
Struct Multidisc Optim (2016) 53:673–694
DOI 10.1007/s00158-015-1309-x

RESEARCH PAPER

Polygonal multiresolution topology optimization
(PolyMTOP) for structural dynamics

Evgueni T. Filipov · Junho Chun ·Glaucio H. Paulino ·
Junho Song

Received: 22 July 2013 / Revised: 2 September 2014 / Accepted: 22 October 2014 / Published online: 5 November 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract We use versatile polygonal elements along
with a multiresolution scheme for topology optimization
to achieve computationally efficient and high resolution
designs for structural dynamics problems. The multiresolu-
tion scheme uses a coarse finite element mesh to perform
the analysis, a fine design variable mesh for the opti-
mization and a fine density variable mesh to represent
the material distribution. The finite element discretization
employs a conforming finite element mesh. The design
variable and density discretizations employ either matching
or non-matching grids to provide a finer discretization for
the density and design variables. Examples are shown for
the optimization of structural eigenfrequencies and forced
vibration problems.
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1 Introduction

In recent times topology optimization has been used in the
design of aircraft (Maute and Allen 2004; Sleesongsom and
Bureerat 2013), cars (Yang and Chahande 1995), buildings
(Mijar et al. 1998; Stromberg et al. 2011), and even human
bones (Sutradhar et al. 2010). The use of topology opti-
mization has increased over the past few decades in part
due to improving capabilities of computational modeling,
but also due to improved understanding of the contin-
uum optimization problem. Recent advances such as the
solid isotropic material with penalization (SIMP) material
interpolation model (Bendsøe MP 1989; Rozvany et al.
1992) has allowed for effective discretization of contin-
uum domains, and filtering methods (e.g. Sigmund and
Petersson 1998; Petersson and Sigmund 1998; Guest 2004;
Almeida et al. 2009) have allowed for mesh independent
solutions.

Structural dynamic modeling has similarly evolved in
the past years and can include modal, time history, or
transformed problem analysis. Topology optimization for
freely vibrating systems has included the design of beams,
trusses, plates and other systems (Olhoff 1976; Du and
Olhoff 2007; Olhoff et al. 2012; Zhou 2013). Typically
these systems are designed such that the natural frequencies
of the structure are changed from the initial configura-
tion. Recent research (Yoon 2010a, b; Huang et al. 2010)
has introduced dynamic optimization for nonlinear struc-
tures. Alternatively, Tsai and Cheng (2013) have developed
a method for optimizing dynamic structures and fixing a
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specific mode shape. Optimization can also be performed
for forced vibration systems where a system is designed
such that the maximum response (dynamic displacement)
for a given input frequency is optimized. Recent research
has shown that the structural response for resonating struc-
tures can be maximized (Tcherniak 2002) or, more typi-
cally, minimized (Ma et al. 1995; Jog 2002; Dahl et al.
2007; Jensen 2007; Larsen et al. 2008) for a set of design
frequencies.

Recent advances in finite element (FE) modeling (e.g.
Sukumar 2004; Sukumar and Malsch 2006; Ghosh 2011)
have allowed for the use of polygonal elements in contin-
uum modeling. A significant benefit of these elements is
that they are well suited for modeling of complex domains
and can be used to easily create areas of high and low
mesh refinement. In topology optimization these elements
have been shown to significantly reduce instabilities asso-
ciated with checkerboard and islanding effects, and have
been shown to be stable and accurate (Jog and Haber
1996; Talischi et al. 2009a, b). Recent educational codes
(Talischi et al. 2012a, b) provide a polygonal element
mesher and a package for efficient topology optimization,
and these codes are used as the basis for the work presented
herein. Furthermore, recent advances in multiresolution
modeling have allowed for high resolution results with rela-
tively low computational costs. Nguyen et al. (2009, 2012),
introduce Multiresolution Topology Optimization (MTOP),
and use different overlying meshes for FE analysis and for
the density/design variables, to harvest the higher order
accuracy of the displacement solution in obtaining higher
resolution solutions. Such mesh refinements and adaptivity
techniques can provide significant improvements in com-
putational speed and solution resolution. Other methods
have taken advantage of higher-order finite elements to
improve the speed and quality of topology optimization.
For example Parvizian et al. (2011) use a finite cell method
to separate geometry and FE analysis, while Nguyen et al.
(2013) use high-order elements to enhance the MTOP
approach.

In this paper, we adapt the existing polygonal finite
element codes (Talischi et al. 2012a, b), with higher
resolution density and design discretizations to obtain
high fidelity multiresolution designs (Nguyen et al. 2009)
for structural dynamic problems. This combined model-
ing approach (PolyMTOP), provides adaptable, high res-
olution structural optimization techniques that can be
used to tailor the dynamic performance of buildings,
vehicles and other systems. This paper is organized as
follows: Section 2 provides an overview of the mul-
tiresolution approach and introduces the formulation for
matching and non-matching multiresolution discretiza-
tions; Section 3 presents the topology optimization frame-
work used for static and dynamic problems; Section 4

explains the numerical implementation; Section 5 shows
the approach used in the optimization of static compliance
problems; Section 6 provides examples of eigenfrequency
optimization; Section 7 discusses examples of forced
vibration problems; and Section 8 presents concluding
remarks.

2 Multiresolution approach for polygonal elements

2.1 Matching and non-matching sub-discretizations

In the multiresolution approach, the design variables in
the optimization framework are material densities for a
predefined portion of the mesh. Subsequently, a projec-
tion filter (Section 3.4) is used to obtain a mesh inde-
pendent solution of density variables that are used to
represent the actual material distribution and to com-
pute stiffness and mass matrices. There are various ways
in which the design variable can be positioned such
that it does not overlap with the FE mesh, for exam-
ple, nodal approaches (Guest et al. 2004; Rahmatalla
and Swan 2004; Matsui and Terada 2004) use design
variables that are placed on individual nodes, or alter-
natively design variables can be placed between nodes
such as in Paulino and Le (2008). Alternatively, the mul-
tiresolution scheme introduced in Nguyen et al. (2009)
uses coarser meshes for FE analysis and finer mesh
discretizations for optimization and design. This generates a
high-resolution result without a significant increase in com-
putational cost. Furthermore, the same authors showed that
by using alternative design and density variable placement,
and an adaptive multiresolution approach they could obtain
higher efficiency (Nguyen et al. 2012). Expanding the
multiresolution approach to polygonal elements, there are
various ways in which a polygonal element can be divided
such that the design mesh is finer than the FE mesh.
In this paper, several cases are considered where ele-
ments are divided in matching and non-matching sub-
discretizations, however, in all cases, the design variables
are at the same location as the density variables. For exam-
ple, Fig. 1 shows the superposition of design, and density
variables with a matching method for a five sided polygonal
element.

For matching sub-discretizations, the element is first
divided into triangular slices from the centroid (thick gray
lines in Fig. 2a and b), and each slice is subsequently
divided into three (M3 approach) or four (M4 approach)
equivalent pieces. For non-matching sub-discretizations, the
finite element is divided into convex, Centroidal Voronoi
Tessellations (CVTs). Figure 2a shows the matching, M3
approach, where the naming P5/M3/n15 is used to indi-
cate: a five sided polygon/with matching sub-discretization
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M3/resulting in 15 design variables for the element. Sim-
ilarly, the non-matching elements in Fig. 2d and e can
be named as P5/n7 and P5/n18 respectively, indicating
the number of edges of the polygon and the number of
design variables placed inside. Both approaches can easily
be applied to any type of polygon in the FE mesh.

The matching approach ensures that the number of
design and density variables will be proportional to the
number of nodes of the element and there will be conti-
nuity between the variables of different elements, however
the influence area of each variable could be different. The
non-convex approach on the other hand, uses the same num-
ber of sub-discretizations based on randomly placed seeds
within each element. As shown in Fig. 3, these seeds are
moved using a Lloyd algorithm to create CVTs that con-
sist of regularized convex elements (Talischi et al. 2009b).
Note that the Lloyd algorithm allows the sub-discretizations
to be relatively uniform with similar areas within each
element.

2.2 Stiffness and mass matrix computing

For a discretized finite element mesh, the global stiffness
matrix can be calculated as:

K =
Nel∑

e=1

Ke =
Nel∑

e=1

∫

�e

BTDBd� (1)

where Nel are the number of elements, B is the strain-
displacement matrix of shape function derivatives, and D
is the constitutive matrix. The constitutive matrix is cal-
culated for a plane stress case (Cook et al. 2007) and the
Young’s modulus is calculated as a function of the density
ρ at position x on the multiresolution mesh, as

E(x) = ρ(x)pE0 (2)

In (2), E0 is the Young’s modulus of solid material and
the objective in topology optimization is to determine the
distribution of material in the domain to satisfy a set of

Fig. 1 Five sided polygon
element with M4 design variable
mesh: a Finite element
(displacement based), b Design
variable mesh, c Density
variable mesh, d Superposed
meshes
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Fig. 2 Sub-discretizations for
five sided polygon element: a
P5/M3/n15, b P5/M4/n20, c
Mesh of Pn/M3 matching
elements, d P5/n7, e P5/n18, f
Mesh of Pn/n12 non-matching
elements

objectives. To achieve this, a SIMP model is used to penalize
locations of intermediate densities. The value of the density
ρ(x) can be between ρmin = 10−3 and 1, and the penal-
ization parameter p is chosen to be more than 1 (typically
3 or 4) and can be used in an incremental iterative fashion.
This type of model serves to transform the discrete formula-
tion into a continuous solvable problem that can be treated
numerically. Since the stiffness matrix is linearly dependent
on the elastic modulus, the penalized density terms (ρ(x)p)
are taken out from the integration of the stiffness matrix,
as shown in (3). Within this work, shape functions were
integrated at the centroid of each cell of the element as this is
sufficiently accurate to calculate the stiffness matrix of each

element, and so the element stiffness matrix is approximated
as:

Ke
∼=

Nn∑

i=1

(ρi)
pBTD0B|iAi =

Nn∑

i=1

(ρi)
pIi (3)

where

Ii = BTD0B|iAi, (4)

and Nn is the number of integration points on each element,
and (ρi) represents the density at each integration point.
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Fig. 3 Illustration of Lloyd’s
algorithm optimizing the
sub-discretizations of a P8/n13,
and a P11/n17 element: a initial
distribution of seeds (circles),
the corresponding Voronoi
diagram, and the centroid of the
Voronoi cells (crosses), b the
Voronoi diagram after one
iteration, c the Voronoi diagram
after 50 iterations

The global mass matrix can similarly be calculated by
integrating over the domain as:

M =
Nel∑

e=1

Me =
Nel∑

e=1

∫

�e

ρNeTNed� (5)

where Ne denote the element shape functions. The element
mass matrix (Me) can furthermore be approximated by

Me
∼=

Nn∑

i=1

(ρi)
qNeT

i Ne
i |iAi =

Nn∑

i=1

(ρi)
qHi (6)

where q is the penalization factor of density for mass terms,

and Hi is used to store the element mass matrix for each
integration point in the multiresolution element, as:

Hi = NeT
i Ne

i |iAi (7)

2.3 Verification of polygonal elements

Mesh variations with quadrilateral, triangular and general
polygonal meshes were tested as shown in Fig. 4a through f.
Figure 4g shows the convergence error in estimation of the
lowest eigenfrequency (ω1) of the irregular geometry swept
panel studied in Cook et al. (2007) using these meshes.
Figure 4h on the other hand, shows the mesh convergence
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Fig. 4 a Geometry, boundary conditions, and properties for Cook’s
swept panel problem (Cook et al. 2007, p. 108), b Quadrilateral (Q4)
mesh (25 elements, 36 nodes), c Triangular (T3) mesh (50 elements,
36 nodes), d Randomized polygonal mesh (19 elements and 36 nodes),

e Polygonal CVT mesh (17 elements, 36 nodes), f Mesh in (e) divided
into a mesh of T3 elements (85 elements, 53 nodes), g Convergence of
minimum eigenfrequency with respect to mesh DOFs, h Convergence
of steady state solution with respect to mesh DOFs

of the same structure for the obtaining real part of displace-
ments in the steady state solution at point C on Fig. 4a
under a harmonic excitation. The excitation is applied on
the left edge and its angular frequency is 0.01 rad/s with
a force magnitude 1. For the force vibration problem, the
Rayleigh damping model, C = 0.001M + 0.001K, is
used to construct a damping matrix. Because there is no
analytical solutions for the two tested problems, solutions
were obtained by using a much finer discretization of about
105 degrees of freedom (DOFs) to calculate a reference
solution. For the same number of DOFs, the polygonal
mesh where the Lloyd algorithm was used to refine the
mesh (Fig. 4e), provides better approximation for structural
dynamic properties. The results of the polygonal mesh are
the average errors of five individual simulations. Since
a log-log scale is used it can be seen that the polygonal
element mesh has better accuracy than the other mesh
discretizations.

2.4 Verification of MTOP approach

A patch test inspired by the one presented by Parvizian et al.
(2011), for static analysis, was performed to test the per-
formance of PolyMTOP approach in analyzing structures

with discrete internal voids. The test shown in Fig. 5a is a
10×10 square with a centrally placed circular void of radius
2.5. The structure is restrained on the bottom edge and a
distributed load of 1 is applied on the top edge. Figure 5b
through e present several meshes that employ conventional
elements as well as MTOP approaches in modeling the
structure. Each element or density variable whose centroid
is outside of the void area has an elastic modulus (E) of
104, while those within the void have E = 10. A Poisson’s
ratio of ν = 0.3 and material density of ρ = 1 are used
uniformly throughout the mesh. Figure 6 shows the area
of the solid material approximated by the different finite
element and multiresolution methods with respect to the
number of DOFs in the mesh. Note that each approach and
each discretization approximates the area differently, so it is
possible that a coarse mesh may by an odd chance provide
good approximation for the solid area and/or the mechanical
behavior of the structure. It is evident that for most dis-
cretizations, the MTOP approach performs better in estimat-
ing the area than the regular approaches because there are
a lot more density variables for the same number of DOFs.
Figure 5g shows the error of maximum displacement for the
different discretizations, while Fig. 5h shows the error for
calculating the minimum eigenfrequency of the structure.
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Fig. 5 a Geometry, boundary conditions and properties for patch test,
b Quadrilateral (Q4) mesh (64 elements, 81 nodes), c Q4/n16 MTOP
mesh (64 elements, 81 nodes, 1024 design variables), d CVT polyg-
onal mesh (40 elements and 81 nodes), e PolyMTOP M3 mesh (40

elements, 81 nodes, 648 design variables), f Error of maximum static
displacement with respect to mesh DOFs, and g Error of minimum
eigenfrequency with respect to mesh DOFs (Note that not all data
points are shown for clarity)

The reference solution against which the error is calculated
is obtained by discretizing the problem with a much finer
mesh (≈ 105 DOFs). Because some meshes may overesti-
mate, while others may underestimate the FE results, there
is substantial scatter in the original data, and for that reason
each of the polygonal data points is an average of 5 sepa-
rate analyses for different random meshes. Furthermore, to
alleviate the scatter, unweighted smoothing is applied to all
data, and each data point is replaced with the average of the
5 adjacent points (i.e. the data point, 2 points with lower
and 2 points with higher DOFs). A best fit line is subse-
quently placed for each of the cases. The MTOP approaches
converge at a higher rate than the conventional Q4 and
Polygonal CVT meshes. Note that, when a polygonal mesh
is used, there are much fewer elements and design variables
for the same number of DOFs (e.g. see Fig. 5), and thus one
might expect that it would be more difficult to model the
void in the structure. However, the regular Polygonal mesh
performs roughly as well as a regular Q4 mesh for the range
of discretizations studied, while the PolyMTOP scheme

performs with about the same or with higher accuracy than
the Q4 MTOP analysis for the same number of DOFs.

3 Topology optimization

3.1 Static compliance

A typical objective used for static optimization is the min-
imization of compliance, which provides the stiffest struc-
ture for a defined set of loads, and uses a constraint on the
volume on the structure. The continuum problem is typically
solved using finite elements and can be written in discrete
form as:

min
ρ

C(ρ, u) = fTu (8)

s.t. V (ρ) =
∫

�

ρdV ≤ Vs (9)

where f and u are the global force and displacement vectors,
V is the volume as a function of the densities, and Vs is
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Fig. 6 The area of the solid material in Fig. 5a when approximated by
different methods

the prescribed volume fraction. In the above equation, the
density is calculated as a function of the design variables
d, (ρ = f (d)), and the displacement is calculated from the
linear equation below:

K(ρ)u = f (10)

3.2 Eigenfrequency optimization

For dynamics, the linear system of equations can be used
to solve the underlining eigenvalue problem. The objective
function for free vibration problems can typically be written
as a max - min problem in the following form:

max
ρ

{
λmin = min

i=1,...,Ndof
{ω2

j }
}

s.t. V (ρ) = ∫
�
ρdV = Vs

(11)

In the above equations, λj is the j th eigenvalue of the free
vibrating structure, such that ωj is the j th eigenfrequency,
and φj is the corresponding eigenvector. The above struc-
tural optimization problem uses eigenfrequency behavior
based on:

φT
j Mφk = δjk, j ≥ k, k, j = 1, ..., Ndof (12)

Kφj = ω2
jMφj , j = 1, ..., Ndof (13)

where δjk is the Kronecker’s delta. The stiffness and mass
matrices are symmetric and positive definite and the eigen-
frequencies considered are real. The eigenfrequencies can
be sorted in order of magnitude as: 0 < ω1 ≤ ω2 ≤ ... ≤
ωNdof

. In eigenvalue problems, it is often the case that mul-
tiple eigenvalues may be encountered. This could be due
to symmetries in the structure, or due to the optimization
procedure which could lead to physically different eigen-
modes, to give the same eigenfrequency value. This problem
is relatively well understood and has been addressed, for

example, by Bratus and Seiranian (1983), Masur (1985),
and Seyranian et al. (1994), among others. A typical method
for overcoming this problem is using a bound formulation
(Bendsøe et al. 1983; Taylor and Bendsøe 1984; Olhoff
1989) where a scalar variable β is used in the objective func-
tion to envelope multiple eigenfrequencies and to serve as a
lower bound for the objective function. This approach can
also be used with multiple βs to maximize multiple eigen-
frequencies or to create a band-gap in the structural
response:

max
ρ,β1,β2

{β2 − β1}
s.t. β2 − ω2

j ≤ 0, j = n, n + 1, ..., J

ω2
j − β1 ≤ 0, j = 1, ..., n − 1

V (ρ) =
∫

�

ρdV = Vs

(14)

Note that constraints for volume, and the dynamic char-
acteristics from the previous equations are still valid here,
and note also that if the second inequality was removed
and the bound was set to the first eigenfrequency then this
would give the same results as the fundamental frequency
case. During the optimization process, it is also possible to
encounter spurious eigen modes in locations where there is
a low amount of material since the penalization factors p

and q cause for a local mass that is much larger relative to
the simulated stiffness. To avoid these modes, an approach
suggested by Tcherniak (2002), and Du and Olhoff (2007)
is used, and the mass penalization parameter q is set artifi-
cially high (q = 6) in locations where the density ρ < 0.1.
This modification eliminates localized modes from interfer-
ing with the optimization, but has a negligible effect overall
since the modified areas have little influence on the eigen
modes of interest.

3.3 Forced vibrations

3.3.1 Equation of motion

Forced harmonic vibrations are of importance to practical
mechanisms and are often encountered in engineering sys-
tems. The equation of motion of a linear dynamic system in
a discretized form is:

Mü(t) + Cu̇(t) + Ku(t) = f(t) (15)

where ü(t), u̇(t) and u(t) are acceleration, velocity, dis-
placement vectors at time t, respectively. M, C, K denote
mass, damping, and stiffness matrices, and f(t) is the loading
vector as a function of time. It is noted that the system matri-
ces are dependent on a set of design variables d. We assume
that the system is subjected to time-harmonic excitations.
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Fig. 7 Projection scheme from the design variables to the density
variable

Thus, the excitations and displacements can be described by
the following forms

f(t) = FR cos(ωt) − FI sin(ωt)

u(t) = UR cos(ωt) − UI sin(ωt)
(16)

where FR and FI are the vector of the excitation force
amplitude, UR and UI denote the vector of the displacement
amplitude. ω is the forcing frequency. The substitution of
(16) into (15) yields the following equation

ω2M[−UR cos(ωt) + UI sin(ωt)]
+ωC[−UR sin(ωt) − UI cos(ωt)]

+K[UR cos(ωt) − UI sin(ωt)]
= FR cos(ωt) − FI sin(ωt)

(17)

After arranging coefficients of cos(ωt) and sin(ωt), equality
condition can be held for all time t as following in a matrix
form
[
K − ω2M −ωC

ωC K − ω2M

] (
UR

UI

)
=

(
FR

FI

)
(18)

Herein, we introduce two complex vectors such as

U = UR + iUI,F = FR + iFI, i ∈ C(e.g.i2 = −1) (19)

Fig. 8 Numerical implementation for eigenfrequency and forced
vibration problems

The real parts of U and F are denoted by Re(U) and
Re(F), and the imaginary parts of U and F are denoted by
Im(U) and Im(F). With the complex vector, (17) can be
expressed in a compact form of complex linear algebraic
equations.

[K + iωC − ω2M]U = F (20)

where the dynamic stiffness matrix S is defined as

S = K + iωC − ω2M (21)

and thus

SU = F (22)

The complex displacement U in (20) can be directly solved
by a complex matrix solver. Alternatively, Yoon (2010a)
implemented the model reduction scheme which can reduce
computational resources to solve the complex system
equation of (20).

3.3.2 Dynamic compliance

The steady-state response of the system under harmonic
excitations was considered in the frequency domain to
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define dynamic compliance (Ma et al. 1995; Jog 2002;
Jensen 2007). The dynamic compliance can be expressed
as


(ρ,UR(ρ),UI(ρ)) =
∫ ωe

ωs

|FTU(ρ)|dω (23)

=
∫ ωe

ωs

√
(FR

TUR − FI
TUI)2 + (FR

TUI + FI
TUR)2dω

where ωs, ωe denote the initial and final angular frequency
of the external forces, respectively (i.e. the range of fre-
quencies used in the optimization). The problem statement
of the dynamic compliance optimization with the volume
constraint Vs can be described as

min
ρ


(ρ,UR(ρ),UI(ρ)) =
∫ ωe

ωs

|FTU(ρ)|dω

s.t. V (ρ) =
∫

�

ρdV ≤ Vs

(24)

where the dynamic system satisfies (20).

3.4 Projection scheme

Although the polygonal elements tend to reduce checker-
board and islanding effects in topology optimization, they
cannot by themselves provide independence for mesh
refinement. Instead, a projection method can be used to
achieve a minimum length scale and mesh independence.
Previous literature on the subject (Dı́az and Sigmund 1995;
Sigmund and Petersson 1998; Bourdin 2001; Guest 2009;
Wang et al. 2010) provide different approaches on filtering
the sensitivities and densities to obtain mesh independent
results. Herein we use a previously reported projection
method (Guest et al. 2004; Almeida et al. 2009) to filter the
density variables. This approach uses a linear function to
calculate the density ρ of an element i associated with the

surrounding design variable mesh. The density of the ele-
ment would be computed based on the weighted average of
the nearby design variables as

ρi =
∑

n∈Si
dnw(xn − xi)∑

n∈Si
w(xn − xi)

(25)

where Si is the sub-domain corresponding to density ele-
ment i, xn is the position of the centroid of the design
variable dn. The weight function for this linear approach can
be defined as

w(xn − xi ) =
⎧
⎨

⎩

rmin − rni

rmin

if rni ≤ rmin

0 otherwise
(26)

where rni is the distance between the centroid of the den-
sity element i and the design variable dn, and rmin is a user
defined variable that defines the length scale of the filter.
The sensitivities of the element density with respect to the
design variables are obtained as:

∂ρi

∂dn

= w(xn − xi )∑
m∈Si

w(xm − xi )
(27)

Finally, the projection is written in matrix form P as:

y = Pd (28)

where y is a vector of the filtered densities. As such the pro-
jection needs to be calculated only once, in the beginning
of the algorithm, whether a linear (above) or nonlinear pro-
jection is used. Figure 7 shows a graphical representation of
the filtering scheme.

Fig. 9 Static optimization of serpentine domain (Talischi et al.
2012b): a Boundary conditions and solution with 2000 n-gons; b
40000 n-gons; c M3 approach, 2000 n-gons, 35181 design variables;

d M4 approach, 2000 n-gons, 46912 design variables; e Pn/n18
approach, 2000 n-gons, 36000 design variables; f Pn/n24 approach,
2000 n-gons, 48000 design variables
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Table 1 Computational time for static optimization using regular and PolyMTOP approaches

Discretization Elements Nodes Design/Density Initialization times (seconds) Optimization time (seconds) Total Static

variables PolyMesher K & M Calc. FE Analysis Optimization time compliance

Coarse polygonal 2000 3975.0 2000 5.77 1.40 16.60 2.99 26.75 415.39

Fine polygonal 40000 79306.8 40000 112.32 33.77 662.78 97.18 906.05 421.94

PolyMTOP M3 Approach 2000 3974.8 35209.8 26.31 4.33 45.62 75.77 152.02 415.84

PolyMTOP M4 Approach 2000 3975.0 46919.2 40.10 5.13 61.10 113.82 220.15 416.02

PolyMTOP /n 18 elements 2000 3982.2 36000 28.87 4.85 46.18 88.82 168.73 415.43

PolyMTOP /n 24 elements 2000 3984.0 48000 43.45 6.47 62.12 125.94 237.99 415.88

4 Numerical implementation

The educational codes published by Talischi et al. (2009a, b)
were used as a starting point for this work. The flowchart
in Fig. 8 shows the general layout of the algorithm for the
eigenvalue optimization with an alternative insert for the
forced vibration optimization. In both procedures, polygo-
nal meshing is performed using the PolyMesher software,
and matching and non-matching element sub-discretizations
are defined. Subsequently, shape functions, mass, stiffness,
and projection matrices are calculated and stored to be used
later in the optimization procedure. At this point the algo-
rithm enters the optimization loop, and either an eigenfre-
quency or a forced vibration optimization can be performed.
In the first case, the eigenfrequency problem is solved, mul-
tiplicity of the eigenfrequencies is detected, and sensitivities
are calculated for the eigenfrequencies and constraint func-
tions. We assume that multiplicity in the eigenvalues occurs

Fig. 10 Convergence history for static compliance minimization of
serpentine domain (dv = design/density variables)

when the difference between two or more eigenvalues
becomes less than 1 % and the sensitivity calculation is
then appropriately updated. In the forced vibration case, the
dynamic compliance is calculated for the required range
of frequencies, and the sensitivities are again appropriately
calculated. For an in-depth discussion of the sensitivity
calculations the reader is referred to the Appendix of this
paper. In both scenarios, the sensitivities are used within an
update scheme to calculate a set of new design variables,
and the material interpolation function is used to determine
the distribution of material density. Finally, the conver-
gence is checked based on the total change in the material
distribution at the end of the iteration step, and the algorithm
is continued until a tolerance threshold of 1 % is reached.

Fig. 11 Optimization of the 1st eigenfrequency of a simply supported
beam: a Geometry and boundary conditions, b Solution with 2000 n-
gons, c 34000 n-gons, d Pn/n17 approach, 2000 n-gons, 34000 design
variables
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Fig. 12 Optimization of the 2nd eigenfrequency of a simply supported
beam: a Solution with 2000 n-gons, b 34000 n-gons, c M3 approach,
2000 n-gons, 34224 design variables

5 Static optimization examples

The multiresolution scheme presented above is applied to
the serpentine domain presented in Talischi et al. (2012b)
(Fig. 9), with a Young’s modulus E = 1, Poisson’s ratio
ν = 0.3, and volume fraction Vs set to be at 55 % of the
design domain. An optimality criteria based optimizer is
used as the update scheme for the design variables, where
Lagrangian multipliers control the upper and lower bounds,
and a move limit is used to control the step size (Bendsøe
and Sigmund 2004). A minimum length scale parameter of
rmin = 0.3 is used, and a penalty parameter p = 4 is used in
the SIMP model. The length of the parameter rmin is shown
graphically as a black line next to the element mesh in
cutouts of Fig. 9 and subsequent figures. The discretization
adopted employs 2,000 elements with the regular polygonal
code, as well as with variants of the different multires-
olution approaches. Finally, a mesh of 40,000 elements
is considered with the regular PolyTOP code to compare
the solution between the conventional and the PolyMTOP
frameworks when a similar number of design variables are
used. For a sample mesh of 2,000 elements, the distribution
of n-gons was 14 P4, 481 P5, 1262 P6, and 243 P7, and the
average diameter of the elements was 0.2. This is a typical
element size distribution produced by the PolyMesher soft-
ware, and there were no elements lower than a P4 or higher
than a P7, although the code can use such elements as well.
Figure 9 shows the static optimal results for the different
meshes, where the multiresolution approaches provide a
high resolution solution (Fig. 9c, d, e, f) that is essentially
the same as that of the fine finite element case (Fig. 9b).
Table 1 shows the averaged parameters and computational

Fig. 13 Comparison of normalized computational times for the opti-
mization of a simply supported beam (dv = design/density variables,
ω1 = optimization for first eigenfrequency, ω2 = optimization for sec-
ond eigenfrequency ). Times are normalized with respect to the the
coarse mesh optimization of ω1 (60 seconds in this case) and 100
iterations are used for all analyses

time for five analyses of each different case1 carried out to
200 optimization iterations. The multiresolution approach
takes roughly the same time in the FE analysis as the coarse
mesh since there are the same number of DOFs in the
system, while there is an increase in the initialization time
(meshing and initial calculation of the K and M matrices)
and optimization time (calculating gradients and using
optimization algorithm). The multiresolution approaches
are still about four times faster than the fine conventional
polygonal mesh, where most of the additional time is spent
in the FE analysis. From Table 1, the meshes with 2,000
elements have roughly the same compliance whereas the
fine element discretization has a somewhat higher compli-
ance. This is because the finer mesh can better estimate the
displacement field for the same structure. To provide mesh
independence this example has a relatively large length
scale parameter in comparison to the element diameter,
there are smooth transitions in material distribution and we
cannot observe the advantage that the PolyMTOP approach
has in modeling discrete boundaries (Section 2.4). As noted
in Nguyen et al. (2009) the MTOP methods can provide
mesh independence even when a small rmin is used, and
in such cases the MTOP approach could still estimate the
displacement field accurately. The convergence history of
static compliance for the first 50 steps of individual anal-
yses is shown in Fig. 10. Note that all methods follow the

1A modern (2013) quad-core 2.93Ghz Intel Xeon® processor is used
for the analyses.
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Fig. 14 a Geometry and boundary conditions for arch structure (rep-
resentative mesh only, not used in analysis), b Eigen modes and
eigenfrequencies of arch before optimization, c Structure optimized
for mode 1 vibration (maximization of ω1), d Convergence history of
eigenfrequencies for maximization of ω1 of arch structure

same convergence pattern and result in essentially the same
optimal compliance (only 1 % difference).

6 Eigenfrequency optimization examples

6.1 Simply supported beam structure

Next, we optimize a simply supported beam of length 8, and
a depth of 1, similar to that shown in Du and Olhoff (2007),
with a Young’s modulus E = 107, Poisson’s ratio ν = 0.3,
and volume fraction Vs set to be at 50 % of the design
domain. Optimality criteria is used as the optimization algo-
rithm for this and subsequent eigenfrequency problems. A

Fig. 15 a Structure for maximized ω3-ω2 band-gap, b Convergence
history of eigenfrequencies for maximization of ω3-ω2 band-gap of
arch structure

minimum length scale parameter of rmin = 0.09 is imposed
for the beam, and penalization parameters p for stiffness
and q for mass, are set to 4 and 1 respectively. The beam
is discretized with 2,000 regular polygonal elements, and
is optimized for mode 1 vibration (max ω1) in Fig. 11
and mode 2 vibration (max ω2) in Fig. 12. Only self mass
is imposed on the structure, and no additional masses are
suspended in the domain. Results are shown for coarse
and fine polygonal meshes, as well as two different mul-
tiresolution approaches. Figure 13 depicts the normalized
time of each analysis using a bar graph. For this example,
the PolyMTOP approach again provides a high resolution
solution with computational times being roughly one eighth
the time it would take to optimize a conventional mesh with
the same order of design and density variables.

6.2 Fixed ends arch structure

An arch structure is also studied for free body vibra-
tions, and again, there is no additional mass placed in the
domain. The domain for this structure is shown in Fig. 14a,
and 3,000 n-gons with the M4 multiresolution approach
(69,120 design variables) are used to produce the examples
in Figs. 14c and 15a. For this problem the same proper-
ties as the simply supported beam of the previous section
are used, except a minimum length scale of rmin = 0.15 is
used. The initial eigenfrequencies are shown for the struc-
ture in Fig. 14b, and the methods in Section 3.2 are used to
optimize the structure for maximizing the dominant eigen-
frequency, as well as for maximizing the band-gap between
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the second and third eigenfrequencies. The iteration histo-
ries for the optimization are shown in Fig. 14d and 15b.
Note that in both cases there are scenarios where multiple
eigenfrequencies are encountered by the bound formula-
tion, and the algorithm is capable of effectively fulfilling the
objectives. For this structure the eigenfrequency for mode 1
vibration (ω1) is increased to 221 Hz (Fig. 14d), and the gap
between ω3 and ω2 is increased by 210 Hz (Fig. 15b). Band-
gaps are especially important in structures, since they define
a region of frequencies where the structure avoids dynamic
resonance. This is a useful property, which can allow for the
design of multifunctional structures that can be stiff in some
particular situations, but flexible in others.

The validity of the eigenfrequency optimization results
may be questioned, since there is a substantial amount of
intermediate density (gray material) in the structure, so cre-
ating a discrete final design would not ensure that the final
optimized eigenfrequency would be obtained. For example,
if the structure in Fig. 14c is created into a final design
by placing material where ρ > 0.5 and removing material
where ρ < 0.5, then the gray areas would become discon-
tinuous members, and the value of ω1 would become 261
Hz (18 % increase). To alleviate this issue, it is possible
to implement an alternative material interpolation scheme
with continuation, or to use a non-linear Heaviside projec-
tion to achieve the desired discrete design. For Fig. 16a,

Fig. 16 Arch structure maximization of ω1 with a SIMP continuation,
b SIMP continuation and Heaviside projection, c RAMP continuation,
d RAMP continuation and Heaviside projection

SIMP penalization was performed with continuation start-
ing with p = 1 and being incremented by 0.5 until 4. This
provided a small improvement, and reduced the error to
6.4 %. Furthermore, the Rational Approximation of Mate-
rial Properties (RAMP) scheme (Stolpe and Svanberg 2001)
was implemented as:

E(x) = ε + (1 − ε)
ρ(x)

1 + s(1 − ρ(x))
, V (x) = ρ(x) (29)

where the parameter s was set to zero for one step, and
continuation was subsequently performed by doubling s

from 1 to 64. This approach lead to an even better solu-
tion (Fig. 16c) where the error was reduced to about 1 %.
Heaviside projection was implemented based on Guest et al.
(2004), with the material interpolation functions modified
as:

E(x) = ε + (1 − ε)[h(ρ(x))]p, V (x) = h(ρ) (30)

for SIMP, where

h(x) = 1 − exp(−βx) + x exp(−β) (31)

In all of the above cases the mass was interpolated lin-
early per (6) with q = 1. In Fig. 16b and c the parameter
β in the Heaviside function, was incremented along with
the SIMP and RAMP continuation, beginning with β = 0
for the first step, β = 1 for the second step, then doubling
β every step afterward. The solutions with this approach
resulted in essentially black and white solutions where the
difference between the initial optimal solution and the 1-0
design was negligible. It should be noted that all meth-
ods provide a somewhat different structure with the same
amount of material, however the global topology in all cases
was similar.

6.3 Curved cantilever with suspended mass

Another practical example where eigenfrequency optimiza-
tion has significant potential, is that of suspended mass
problems, where a structure is to be constructed to restrict
or modify vibration characteristics of objects in space.
Figure 17a shows the domain used for a curved cantilever
with a single mass suspended at the tip, and part b of that
figure shows the eigen modes and eigenfrequencies for the
pre-optimized structure with an added mass ratio of 1.0.
Note that the added mass ratio for this structure is defined
as:

MS
∑Nel

i=1Aiρi

(32)

where MS is the amount of added mass, divided by the
mass of the continuum; therefore an added mass ratio of
1.0 signifies that a mass equal to the total structural mass is
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Fig. 17 a Geometry and boundary conditions for curved cantilever
(representative mesh only, not used in analysis), b Initial mode shapes
and eigenfrequencies for structure with 1.0 added mass ratio, c ω1
maximized for structure with 0 added mass ratio, d ω1 maximized for

structure with 0.01 added mass ratio, e ω1 maximized for structure
with 0.1 added mass ratio, f ω1 maximized for structure with 1.0 added
mass ratio, g ω1 maximized for structure with ∞ added mass ratio

suspended. The discretization adopted consists of 1,600 ele-
ments with a M4 MTOP approach and a minimum length
scale of rmin = 0.25. The remainder of parameters for the
structure and optimization are the same as those used for the

Fig. 18 Geometry of design domain and loading configuration

simply supported beam case. When no mass is suspended
at the tip of this structure, then most of the structural mate-
rial moves towards the rigid support on the left where it can
effectively be restrained from movement (Fig. 17c). Note

Fig. 19 Natural mode shapes and natural frequencies
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Fig. 20 Comparison of optimal topologies for multipoint forced vibration problem. Single load case: a 900 n-gons, b 13500 n-gons, c Pn/n15
approach, 900 n-gons, 13500 design variables. Multiple load cases: d 900 n-gons, e 13500 n-gons, f Pn/n15 approach, 900 n-gons, 13500 design
variables

that since a minimum density is imposed, some material
remains over the length of the cantilever. However, even for
a small added mass ratio of 0.01, the structure forms a truss
like system to restrict movement at the far tip of the beam.
As the added mass ratio is increased, material moves from
the support of the structure to other parts of the domain.

7 Forced vibration optimization example

A numerical example for minimization of the dynamic
compliance is considered under harmonic excitations.
The geometry of a curved structure is generated using
PolyMesher (Talischi et al. 2012a) based on the parameters

Fig. 21 The initial and optimized resonant response of the structures: Single load case: a 900 n-gons, b 13500 n-gons, c Pn/n15 approach, 900
n-gons, 13500 design variables. Multiple load cases: d 900 n-gons, e 13500 n-gons, f Pn/n15 approach, 900 n-gons, 13500 design variables
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Fig. 22 Convergence history for optimization of dynamic compliance
of multipoint excitation domain (dv = design/density variables, SL =
single load case, ML = multiple load cases)

shown in Fig. 18. The structure is anchored at the bottom
end and restrained in the horizontal direction at the left end.
Harmonic excitations are applied at the arrows inscribed in
Fig. 18. For the topology optimization, Young’s modulus
E, Poisson’s ratio ν and initial density of the design vari-
ables ρ are set to 1N/m2, 0.3 and 1kg/m3, respectively.

The volume fraction Vs is constrained to be 40 % of the
design domain. The natural mode shapes and frequencies of
the initial design domain which is the continuum domain
completely filled with initial volume fraction are shown in
Fig. 19.

The initial angular frequency of the forced vibration ωs =
0.0 and the final one ωe = 0.015 are set with the magni-
tude of force F =1, in (24). Two loading conditions such as
a single load case where all four loads act simultaneously
and multiple load cases where F1, F2, F3 and F4 represent
each load case are considered for the optimization problem.
For the multiple load cases, the optimization problem can be
formulated as minimizing the sum of dynamic compliance
induced by all loads. Therefore, the optimization problem
considering multiple load cases can be stated as follows

min
ρ

4∑

i=1

∫ ωe

ωs

|FT
i Ui (ρ)|dω

s.t. V (ρ) =
∫

�

ρdV ≤ Vs

(33)

The design domain is discretized with 900 n-gons for both
coarse and PolyMTOP analyses, and the projection function
with a radius rmin = 0.14 is used. The penalization factors
for the stiffness and mass are chosen as p = 3 and q = 1,
respectively. The Method of Moving Asymptotes (MMA)
(Svanberg 1987) is implemented in this example to solve the
optimization problem for dynamic compliance.

Fig. 23 Minimization of dynamic compliance. SIMP, continuation of p(1 − 4): a Single load case, b Multiple load cases, c resonant response of
the structures. RAMP, continuation of s(0 − 64): d Single load case, e Multiple load cases, f resonant response of the structures
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Fig. 24 Comparison of normalized computational times for opti-
mization of forced vibration of multipoint excitation domain (dv =
design/density variables, SL = single load case, ML = multiple load
cases). Times are normalized with respect to the the SL coarse mesh
computation (89 seconds in this case)

Coarse meshes with the optimal topology are presented
in Fig. 20a and d (single and multiple load cases respec-
tively), while parts c and f of that figure show the improved
solutions through the use of the PolyMTOP approach.
It is noted that the solution for the single load case is
significantly different from the multiple load cases prob-
lem, particularly the material distributions on the left part
of the design domain. Furthermore, a fine conventional
mesh with 13,500 elements (Fig. 20b and e) is also opti-
mized to verify the solution, and to compare the time
improvement from the PolyMTOP scheme. For all cases,
the dynamic response of the initial structure subject to
periodic excitations is compared with the response of
the optimized (Fig. 21). As can be seen from Fig. 21,
the dynamic resonant response in the range of interest
(ωs = 0.0 to ωe = 0.015) is significantly reduced for all
cases through the optimization. While keeping the vol-
ume the same, the area underneath the dynamic response
curve is reduced (Fig. 21), and there is improved dynamic
behavior for both the single and multiple load cases.
The optimal designs are similar for the coarse, the fine,
and the MTOP meshes, however the dynamic resonance,
although similar is not identical after the optimization.
The difference in the higher frequency response (i.e. above
ω = 0.03) can be attributed to the different performance of
the FE analysis for each method as discussed in Section 2.4.
Finally, the convergence results of the dynamic compliance
for the six cases are shown in Fig. 22.

Furthermore, topology optimization for the dynamic
compliance problem was carried out using the SIMP and

RAMP continuation schemes described for the fixed ends
arch structure (Section 6.2). 900 n-gon meshes identical to
the previous example were implemented for this problem in
order to investigate the influence of the SIMP, RAMP, and
the continuation approach on optimal topologies. Figure 23
shows optimal topologies for the single and multiple loads
cases with both the SIMP and RAMP schemes using the
continuation approach. Based on results of part c and part
f in Fig. 20 and results of part a and b in Fig. 23, one
can notice that the continuation of the penalization factor
has affected the optimal solutions, especially in the scenario
with multiple load cases. Moreover, different topologies
were obtained with each SIMP and RAMP scheme as
shown in Fig. 23. Although the topologies are different for
these cases, the optimal dynamic response for all cases is
somewhat similar. Note that in the continuation cases the
optimized response is not necessarily lower than that of the
initial configuration, since a different penalization factor is
used in each case. Again, the compliance converges in the
same manner for all methods. Finally, Fig. 24 shows the
normalized computational time of the cases in Fig. 20 for
50 iterations of the optimization scheme. It can be noted
that using a fine mesh in PolyTOP alone is about four times
more expensive than using the PolyMTOP method with less
finite elements and a similar number of density, and design
variables.

8 Concluding remarks

This paper introduces a method for combining a coarse
finite element mesh with finer design and density meshes
to obtain high quality optimization solutions for a reduced
computational cost. Polygonal elements presented in
recently published PolyTOP software are shown to approx-
imate dynamic behaviors better than other conventional
elements, and are thereby used as the focus for this study.
Two approaches using either matching or non-matching
sub-discretizations are investigated to split up the polygonal
elements in order to facilitate the multiresolution analysis.
The computational approach is shown to be particularly
beneficial for structural dynamics problems such as eigen-
frequency and forced vibration optimization, since these
problems require substantial time in finite element analysis.
The multiresolution approach produces solutions with high
resolution through an increase in the time required for opti-
mizing the design variables, however, the approach can use
a smaller number of elements and nodes, and can thereby
avoid increasing the costlier finite element calculations.
Several examples of the polygonal multiresolution topol-
ogy optimization are shown for static as well as dynamic
cases. These include: a curved beam domain, a simply sup-
ported beam, an arch structure, and a cantilever beam with
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suspended mass. The results show that the algorithm is
effective at producing high resolution results suitable for
efficient and computationally effective structural design.
The efficient scheme for optimization of structures with
dynamic loads could be useful in civil, mechanical, and
aerospace engineering applications where the structural
dynamic properties need to be controlled. The concepts
shown herein could further be extended to acoustic and
wave propagation problems where eigenfrequency response
needs to be controlled.
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Nomenclature

n number of density elements in the displacement element
K global stiffness matrix
Ke stiffness matrix of displacement element e

Nel number of elements in mesh
D constitutive matrix
B strain-displacement matrix of shape function deriva-

tives
x position of a point in the domain, coordinate vector
E Young’s modulus
E0 Young’s modulus of solid material
ρ density values determined based on position in

domain (x)
p stiffness penalization parameter
M global mass matrix
Me mass matrix of displacement element e

Ne shape functions of element e

q mass penalization parameter
C static compliance
u global displacement vector
f global force vector
d vector of design variables
Vs prescribed volume
λj jth eigenvalue of structure
ωj jth eigenfrequency of structure
φj jth eigenvector of structure
dn design variable n

β bound parameter for optimization
C global damping matrix

 dynamic compliance
ωs initial angular frequency of external forces

ωe final angular frequency of external forces
rmin minimum length scale parameter
w weight function for linear projection
MS suspended mass

Appendix: Sensitivity analysis

To optimize for the objectives defined in Section 3, it is
necessary that we calculate the sensitivity of the objective
functions, and constraints with respect to the density vari-
ables. Since these are composed of the stiffness and mass
terms, we calculate the derivatives of Ke and Me as:

∂Ke

∂dn

= ∂Ke

∂ρi

∂ρi

∂dn

=
∂

(∑Nn

j=1(ρj )
pIj

)

∂ρi

∂ρi

∂dn

= (ρi)
p−1Ii

∂ρi

∂dn

(34)

and

∂Me

∂dn

= ∂Me

∂ρi

∂ρi

∂dn

=
∂

(∑Nn

j=1(ρj )
qHj

)

∂ρi

∂ρi

∂dn

= (ρi)
p−1Hi

∂ρi

∂dn

(35)

The sensitivity for the volume constraint can similarly be
calculated as
∂V

∂dn

= ∂V

∂ρi

∂ρi

∂dn

(36)

Note that the calculation of the sensitivity of the den-
sity variables with respect to design variables (∂ρi/∂dn)
is presented in Section 3.4. Subsequently, the sensitivity
of static compliance can be calculated from the element
displacement ue as:

∂C

∂dn

= −ue

∂Ke

∂dn

ue (37)

A.1 Sensitivity analysis of eigenfrequencies

For free body vibrations the sensitivity of the fundamental
eigenvalue λ for a specific element can be calculated as:

∂λj

∂dn

= −φT
je

(
∂Ke

∂dn

− λj

∂Me

∂dn

)
φje (38)

where φje is the eigenvector map for element e (Haftka
and Adelman 1989). Furthermore the sensitivity of the first
eigenvector for the entire structure can be re-written in
vector form as:

� λj =
{
φT

j

(
∂K
∂d1

− λj

∂M
∂d1

)
φj ,

..., φT
j

(
∂K

∂dNdes

− λj

∂M
∂dNdes

)
φj

} (39)
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Alternatively, Pedersen and Pedersen (2013) have intro-
duced eigenfrequency sensitivities based on local sub-
domains. However, in the case where there are N multiple
eigenfrequencies (Seyranian et al. 1994), the following
generalized gradient can be used in the optimization:

fsk =
{
φT

s

(
∂K
∂d1

− λ
∂M
∂d1

)
φk,

..., φT
s

(
∂K

∂dNdes

− λj

∂M
∂dNdes

)
φk

}

s, k = n, ..., n + N − 1.

(40)

A.2 Sensitivity analysis of the dynamic compliance

Sensitivity analysis for the dynamic compliance in (24) with
respect to a design variable dn is derived by a chain rule for
mathematical programming:

∂


∂dn

=
∑

ρi

∂


∂ρi

∂ρi

∂dn

(41)

The derivatives of ∂
/∂ρi can be obtained as follows

∂


∂ρi

=
( �UR


�UI


)T ( �ρiUR

�ρiUI

)
(42)

where
( �ρiUR

�ρiUI

)
= −

[
K − ω2M −ωC
ωC K − ω2M

]−1

× ∂

∂ρi

[
K − ω2M −ωC
ωC K − ω2M

](
UR

UI

)(43)

Equation (43) is obtained from derivatives of (20). It is
assumed that FR and FI are independent from the filtered
density. The term in the first parentheses of (42) is used as
(

λR

λI

)
=

[
K − ω2M −ωC

ωC K − ω2M

]−T ( �UR


�UI


)
(44)

where �UR
 and �UI
 are the gradients of 
 with
respect to UR and UI, respectively. Those gradients can be
computed as

�UR
 = (FT
RUR − FT

I UI)FR




+ (FT
RUI + FT

I UR)FI




�UI
 = (−FT
RUR + FT

I UI)FI




+ (FT
RUI + FT

I UR)FR




(45)

Similar to (19), let λ = λR+iλI, �U
 = �UR
+i�UI


and assume M,C and K are symmetric. The complex vector
form of (45) can be described as

�U
 = FTU



F̄ (46)

where F̄ denotes the complex conjugate of F. Then (44) can
be expressed in complex form as:

[K + iωC − ω2M]λ̄ = �U
 = F̄T Ū



F (47)

where λ̄ and �U
 denote the complex conjugate of λ and
�U
, respectively. For the linear system, one can show that
the solution of (47) in terms of λ̄ is proportional to one of
(20) in terms of U. Therefore, the conjugate of λ̄ can be
computed by a scalar factor, that is

λ̄ = F̄TŪ



U (48)

Finally, substitution of (44) and (48) into (42) yields the
following

∂


∂ρi

= −
(

λR

λI

)T
∂

∂ρi

[
K − ω2M −ωC

ωC K − ω2M

] (
UR

UI

)

(49)

∂


∂ρi

= −Re

{
F̄TŪ



UT ∂(K + iωC − ω2M)

∂ρi

U
}

= −Re

{
λ∗ ∂(K + iωC − ω2M)

∂ρi

U
} (50)

where λ∗ is a Hermitian transpose of λ. That is λ∗ := λ̄
T
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