ρ=10− 4).

Next, we consider non-equilibrium cases (Fig. 11 consid-
ering β≠0), which are summarized in Table 2 (β=1), Table 3
(β=0.1) and Table 4 (β=0.001). Here β is a non-equilibrium
parameter in the sense that its magnitude measures the devia-
tion from equilibrium. A comparison of the results in Tables 2
to 4 lead to the important observation that, among the
methods presented, the potential energy with Tikhonov regu-
larization displays the highest sensitivity in displacement and
compliance, which is useful to identify non-equilibrium
configurations (See (31)).

3 Sensitivity analysis

In the present approach, the sensitivity analysis is performed
on the ground structure, and not on the filtered structure. We

Table 2 Non-equilibrium case (β= 1; k1 = 20kN/m, k2 = 10kN/m; P = 10 kN)

Method up(m) C=FTup(kN m) ‖Kup−F‖/‖F‖

Gen. (Reflexive) Inverse −2:5000f −2:0000 0:0000gΤ 45 0.5774

Moore-Penrose Inverse −0:6667f −0:3333 1:0000gΤ 20 0.3333

Least square + TR −0:6667f −0:3333 1:0000gΤ 20 0.3333

Potential Energy + TR −1:6667f −1:6667 −1:6667gΤ 107 1.6667 108 0.3333

Table 3 Non-equilibrium case (β= 0.1; k1 = 20kN/m, k2 = 10kN/m; P = 10 kN)

Method up(m) C=FTup(kN m) ‖Kup−F‖/‖F‖

Gen. (Reflexive) Inverse −1:6000f −1:1000 0:0000gΤ 17.100 0.0705

Moore-Penrose Inverse −0:6667f −0:1833 0:8500gΤ 15.350 0.0407

Least square + TR −0:6667f −0:1833 0:8500gΤ 15.350 0.0407

Potential Energy + TR − 1:6667f 1:6667 1:6667gΤ106 1.6667 106 0.0407
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assume that the ground structure has an associated structural
model in equilibrium, in other words, the gradient of the total

potential energy is zero ∂Π x; u xð Þð Þ=∂uju¼ueq
¼ 0

� �
, where

ueq denotes the displacement vector at the equilibrium config-
uration. The relationship between compliance and total poten-
tial energy is given by

C xð Þ ¼ FTu xð Þ ¼ −2min
u

Π x; u xð Þð Þ ¼ −2Π x; ueq xð Þ� � ð35Þ

Thus the sensitivity of compliance is given by

dC xð Þ
dxn

¼ −2
∂Π x; ueq xð Þ� �

∂xn
−2

∂Π x; u xð Þð Þ
∂u

				
u¼ueq

∂ueq
∂xn

ð36Þ

If the equilibrium condition holds i:e: ∂Π x; u xð Þð Þ=ð
∂uju¼ueq ¼ 0Þ, then we obtain

Table 4 – Non-equilibrium case (β= 0.001; k1 = 20kN/m; k2 = 10kN/m; P = 10 kN)

Method up(m) C =FTup(kN m) ‖Kup−F‖/‖F‖

Gen. (Reflexive) Inverse 1:5010f 1:0010 0:0000gΤ 15.0200 7.0711 10−4

Moore-Penrose Inverse 0:6667f 0:1668 −0:8335gΤ 15.0033 4.0825 10−4

Least square + TR 0:6667f 0:1668 −0:8335gΤ 15.0033 4.0825 10−4

Potential Energy + TR 1:6667f 1:6667 1:6666gΤ 104 181.670 4.0825 10−4
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dC xð Þ
dxn

¼ −2
∂Π x; ueq xð Þ� �

∂xn

¼ −2
∂U x; ueq xð Þ� �

∂xn
−2

∂Ω x; ueq xð Þ� �
∂xn

ð37Þ

where Ω(x,u(x)) is the potential of the external loads, and
U(x,u(x)) is the strain energy, which is given by

U x; u xð Þð Þ ¼
XN
k¼1

Uk ¼
XN
k¼1

1

2
ukð ÞTkkuk ð38Þ

where uk and kk denote the displacement vector and stiff-
ness matrix in local coordinates for the member k, respec-
tively. The local displacement vector uk is related to the
global displacement vector u by the connectivity matrix
defined by uk =Aku (Christensen and Klarbring 2009).

The stiffness matrix of the element kk in local coordinates
is given by

kk ¼ xk
kpp kpq
kqp kqq

� � kð Þ
¼ xkk

0
k ð39Þ

with kpp = kqq = − kqp = − kpq = (E/ℓ)n nT, where E is the
elastic modulus of the material, ℓ is the length of the
member and n is the unit vector associated to and along
member k. By means of (38) and (39), we obtain

U x; u xð Þð Þ ¼
XN
k¼1

1

2
xk ukð ÞTk0kuk ð40Þ

Because the potential of the loads is explicitly indepen-
dent of x, i.e., Ω(x,u(x)) =Ω(u(x)) =− u(x)TF (no body

hcaorpparetliFhcaorppadradnatS

10
-6 

a b 

0.01 

c d

0.1 

e f 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Fig. 13 Results for the standard and new filtering approach. Members in blue are in tension and those in red are in compression
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forces), then ∂Ω(x,u(x))/∂xn= 0. Thus, based on (37) and
(40), we obtain

dC xð Þ
dxn

¼ −2
∂U x; u xð Þð Þ

∂xn
¼ − unð ÞTk0nun ð41Þ

This result shows that the sensitivity is always non positive
and independent of the area of the member. This implies that,
even members of null area in the ground structure can have a
finite sensitivity and thus may return to the topology with a
positive area. This feature is illustrated by Fig. 12, which was

0.4 

g h 

0.8 

i j 

0.80
**

k l 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

**Move limit reduced to = 0.50. To get this solution we need to check and control equilibrium

Fig. 13 continued.
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obtained with the method of moving asymptotes (MMA)
(Svanberg 1987). However, if the optimality criteria (OC) is
used, then the member of null area does not return to the
topology (due to the recurring form of the OC which applies
a multiplicative factor on the previous area). From a practical
point of view, the structural engineer might be mostly inter-
ested in relatively lower values of the filter. In this scenario,
the return of bars is rather infrequent, and thus the use of the
OC might be an acceptable approximation. This is the ap-
proach used in this work.

4 Numerical examples

Representative numerical examples are provided to highlight
the main features of the proposed filtering scheme. As indi-
cated before, the examples in this paper rely on the optimality
criteria (OC) with αi=−1(η=0.5) and move limit M= γ x0
(see Ramos and Paulino 2015; Groenwold and Etman 2008).

The initial area (x0) of all members is defined as the ratio
between the maximum volume (Vmax) and the sum of the
length of all ground structure members. For the standard GS
approach (e.g., Christensen and Klarbring 2009), the lower
and upper bounds are defined by, for example, xmin=10− 4x0
and xmax=104x0 (x0 is the vector of initial areas), respectively,
and γ=500. For the present filtering approach, xmin=0 (not a
small threshold, as required by the standard formulation),
xmax = 104x0, and γ is defined for each example below.
Moreover, Young’s modulus E=70 106kN/m2 is the same
for all examples.

4.1 Example 1 – Square domain with a concentrated load

This example, which is illustrated by Fig. 1, consists of a
square domain with a concentrated load (P=70 kN). A full
level ground structure associated to a 9×9 grid with 2008
non-overlapped bars (L=6 m and Vmax=0.004m

3) is used.
Initially, we compare the standard (post-processing) approach
with the present filtering approach. To that effect, the same
grid is considered with different filter levels (pre-processing
stage). For the standard approach, the minimum area is x-

j
min=5.9 10− 13m2; while themaximumarea is xj

max=5.9 10− 3-

m2 for all the approaches. Moreover, Vmax=0.004 m3, the
convergence tolerance tol =10− 8 and, unless otherwise stated,
γ=5 (factor associated with the move parameter). A compar-
ison of topologies obtained from both standard and filtering
approaches is provided in Fig. 13. While the structures for the
standard approach are not necessarily in equilibrium, the ones
provided by the filtering approach are guaranteed to be in
equilibrium. A comparison of the objective function for both

Table 5 – Representative parameters for Example 1: filter size (αf), structural topology resolution (αTop), equilibrium residual and compliance values

Formulation αf αTop ∥KTopuTop−FTop∥
∥FTop∥

C x*
� �

CTop x*
� �

Standard 10−6 1.11 10−6 – 5.975 ≥5.975
0.01 0.0487 – ≥5.975
0.10 0.1537 – –

0.40 0.9520 – –

0.80 0.9520 – –

0.80 0.9520 – –

Filter 10−6 6.97 10−4 7.611 10−8 5.975 5.975

0.01 0.0853 1.306 10−7 6.038 6.038

0.10 0.3765 1.166 10−7 6.072 6.072

0.40 0.5299 1.804 10−7 6.597 6.831

0.80 1.0000 4.056 10−8 9.251 9.251

0.80** 0.8000 7.598 10−8 7.459 7.459

C x*
� � ¼ C x*

� �
=Co; CTop x*

� � ¼ CTop x*
� �

=Co; Co=P
2 L2 /E Vmax; tol = 10− 8

** Move limit reduced to γ= 0.50. To get this solution we need to check and control equilibrium

Fig. 15 Idealized bridge problem: geometry (L = 10 m;H = 5m), load
(P = 10 kN), and support conditions. A full level ground structure
(11 × 11 grid) is used with 3752 non-overlapped bars (Vmax= 0.0056m

3)
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approaches is provided in Fig. 14. Notice that Fig. 14b in-
cludes 2 values of filters: 0.1 and 0.01. The value of the tol-
erance for the objective function is basically unlimited (set to
be a large number). Thus for the low value of filter, the objec-
tive function is smooth and for the higher value of the filter,
there are jumps in the objective function (as expected). In
summary, for the filtering approach, although there are jumps
in the objective function, a converged result is ultimately
obtained.

Table 5 presents results associated with the example of
Fig. 1. The equilibrium residual in the standard formulation
is not provided because the displacement vector uTop is not
available in that case (i.e., the topology is not defined). The
equilibrium residual in this table confirms that all the topolo-
gies obtained with the present filtering scheme are in equilib-
rium. Moreover, as expected, αTop≥αf (cf. 5).

4.2 Example 2 – Bridge problem

Figure 15 shows an idealized bridge model. We address the
computational efficiency of the proposed formulation and dis-
cuss the dependency of the solution with respect to the
Tikhonov parameter and the move parameter in the OC. In

addition, we control the variation of the objective function
between successive iterations and investigate the equilibrium
state during the solution process. In this problem, the mini-
mum area is: xj

min=4.16 10− 15m2 (standard approach) and the
maximum area is: xj

max= 4.16 10− 3 m2 (all approaches).
Moreover, Vmax=0.0056 m3 and, unless otherwise stated, the
convergence tolerance tol=10−9 for this example. In all topol-
ogy results to follow, blue denotes members in tension and red
denotes members in compression. Figure 16 shows the results
obtained using an 11× 11 grid which composes a ground
structure with 3752 members considering αf = 10− 4.
Figure 16a illustrates the topology obtained with the standard
approach, and Fig. 16b with the filter approach using TR
(λo=10

− 8) and γ=4 (factor associated with the move param-
eter). Both solutions lead to fully stressed designs (FSDs) with
absolute axial stress 15.00 104kN/m2.

Table 6 presents results associated with the example of
Fig. 17. The third column of the table indicates the high effi-
ciency of the proposed filtering scheme (filter + TR) with
respect to other approaches (Standard and Filter + SVD).
The fourth column confirms that, as expected, αTop≥αf (cf.
Eq. 5). The last column shows the compliance for each case.

The efficiency of the proposed filtering scheme is further
illustrated by Fig. 17 which compares the CPU time for each
iteration of the standard approach and the present filtering
approach (Filter + TR). Notice that the comparison is made
solely for the solution of the resulting structural model. Thus
the standard approach includes the time to build the stiffness
matrix and to solve the linear system for the actual ground
structure. On the other hand, the filter approach extracts the
actual structural topology from the ground structure, generates
new nodal coordinates and connectivity, builds the reduced
stiffness matrix, and solves the regularized linear system.
The evolution of the system stiffness matrix is shown in
Fig. 17b through d. Notice we start with an initial stiffness
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Fig. 16 Topology optimization (αf= 10
− 4) based on a full ground structure (11 × 11grid) with 3752 members: a Standard approach; b Filter approach

with TR (λo= 10
− 8) and γ= 4

Table 6 Representative parameters for solution with αf = 10
− 4 and

tol= 10− 9; λo= 10
− 8

Formulation Number of
Iterations

CPU (s) αTop
C x*
� �

Standard 4498 599 7.1910−4 67.6657

Filter + SVD 2637 133 2.10 10−3 68.7560

Filter + TR 567 35 6.77 10−4 67.6665

C x*
� � ¼ C x*

� �
=Co; CTop x*

� � ¼ CTop x*
� �

=Co; Co=P
2 L2 /E Vmax
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matrix with 28,556 non-null components (Fig. 17b), which is
reduced to 2,997 non-null components in the 50th iteration
(Fig. 17c), and to 502 non-null components in the final itera-
tion (Fig. 17d). Thus the comparative efficiency of the present
filtering scheme is clear from Fig. 17.

Figure 18 illustrates the dependence of the move size (OC γ
parameter) on the topology using the filter approach.
Although the topologies are different, they also exhibit some
similarities. Comparing Fig. 18a and b, we notice that as the
move increases, αTop increases and the compliance decreases.
These solutions lead to a FSD with absolute axial stress
15.00 104kN/m2 and 14.90 104kN/m2, respectively.

Figure 19 illustrates the dependence of the Tikhonov pa-
rameter (λo) on the topology using the filter approach.
Although the topologies are different, they also exhibit some

similarities. Comparing Fig. 19a and b, we notice that as the
Tikhonov parameter is tightened (i.e., reduced), αTop de-
creases and the compliance increases, which are the opposite
trends of the previous example. These solutions lead to a FSD
with absolute axial stress 15.00 104kN/m2 and 15.24 104kN/
m2, respectively.

Figures 20 and 21 illustrate the filter with TR on a full
ground structure (11×11 grid) for αf=0.03 without (γ=1/4;
ObjTol=100) and with (γ=1/4; ObjTol =1) active objective
function control, respectively. A comparison of Fig. 20b with
Fig. 21b reveals that the former case leads to a FSD, while the
latter case does not.

Similarly, Figs. 22 and 23 illustrate the filter with TR on a
full ground structure (11×11 grid) for αf=0.06 with objective
function control (γ=5) and with both objective function and
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Fig. 17 a CPU time for the solution of the structural model during each
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equilibrium control (γ=1/4), respectively. A comparison of
Fig. 22b with Fig. 23b reveals that the former case leads to a
FSD, while the latter case does not.

When the control of equilibrium and/or objective function
is enforced, then the optimality condition does not hold and
the stresses are not constant in the final topology, as shown in
Figs. 21b and 23b. Sometimes there are members with very
low stresses, however, even in this situation the global equi-
librium condition still holds.

5 Concluding remarks and extensions

A long standing problem of the standard ground structure
approach is its inability to properly define a valid structural
model. This problem has been solved in this paper by means

of an effective scheme to filter structures out of ground struc-
tures. The implementation was based on a nested elastic for-
mulation for compliance minimization; however, some of the
ideas presented here might also be applicable to the plastic
formulation (Ohsaki 2011; Zegard and Paulino 2014). Our
approach uses physical variables and allows control of the
minimum ratio between the minimum and maximum areas
in the final topology. It leads to a singular problem which is
efficiently solved using a Tikhonov regularization on the
structural problem (rather than on the optimization problem).
The filter allows a multiple choice solution in which the user
can control the global equilibrium residual in the final struc-
tural topology and limit variations of the objective function
between iterations (e.g., compliance). As a result, an unam-
biguous discrete solution is obtained where all the bars that
belong to the topology have well-defined finite areas. The
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Fig. 18 Move-size (OC γ parameter) dependence on the topology using the filter approach with TR on a full ground structure (11 × 11 grid) considering
αf= 0.01 and λo= 10
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Tikhonov regularization also allows an efficient solution of
the convex singular topology optimization problem
(Achtziger 1997) without filter – see Fig. 3.

In general, when a higher value of the filter is used, the
solution obtained using the present filtering scheme with TR
may still be improved in a post-processing stage. Although
global equilibrium is guaranteed, hanging bars (i.e., bars that
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Fig. 20 Filter approach with TR on a full ground structure (11 × 11 grid)
for αf = 0.03, γ = 1/4, ObjTol = 100 (no objective control), and
equilibrium control considered: a final topology, b member stress
(FSD), and c objective function
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are disconnected from the structure at one or both ends) may
occur in the final solution (notice that applied loads were
considered in the present work, but not self-weight).

However, these hanging bars can be easily tracked and re-
moved from the structure. Another situation that can be han-
dled in a post-processing stage is the occurrence of aligned
hinges. Those hinges can also be eliminated in a post-
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Fig. 22 Filter approach with TR on a full 11 × 11 ground structure for
αf= 0.06, γ= 5, ObjTol= 100 (no objective control), and no equilibrium
control: a final topology, b member stresses (FSD), and c objective
function
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processing stage. These simple post-processing steps provide
better definition of the structural configuration.

As we pointed out, our implementation is based on the
OC and thus an artifact of the OC is that the member of
null area does not return to the topology (see Section 3).
From a practical point of view, the structural engineer
might be mostly interested in relatively lower values of
the filter. In this scenario, the return of bars is rather
infrequent, and thus the use of the OC might be an ac-
ceptable approximation. However, in the general case, we
could base the optimization scheme on the MMA, which
can handle the return of members. This is a topic that
deserves further investigation.

It is reasonable to question why this paper emphasizes
the elastic formulation, rather than the plastic, especially
considering the fact that, for the linear problems presented
here, the plastic formulation is much more efficient than
the elastic one. Our choice of formulation is based on the
aspiration to establish a feasible computational platform
that is able to handle a larger class of problems such as
those involving nonlinear (material and geometric) behav-
ior. As part of our future work, we intend to extend the
present filtering scheme to deal with problems containing
nonlinear behavior, which is a class of problems that the
plastic formulation cannot handle. In summary, this paper
is meant to demonstrate the proposed filter method, and
thus considers a simple class of problems in order to not
cloud the features of the method. Therefore, we feel that
the choice of the elastic formulation over the plastic is
justified as this paper addresses some of the major issues
with the standard nested elastic approach (i.e., we can
extract different topologies, accelerate the solution pro-
cess, guarantee equilibrium in the final topology, and also
enforce the level of the resolution specified by the user)
and provides a basic platform for future research and
development.

The filtering approach has applications in several areas
of topology optimization, such as nonlinear analysis
(Bendsoe and Sigmund 2003; Ohsaki 2011), buckling
(Zhou 1996; Rozvany 1996; Guo et al. 2005), and reli-
ability based topology optimization or RBTO (Liu 2014).
For instance, the filter feature with explicit control on the
member areas allows the user to play with different alter-
natives prior to selecting a specific structural configura-
tion. In standard dynamic problems, once the topology is
defined, it might need to be interpreted to define a struc-
tural topology without low cross sectional areas. For non-
linear problems, the filter can influence the following as-
pects: (1) allows removal of potential instabilities in low
stiffness regions (difficulty of convergence in this situa-
tion); (2) allows check and control of equilibrium and
stability in the actual topology; and (3) allows control of
the desired level of resolution of the final topology. Finally,

large scale RBTO would be desirable considering the filtering
scheme both for the optimization iterations and the reliability
iterations of the process. These problems are presently under
consideration by the authors.

The aforementioned technique to deal with singular
problems can lead naturally to other types of filters.
For instance, instead of applying the filter at every iter-
ation (as done in the present work), it can be applied at
different intervals of the iterative process or just once at
the end of the iterative process.

We end this paper with a few words regarding our under-
standing of singular solutions (see Section 2.4) and vision to
the field, especially from an educational perspective.
Traditionally, singularity has been a topic that has been
avoided in the field of structural engineering. However, as
motivated by the present work, the treatment of structural
problems by means of efficient singular solutions, is a prom-
ising field to be exploited further and that holds the key for
further understanding and advances in the field.
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Appendix A – Nomenclature

αi, η, M Optimality criteria parameters
αf Filter size
αTop Resolution of the structural topology
ϵ Small positive number
γ Move size parameter
ρ Global equilibrium tolerance
λ,λo Tikhonov regularization parameters
Ω Potential energy of external loads
Π Total potential energy
An Member n incidence kinematic matrix
E Elasticity modulus
F Force vector
FTop Force vector in the structural topology
C Objective function
C Normalized objective function
K Global stiffness matrix
KTop Global stiffness matrix for the structural topology
k(i) Stiffness matrix for member i in local coordinate
ℓ Member length
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L Vector of the member length
M Move limit (optimality criteria)
N Number of members
tol Tolerance in the OC
ObjTol Tolerance in the objective function between

iterations
u Displacement vector
ueq Displacement vector at the equilibrium

configuration
un Member n displacement vector
uTop Displacement vector in the structural topology
V Eigenvectors of K
vi Eigenvector i of K
U Strain energy
Vmax Maximum volume
ℛ Range
ℝ Set of real numbers
xj
min, xj

max Lower and upper bounds for member
cross-sectional area

Appendix B – Global equilibrium error

In this Appendix, we compare the values of the compliance and
the global equilibrium error obtained with the Moore-Penrose
Inverse, least squares with Tikhonov regularization (λo=10

− 8),
and the total potential energy with Tikhonov regularization
(λo=10

− 8) for solution of ill conditioned systems. The source
of ill conditioning here is the occurrence of significantly differ-
ent cross-sectional areas in the resulting topology, as illustrated
by Fig. 24.

Table 7 shows that when ϵ=0.01, the values of compliance
(C) and particular solution (up) for the three approaches are sim-
ilar. On the other hand, Table 8 shows that when ϵ=0.001, the
values of compliance and particular solution (up) for the pseudo
inverse and the potential energywith Tikhonov regularization are
similar, however, such is not the case for the least squares solu-
tion, which also displays a large equilibrium residual.

Appendix C – Iterative scheme for solving singular
systems of equations

In this Appendix, we present a practical iterative solution for
the singular system defined by (10). The ideas presented here
are based on Roonau and Parsons (1995). Adding the factor
λ u in both sides of (10), we obtain

K þ λ Ið Þ u ¼ F þ λ u ð42Þ
where λ is a small number (e.g., λo=10

− 4 to 10− 12 times the
mean of the diagonal of K) that removes the singularity of the
stiffness matrix K and provides faster convergence. We obtain
the solution using an iterative algorithm in the form

K þ λ Ið Þ u kþ1ð Þ ¼ F þ λ u kð Þ ð43Þ
Nowwe obtain a particular solution of the singular system of

equations which, from a numerical point of view, is independent
of the parameter λ. The convergence is obtained using a toler-
ance on the displacement, e.g., |u(k + 1)−u(k)|≤10− 7 |u(k)|. To
illustrate the method, Fig. 19b of Example 2 is solved with this
approach and the results obtained are presented in Fig. 25 and
Table 9. The new results illustrate convergence toward the same
topology of Fig. 19b, Moreover, the equilibrium error is rela-
tively small for all values of the parameter λ.

Fig. 24 Ill conditioned stiffness matrix for ϵ< 1

Table 7 Nonsingular (ϵ= 0.01; k2 = 10kN/m; P = 10 kN)

Method up C =FTup |Kup −F|/|F|

Moore-Penrose
Inverse (MP)

{100.0000 101.0000} 1.010 103 3.2155 10−14

Least square + TR {99.9191 100.9187} 1.009 103 5.7235 10−4

Potential Energy + TR {99.9998 100.9998} 1.010 103 1.4284 10−6

Table 8 Nonsingular (ϵ= 0.001; k2 = 10kN/m; P = 10 kN)

Method up C =FTup |Kup −F|/|F|

Moore-Penrose
Inverse (MP)

{1.0000 1.0001} 103 1.0010 104 1.8190 10−13

Least square + TR {9.2583 9.2680} 103 9.2680 103 0.0524

Potential Energy + TR {1.0000 1.0010} 103 1.0010 104 1.4156 10−5

0
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2 4 6 8 110

Fig. 25 Dependence of the topology on the Tikhonov parameter using
the filter approach on a full ground structure (11 × 11 grid) with αf= 0.01
and γ= 2 for both the approach of Section 2.7 with λo= 10

− 12 and the
iterative approach with λo= 10

− 4; 10− 5; 10− 6; 10− 8
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Appendix D – Filtering out mapping example

In this section we show a simple example demonstrating how
the force vector and stiffness matrix corresponding to the to-
pology can be mapped from those corresponding to the
ground structure, based on the equations outlined in
Section 2.3. Figure 26 shows the load and support conditions
(a), the ground structure degrees of freedom (b), and the to-
pology degrees of freedom (c).

The force vector and the stiffness matrix for the ground
structure are given by

F ¼ P
0
−1
1

8<
:

9=
; ð44Þ

K ¼ −
k3 −k3 0
k3 k2 þ k3 −k2
0 −k2 k1 þ k2

2
4

3
5 ð45Þ

The transformation matrix from topology displacements to
ground structure displacements (u=T uTop) is given by

T ¼
0 0
0 1
1 0

2
4

3
5 ð46Þ

Now we can obtain the force vector and stiffness matrix for
the topology using

FTop ¼ TT F ¼ P
1
−1

� 

ð47Þ

KTop ¼ TTKT ¼ k2 þ k1 − k2
− k2 k2 þ k3

� �
ð48Þ

Considering the null stiffness coefficient k1 and k3, we ob-
tain the singular stiffness matrix for the topology

KTop ¼ k2 −k2
−k2 k2

� �
ð49Þ

Table 9 Number of iterations, objective function, and equilibrium error
for different values of λo

λo Number of
iterations CTop x*

� � |Kup−F|/|F|

10−4 461 71.6779 8.0710−8

10−5 464 71.6779 4.0310−11

10−6 471 71.6779 2.6310−12

10−7 355 69.7218 5.1910−15

10−8 451 71.6779 1.5110−14

c

b

a

Fig. 26 a Loading and support
conditions; b Ground structure
degrees of freedom (Ku=F ); c
Topology degrees of freedom
(KTopuTop=FTop). Note: Dashed
lines denote null stiffness
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