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Highlights

• General Virtual Element Method (VEM) framework for finite elasticity.
• The VEM displacement spaces allow exact computation of element-level volume changes.
• New stabilization term captures large and highly localized deformations.
• Convergence and accuracy of the VEM are verified.
• An engineering application of the VEM is demonstrated.

Abstract

We present a general virtual element method (VEM) framework for finite elasticity, which emphasizes two issues: element-
level volume change (volume average of the determinant of the deformation gradient) and stabilization. To address the former
issue, we provide exact evaluation of the average volume change in both 2D and 3D on properly constructed local displacement
spaces. For the later issue, we provide a new stabilization scheme that is based on the trace of the material tangent modulus tensor,
which captures highly heterogeneous and localized deformations. Two VEM formulations are presented: a two-field mixed and
an equivalent displacement-based, which is free of volumetric locking. Convergence and accuracy of the VEM formulations are
verified by means of numerical examples, and engineering applications are demonstrated.
c⃝ 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this paper, we put forth a Virtual Element Method (VEM) framework for finite elasticity problems. The
introduced VEM framework allows for general two-dimensional polygonal and three-dimensional polyhedral meshes.
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Two VEM formulations are presented: a two-field mixed VEM formulation and an equivalent displacement-based
VEM formulation, which is free of volumetric locking. We highlight that both VEM formulations utilize the average
volume change (the volume average of the determinant of the deformation gradient) in the element level, which can
be computed exactly for both polygonal and polyhedral virtual elements under any given deformation fields. For
polyhedral virtual elements, the local displacement space is properly constructed such that the average volume change
can be exactly computed. We study various choices of constructing the loading terms and the stabilization terms for
the VEMs. A new stabilization scheme is further proposed for isotropic materials, which is based on the trace of
the material tangent modulus tensor. We conduct thorough numerical assessments to evaluate the convergence of the
proposed VEM. Through an application example, the performance of the proposed VEM is demonstrated in a problem
that involves heterogeneous and localized deformations.

This paper is inspired by the original work of Bill Klug [1]. The remainder of this paper is organized as follows.
Section 2 provides motivations of this paper and summarizes the related work in the VEM literature. Section 3
reviews the displacement-based and two-field mixed variational principles for finite elasticity. Section 4 introduces
the constructions of displacement and pressure VEM spaces, together with derivations of the exact average volume
changes of virtual elements under given displacement fields. In Section 5, a two-field mixed VEM approximation and
its equivalent displacement-based counterpart are presented together with detailed discussion on the construction of
loading and stability terms. A new stabilization scheme is also proposed in this section. Several numerical assessments
are presented in Section 6 to evaluate the convergence as well as the accuracy of the proposed VEM approximations.
In Section 7, a two dimensional application example is presented, which studies the nonlinear elastic response
of a filled elastomer, to showcase and evaluate the performance of the VEM formulations in problems involving
large heterogeneous and localized deformations. Section 8 contains several concluding remarks and future research
directions. Three Appendices complement the paper. A complete list of the notation adopted in this paper is provided
in the nomenclature in Appendix C.

2. Motivation and related work

Due to their unique and intriguing properties, polygonal and polyhedral elements have been attracting high level of
attention in the computational mechanics community. Despite their relatively short history of development, polygonal
and polyhedral finite elements have been successfully applied to several fields of computational mechanics and
have revealed several advantages over classical finite elements, i.e., triangular/tetrahedral and quadrilateral/brick
elements. For instance, polygonal and polyhedral finite elements have been shown to better capture crack propagation
and branching in computational fracture simulations [2–5], to produce numerically stable results in topology
optimization [6–8] and fluid mechanics [9], and to better model contact [10] and arbitrary internal interface [11]
in large deformation elasto-plasticity problems. Furthermore, recent studies have demonstrated that polygonal finite
elements also possess great potential in the study of two-dimensional finite elasticity problems [12,13]. More
specifically, from a geometrical point of view, polygonal finite elements are well suited to modeling complex
microstructures, such as porous or particulate microstructures and microstructures involving different length scales,
and to dealing with periodic boundary conditions (introducing hanging nodes). From an analysis point of view, two-
field mixed polygonal finite elements are found to be numerically stable on Voronoi-type meshes, to produce more
accurate results, and to be more tolerant to large localized deformations.

On the other hand, polygonal and polyhedral finite elements also suffer from drawbacks. First, while the perfor-
mance of the finite element results strongly depends on the quality of the shape functions, the use of polygonal and
polyhedral elements with general shapes, such as concave polyhedrons, is limited by the availability of well-defined
shape functions. Particularly in 3D, most of the existing shape functions for polyhedral finite elements are either re-
strictive in element geometries or computationally expensive to compute. For instance, although closed-form expres-
sions are available, the Wachspress shape functions are restricted to strictly convex and simple polyhedrons (meaning
the collection of faces that include each vertex consists of exactly three faces) [14], and the Mean Value coordi-
nates are mainly applicable to polyhedrons with simplicial faces [15]. In contrast, while allowing for more general
polyhedrons (e.g., concave ones), harmonic shape functions [16–18] and max-entropy shape functions [19–21] need
to be computed numerically at the quadrature points element by element. Moreover, especially for nonlinear and
three-dimensional problems, efficient yet consistent numerical quadrature rules on general polygons and polyhedrons
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are difficult to construct and typically contain numerous quadrature points (see [22–24] for some recent work to
alleviate this issue), which is also undesirable from a computational perspective.

The Virtual Element Method (VEM) has been recently introduced as a generalization of the finite element method
(FEM). The VEM is able to handle general polygonal and polyhedral meshes [25,26] as it abstracts from the shape
functions, which are essential to any FEM approximation. Unlike FEM, the shape functions in VEM are constructed
implicitly, and the approximations of the weak forms are decomposed into consistency and stability terms, both
of which are directly computed from the degrees of freedoms (DOFs) of the unknown fields. By doing this, only
numerical quadratures of polynomials (and not of more complex functions) are needed in VEM. These favorable
features make the VEM an attractive framework to efficiently deal with general meshes in 2D and 3D. While most
of the studies in the VEM literature consider linear problems in 2D (see, e.g. [25,27–30,26,31–34]), some attempts
have been made for nonlinear [35,36] and 3D [30] problems. In the context of structural mechanics, VEM has been
introduced in [27] for (possibly incompressible) two dimensional linear elasticity, in [30] for three dimensional linear
elasticity, in [35] for general two dimensional elastic and inelastic problems under small deformations, and in [37] for
simple contact problems.

The goal of this paper is to put forward a VEM framework for finite elasticity problems, which is capable of
handling general polygonal and polyhedral elements, including concave ones, in both 2D and 3D. Two formulations
are presented: a two-field mixed VEM formulation, which involves an additional pressure field, and an equivalent
displacement-based VEM formulation, which is numerically shown to be free of volumetric locking on a wide class
of meshes (as opposed to the standard displacement-based FEM). Both formulations make use of the exact average
volume change (the volume average of the determinant of the deformation gradient) of each element, the analytical
expressions of which are derived in both 2D and 3D cases under given displacement fields. For polyhedral elements
in 3D, the analytical expression for this average volume change is obtained through a proper definition of the local
displacement VEM space. In both 2D and 3D, the VEM formulations are shown to deliver optimally convergent
results, even for meshes with non-convex elements. Moreover, since nonlinear elastic materials are characterized by
non-convex stored-energy functions as a result of the large reversible deformation, the stabilization term plays a crucial
role on the performance of the VEM. We study various choices of the stabilization term and discuss their influence on
the performance in finite elasticity VEM problems. We also propose a new stabilization scheme for isotropic materials,
which is based on the trace of the material tangent modulus tensor. A two dimensional practical application example
is presented, which addresses the nonlinear elastic response of a filled elastomer, and demonstrates the performance
proposed VEM formulations in a problem that involves large heterogeneous and localized deformations.

3. Theoretical background

This section revisits the variational principles for finite elastostatics [38]. Displacement-based and two field mixed
variational principles are presented. Throughout, Lagrangian description of the fields is adopted.

Consider an elastic solid that occupies a domain Ω ∈ Rd with ∂Ω being its boundary in its stress-free, undeformed
configuration and d being the dimension. It is subjected to a prescribed displacement field u0 on ΓX and a prescribed
surface traction t (per unit undeformed surface) on Γ t, such that ΓX

∪ Γ t
= ∂Ω and ΓX

∩ Γ t
= ∅ for a well-posed

problem. Additionally, we also prescribe a body-force f (per unit undeformed volume) in the solid. A stored-energy
function W is used to characterize the constitutive behavior of the body, which is assumed to be an objective function
of the deformation gradient tensor F. Throughout this paper, we further assume that the stored energy function is
composed of two terms, namely,

W (X, F) = Ψ (X, F) + U (X, J ) . (1)

U is the volumetric part of the stored energy function that depends only on J = det F, such that (i) U is strictly convex
(at least in the neighborhood of J = 1); (ii) U achieves minimum 0 at J = 1, and (iii) U → +∞ as J → +∞. For
instance, in the case of purely incompressible solids, U takes the form

U (X, J ) =


0 if J = 1
+∞ otherwise.

(2)

Once U(X, J ) is identified, Ψ(F) is the remaining term of the stored-energy function W (F). The first Piola–Kirchhoff
stress tensor P at each material point X ∈ Ω is given by the following relation:
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P (X) =
∂W

∂F
(X, F) =

∂Ψ
∂F

(X, F) +
∂U

∂F
(X, J ) (3)

which is used as the stress measure of choice in this paper.

3.1. Displacement-based variational principle

In the displacement-based formulation, the displacement field u is taken to be the only independent variable.
The deformation gradient F is then assumed to be dependent on u through F(u) = I + ∇u, where ∇ denotes the
gradient operator with respect to the undeformed configuration and I stands for identity in the space of second order
tensors. Similarly, J depends on u through J (u) = det F(u). Based on the principle of minimum potential energy,
the displacement-based formulation consists of seeking the unknown displacement u which minimize the potential
energy Π among all the kinematically admissible displacements v

Π (u) = min
v∈K

Π (v) , (4)

with

Π (v) =


Ω

[Ψ (X, F (v)) + U (X, J (v))] dX −


Ω

f · vdX −


Γ t

t · vdS, (5)

where K stands for the set of kinematically admissible displacements such that v = u0 on ΓX.
The weak form of the Euler–Lagrange equations of the minimization problem is given by

G (v, δv) =


Ω


∂Ψ
∂F

(X, F (v)) +
∂U

∂F
(X, J (v))


: ∇(δv)dX

−


Ω

f · δvdX −


Γ t

t · δvdS = 0 ∀δv ∈ K0, (6)

where the trial displacement field δv is the variation of v, and K0 denotes the set of all the kinematically admissible
displacement fields that vanish on ΓX.

3.2. A general two-field mixed variational principle

For nearly and purely incompressible materials, the two-field mixed variational principle is typically utilized. Under
the assumption of (1), different types of two-field mixed variational principles can be derived based on different forms
of the decompositions. In the F-formulation, Ψ is assumed to be a general function on F, i.e., no multiplicative
decomposition of the deformation gradient is used, whereas, in the commonly used F-formulation, Ψ is assumed to
solely depend on the deviatoric part of the deformation gradient, that is, F = J−1/3F. In the latter case, Ψ is the stored
energy induced by the deviatoric component of the deformation.

This section briefly reviews the F-formulation proposed in [12]. For the F-formulation, the derivation follows
similar procedures and therefore is not presented here. The interested readers are referred to [39,40,38,41,42] and
references therein.

The basic idea is to introduce a Legendre transformation of the term U (J ) in the stored-energy function as
follows [12]U∗ (X,q) = max

J
q (J − 1) − U (X, J ) . (7)

Since U (J ) is assumed to be convex over J , then the duality of the transformation yields

U (X, J ) = maxq q (J − 1) − U∗ (X,q) . (8)

Direct substitution of (8) into the displacement-based formulation (4) and (5) renders the following two-field mixed
variational principle, which seeks the unknown displacement field u and pressure-like field p such thatΠ (u,p) = min

v∈K
maxq∈Q

Π (v,q) , (9)
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Fig. 1. Illustration of (a) a two dimensional polygonal element E in its undeformed configuration, (b) a three dimensional polyhedral element E in
its undeformed configuration, and (c) a generic face f of the polyhedral element E .

where Π (v,q) is of the form

Π (v,q) =


Ω


Ψ (X, F (v)) +q [J (v) − 1] − U∗ (X,q)


dX −


Ω

f · vdX −


Γ t

t · vdS, (10)

and Q denotes the set of square-integrable functions. Unlike the commonly adopted F-formulation, whose unknown
pressure field is the equilibrium Cauchy hydrostatic pressure field p

.
= trσ , the additional unknown field p in the

F-formulation is found to be a pressure-like scalar field which relates to p through

p = p +
1

3J

∂Ψ
∂F

(X, F) : F. (11)

The weak forms of the Euler–Lagrange equations from (9) and (10) are obtained as

Gv (v,q, δv) =


Ω


∂Ψ
∂F

(X, F (v)) +q ∂ J

∂F
(F(v))


: ∇(δv)dX

−


Ω

f · δvdX −


Γ t

t · δvdS = 0 ∀δv ∈ K0, (12)

Gq (v,q, δq) =


Ω


J (v) − 1 −

∂U∗

∂q (X,q)


δqdX = 0 ∀δq ∈ Q, (13)

where the trial pressure field δq is the variation ofq.

4. Virtual element spaces and projection operators

Consider Ωh to be a tessellation of the domain Ω into non-overlapping polygon/polyhedral elements with h being
the maximum element size. The boundary of the mesh, denoted as Γh is assumed to be compatible with the applied
boundary condition, that is, Γ t

h and ΓX
h are both unions of edges/faces of the mesh. We denote E ∈ Ωh as a generic

element of the mesh with e standing for its generic edge. In the three dimensional case, we also use f to denote a
generic face of E . Additionally, we denote by |E | the area or volume of E respectively.

4.1. Displacement VEM space and projection operators

The global virtual displacement space Kh associated with the mesh Ωh is a conforming finite dimensional space
that is defined as:

Kh = {vh ∈ K : vh |E ∈ V (E) , ∀E ∈ Ωh} , (14)

where V (E) is a local VEM space defined on E ∈ Ωh .

Local VEM space in 2D. In two dimensions (2D), let us consider a given element E with m vertices, denoted as
Xi = {X i , Yi }

T , i = 1, . . . , m, which are numbered counterclockwisely as shown in Fig. 1(a). We define the local
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displacement VEM space as [25,27]

V (E)
.
=


v ∈


H1 (E)

2
: ∆v = 0 in E, v|e ∈ [P1 (e)]2

∀e ∈ ∂ E


, (15)

where ∆ stands for the Laplacian operator. As inferred by its definition, the VEM space contains harmonic functions
which are implicitly known in the interior of E and explicitly known to possess linear variations on the edges of E .
Moreover, the VEM space V(E) is linearly complete, namely, [P1(E)]2

⊆ V(E). In order to guarantee the continuity
of the global displacement space Kh , the DOFs of the V(E) are taken at the vertices of E , which are identical to those
in the first order finite element spaces on general polygons.

By construction, we are able to compute the area average of the gradient of any given function v ∈ V(E) using
only the DOFs of v and geometrical information of E . Indeed, using integration by parts, for any given function v in
V(E) it holds:

1
|E |


E

∇vdX =
1

|E |


e∈∂ E


e

v ⊗ nedS, (16)

where ne is the outward norm vector associated with edge e. Realizing that the functions in V(E) possess linear
variations on each edge of E , the edge integral on the right hand side of the above relation can be expressed as


e∈∂ E


e

v ⊗ nedS =
1
2

m
i=1

v (Xi ) · (|ei |ni + |ei−1|ni−1) , (17)

yielding

1
|E |


E

∇vdX =
1

2|E |

m
i=1

v (Xi ) · (|ei |ni + |ei−1|ni−1) (18)

where |ei | is the length of the i th edge, as shown in Fig. 1(a). For convenience, in the sums we follow the standard
convention that i + 1 = 1 whenever i = m and i − 1 = m whenever i = 1.

Local VEM space in 3D. We proceed to define the displacement VEM space in 3D. To begin with, let us consider a
polyhedron E whose boundary consists of planar faces as shown in Fig. 1(b). Suppose that E contains m vertices,
which are numbered as Xi = {X i , Yi , Zi }

T , i = 1, . . . , m. For the i th vertex Xi , we denote Fi as the set of faces
that are connected to it. Moreover, for any given face f ∈ ∂ E with m f vertices, we assume that the vertices are
renumbered locally as X f

j , j = 1, . . . , m f , such that the numbering is in a counterclockwise fashion with respect to

the outward normal n f pointing out of the element, as shown in Fig. 1(c). A map G f is utilized to denote the relation
between the global numbering and the local numbering on face f . If the i th vertex of E (with global numbering)
becomes the j th vertex of f (with local numbering), we write X f

j = X f
G f (i)

or Xi = XG−1
f ( j). Notice that for any

given f ∉ Fi , G f (i) = ∅. Additionally, any given face f ∈ ∂ E is assumed to be star-convex [18] with respect to a

point X f
s given by

X f
s =

m f
j=1

β
f
j X f

j , (19)

where β
f
j are chosen weights that satisfy β

f
j ≥ 0, j = 1, . . . , m f and

m f

j=1 β
f
j = 1. It follows that for any linear

function p ∈ [P1(R)]3,

p


X f
s


=

m f
j=1

β
f
j p


X f
j


. (20)
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By assuming star-convexity of each face, we can introduce triangulations of all the faces f ∈ ∂ E by connecting all
the vertices to X f

s , as shown in Fig. 1(c). We use T f
j , j = 1, . . . , m f to denote the triangulated subfaces of f , such

that T f
j and T f

j−1 are connected to vertex X f
j , as shown in Fig. 1(c).

The virtual space on E is defined as

V (E)
.
=

v ∈


H1 (E)

3
: v|∂ E ∈


C0 (∂ E)

3
, v


X f
s


=

m f
j=1

β
f
j v


X f
j


and

v|
T f

j
∈


P1


T f

j

3
, j = 1, . . . , m f , ∀ f ∈ ∂ E and ∆v = 0, in E

 . (21)

By the above definition, the above space contains harmonic functions which are continuous and piecewise linear on
each face of the element E . Moreover, due to (20), we have [P1 (E)]3

⊆ V(E). As for the degrees of freedom for
V (E), we take the pointwise values at the vertices of E ; these are a valid set of DOFs for the local VEM space.

Under the definition above, the volume average of the gradient for any function v in V(E) can be computed exactly
taking the steps from the 3D analog of Eq. (16):

1
|E |


E

∇vdX =
1

|E |


f ∈∂ E


f

v ⊗ n f dS. (22)

Notice that since f is assumed to be planar, its outward unit normal vector n f is a constant vector. Upon realizing
that v is piecewise linear on f , the face integral


f v ⊗ n f dS can be explicitly carried out by using a vertex-based

quadrature rule over each triangulated face:
f

v ⊗ n f dS =

m f
j=1

 |T f
j |

3


v


X f
j


+ v


X f

j+1


+ v


X f

s

⊗ n f , (23)

where |T f
j | is the (signed) area of T f

j defined as

|T f
j | =

1
2

n f
·


X f

j − X f
s


∧


X f

j+1 − X f
s


. (24)

Again, analogous summing conventions as in (17)–(18) are used. The above expression (24) can be further recast into
a vertex based quadrature rule over f as follows

f
v ⊗ n f dS =

m f
j=1


β

f
j

3
| f | +

1
3


|T f

j | + |T f
j−1|

 v


X f
j

⊗ n f
=

m f
j=1

w
f
j v


X f
j


⊗ n f (25)

by assigning each vertex X f
j with a weight w

f
j of the form w

f
j

.
=

β
f
j

3 | f | +
1
3


|T f

j | + |T f
j−1|


, where | f | is the

(absolute) area of f . Several remarks are worthwhile making on the above vertex based quadrature rule. First, notice
that with the assumption that each f is star-convex with respect to X f

s , the weight w
f
j associated with each vertex is

guaranteed to be strictly positive. On the other hand, for cases where f is not star-convex with respect to X f
s (including

X f
s lies outside of f ), the weights w

f
j may take negative values. However, we observe that the resulting vertex based

quadrature rule on f still enjoy first order accuracy, as will be discussed in detail in Appendix B. Note that, in such
non star-convex case, definition (21) makes no sense anymore; but (thanks to the above observations) it turns out that
one can still implement the above formulas and obtain a convergent scheme.

As a result, the volume average of ∇v takes the final form

1
|E |


E

∇vdX =
1

|E |


f ∈∂ E

m f
j=1


w

f
j v


X f
j


⊗ n f


. (26)
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Observe that, as in the 2D case, the above expression only makes use of the DOFs of v and the geometric information
of E .

In the proposed VEM approximation, we make use of two projection operators [35]. The first projection
operator, denoted as Π 0

E , is a tensor-valued L2 projection operator which projects any given second order tensor
G ∈ [L2(E)]d×d onto its average value over E , that is,

Π 0
E G =

1
|E |


E

GdX. (27)

We remark that for any given element E ∈ Ωh and v ∈ V(E), the projection Π 0
E (∇v) is explicitly computable in both

2D and 3D using the DOFs of v and geometric information of E , which is a direct consequence of (18) and (26).
On the other hand, the second projection operator, denoted as Π ∇

E , is a vector-valued projection operator, which
projects from the VEM space V(E) onto [P1(E)]d . It is defined such that

∇


Π ∇

E v


= Π 0
E (∇v)

m
i=1

(Π ∇

E v) (Xi ) =

m
i=1

v (Xi ) .
(28)

As we can see, for any given v ∈ V(E), Π ∇

E v becomes a linear function. The first condition in the above definition
ensures that the gradient of the linear function equals the average gradient of v over E and the second condition
determines the constant component of the linear function by ensuring that the average value of Π ∇

E v at vertices
is equal to the average value of v at vertices. With the two aforementioned conditions, the linear function Π ∇

E v is
uniquely determined and depends only on the DOFs of V(E) and on geometric information of E .

We close this section with an important observation. Our choice (21) for the definition of V (E) on faces is different
from those proposed in [43,30,35]. The reason is that, differently from the aforementioned papers, the definition of
space in (21) guarantees that the faces of the deformed element are piecewise planar. Our choice is therefore more
suitable for large deformation problems and the associated computations.

4.2. Area/volume average of J on general polygonal and polyhedral elements1

For a given displacement field v ∈ V(E), let us denote E as the deformed configuration of element E andXi (whereXi = {X i ,Yi }
T in 2D or Xi = {X i ,Yi ,Zi }

T in 3D) as the position vector of vertex i of E such that Xi = Xi + v(Xi ),
as shown in Fig. 2(a) and (b). Similarly, we also utilizee, f and F i to denote the deformed edge, deformed face and
the set of deformed faces that are connected to vertex i , respectively. The deformation does not change neither the
vertex-face connectivity nor the relation between the global and local numbering of the vertices of element E . In other
words, if a given f ∈ Fi in the undeformed configuration, we have f ∈ Fi . Additionally, if the i th vertex of E is
renumbered as j th vertex on face f in the undeformed configuration, the relations X f

j = X f
G f (i)

and Xi = XG−1
f ( j)

still hold in the deformed configuration.
The area/volume average of J over E under v, denoted as JE henceforth, is defined as

JE (v) =
1

|E |


E

J (v) dX. (29)

Pushing the integral forward into the deformed configuration and applying the divergence theorem, we end up with
the following expression

JE (v) =
1

|E |


E dX =

1
d|E |


E ∇ ·XdX =

1
d|E |


∂E X ·ndS, (30)

where ∇ stands for the gradient operator with respect to the deformed configuration andn is the unit normal vector in
the deformed configuration.

1 For later use, this subsection demonstrates that, based on the definitions of V(E), the volume average of J = det F over E , as well as its first
and second variations, can be computed exactly for any given displacement field v ∈ V(E) both in 2D and 3D.
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Fig. 2. Illustration of (a) a 2D polygonal element E in its deformed configuration, (b) a 3D polyhedral element E in its deformed configuration,
and (c) a generic face f (not necessarily planar) of the polyhedral element E .

Computing JE in the 2D case. In the 2D case, because any displacement field v = {vx , vy}
T

∈ V(E) varies linearly
on each edge e, thene remains straight in the deformed configuration, as shown in Fig. 2(a). Thus, we can expand
(30) as

JE (v) =
1

2|E |


∂E X ·ndS =

1
4|E |

m
i=1

Xi · (|ei |ni + |ei−1|ni−1) , (31)

where |ei | andni denote the length and outward unit normal vector of the i th deformed edgeei .
By introducing a matrix R ∈ R2×2 representing a 90◦ degree counterclockwise rotation, which is of the form

R =


0 −1
1 0


(32)

and satisfies |ei |ni = R(Xi −Xi+1), we simplify the above relation as

JE (v) =
1

4|E |

m
i=1

Xi · R
Xi−1 −Xi+1


. (33)

By direct derivation of (33), the first variation of JE with respect to δv = {δvx , δvy} ∈ V(E) can be obtained as

D JE (v) · δv =
1

2|E |

m
i=1

δv (Xi ) · R
Xi−1 −Xi+1


. (34)

For practical computations, it is convenient to recast the above expressions into matrix representation. By intro-
ducing H ∈ R2m×2m of the form

H =


0 −R 0 · · · 0 R
R 0 −R · · · 0 0

...

−R 0 0 · · · R 0

 , (35)

which is a symmetric matrix (since R is skew-symmetric), we can rewrite Eqs. (33) and (34) as

JE (v) =
1

4|E |

NT HN and D JE (v) · δv =
1

2|E |
δVT HN, (36)

where N and δV ∈ R2m are given by

N =
X1 Y1 · · · Xm Ym

T
and δV =


δvx (X1) δvy (X1) · · · δvx (Xm) δvy (Xm)

T
, (37)

respectively.
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The second variation of JE can be obtained directly in matrix representation by a plain derivation of (36). From
the relation between N and v, we obtain the following result

D (D JE (v) · δv) · w =
1

|E |


E


∇(δv) :

∂2 J

∂F∂F
(v)


: ∇wdX =
1

2|E |
δVT HW, (38)

where w = {wx , wy}
T

∈ V(E) is the incremental displacement field and W ∈ R2m is a vector of the form

W =

wx (X1) wy (X1) · · · wx (Xm) wy (Xm)

T
. (39)

Computing JE in the 3D case. The calculation of JE in the 3D case is more complicated because the planar face f
typically deforms into a non-planar f in its deformed configuration, as shown in Fig. 2(c). As a result, the associated
deformed normal vectorn f becomes non-constant over f . Yet, each deformed triangulated subface T f

i of the T f
i still

remains planar. If we denote the deformed normal of T f
i asn f

i and employ a vertex-based integration rule, we have

JE (v) =
1

3|E |


∂E X ·ndS =

1
3|E |


f ∈∂E

m f
j=1


|T f

j |n f
j ·

1
3

X f
j +X f

j+1 +X f
s



=
1

3|E |


f ∈∂E

m f
j=1


1
6

X f
j +X f

j+1 +X f
s


·

X f
j −X f

s


∧

X f
j+1 −X f

s


. (40)

Further simplification of the above equation yields, after some calculations,

JE (v) =
1

6|E |


f ∈∂E

m f
j=1

X f
s ·X f

j ∧X f
j+1


. (41)

Notice that, since JE is an algebraic function of the DOFs of v, then its first variation with respect to any given
δv ∈ V(E) is obtained as

D JE (v) · δv =
1

6|E |

m
i=1

δv (Xi ) ·

f ∈F i


β

f
i

m f
j=1

X f
j−1 ∧X f

j +X f
s ∧

X f
G f (i)−1 −X f

G f (i)+1

 . (42)

Following the same procedure above, the second variation of JE is given by

D (D JE (v) · δv) · w =

m
i=1

m
j=1

δv (Xi ) ·
∂2 JE

∂Xi∂X j
(v) · w


X j

, (43)

where the 3 × 3 matrices ∂2 JE/∂Xi∂X j can be expressed in the form

∂2 JE

∂Xi∂X j
(v) =

1
6|E |


f ∈Fi j


β

f
i [X f

G f ( j)−1 −X f
G f ( j)+1]∧ + β

f
j [X f

G f (i)+1 −X f
G f (i)−1]∧

+


δG( j),G f (i)−1 − δG( j),G f (i)+1

 X f
s


∧


(44)

and Fi j denotes the set of faces that are connected to both the i th and the j th vertices (with global numbering) of E .
In the above expression, δi, j denotes the Kronecker delta function and we have made use of the notation

[a]∧ =

 0 −az ay
az 0 ax

−ay −ax 0

 (45)

for a given vector a = {ax , ay, az}
T .
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Table 1
Approaches for computing area or volume average of J = det F over
element E .

Approaches Associated equations

Robust (36), (38), (41), (42), (43)
Simple (46), (47), (48)

We remark that in both 2D and 3D cases, JE and its first and second variations are all algebraic functions that can
be exactly computed using only the coordinates of the vertices in the deformed configuration and the DOFs of fields
δv and w.

We also remark that another option of approximating JE is to simply use the projected gradient. For any given δv,
w ∈ V(E), we obtain

JE (v) = det


I + Π 0
E (∇v)


, (46)

D JE (v) · δv =
∂ J

∂F


I + Π 0

E (∇v)


: Π 0
E (∇(δv)) , (47)

D (D JE (v) · δv) · w = Π 0
E (∇(δv)) :

∂2 J

∂F∂F


I + Π 0

E (∇v)


: Π 0
E (∇w) . (48)

As compared to the previous formula of JE derived in this subsection, the above approximations take simpler
forms and are easier for computational implementations, especially in the 3D case. Moreover, we observe that the
approximated JE becomes exact for any v ∈ [P1(E)]d , meaning that the approximation (46) is also first-order
consistent. Therefore, as demonstrated by numerical examples, the above approximations in the VEM construction
can also lead to optimally convergent results. However, we remark that (46) is less robust than (29) in the sense that,
when the level of deformation increases and the shape of the element becomes more irregular, this approach is more
prone to experience non-convergence in the Newton–Raphson algorithm and may provide less accurate solutions.
We will present both approaches of computing JE and their variations in the numerical examples of this paper. For
convenience, we refer to the VEM following (29), i.e. using expressions (36), (38) and (41)–(43), as to the “Robust”
approach and to the VEM using (46)–(48) as to the “Simple” approach. This is illustrated by Table 1.

4.3. Pressure VEM spaces

For the two-field mixed virtual elements used in this paper, we assume a piecewise constant approximation of
the pressure field, which takes constant value over each element E . This approximation has been shown to lead to
numerically stable solutions on several polygonal meshes in 2D, such as the Centroidal Voronoi Tessellation (CVT)
and structured hexagonal meshes [44,9,12]. Accordingly, the finite dimensional pressure space Qh is then identified
with the following definition:

Qh
.
= {qh ∈ Q :q|E = constant ∀E ∈ Ωh} . (49)

5. Variational approximations

Having defined the displacement and pressure VEM spaces, we proceed to propose the displacement-based and
two-field mixed VEM approximations on the polygonal/polyhedral mesh Ωh . In particular, we first introduce the two
field-mixed Galerkin approximation assuming the piecewise constant pressure field and exact integration, as well
as an equivalent displacement-based Galerkin approximation, which also assumes exact integration. Subsequently,
decomposition of the exact integral into consistency and stability components is introduced for both approximations,
which leads to the final form of the displacement-based and mixed VEM approximations. Moreover, we discuss
different constructions of stability and loading terms and propose a new stabilization scheme for isotropic solids.
Finally, the polynomial consistency of the VEM approximations is demonstrated.
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5.1. Two-field mixed and equivalent displacement-based Galerkin approximations with exact integration

For lower-order mixed elements, whose pressure fieldqh is assumed to be constant over each element, the Galerkin
approximation consists of finding the equilibrating displacement uh and pressure ph , such that

Πh (uh,ph) = min
vh∈Kh

maxqh∈Qh

Π (vh,qh) , (50)

where

Πh (vh,qh) =


E


E


Ψ(F (vh)) +qh [J (vh) − 1] − U∗ (qh)


dX −


E


E

f · vhdX −


Γ t

h

t · vhdS. (51)

For the time being, we assume exact integration over E in our Galerkin approximations. Since qh takes constant
values over E the above formulation can be rewritten as

Πh (vh,qh) =


E


E

Ψ(F (vh))dX +


E


|E |

qh |E


JE (vh) − 1


− U∗ (qh |E )


−


E


E

f · vhdX −


Γ t

h

t · vhdS. (52)

Observe that JE appears in the second term on the right hand side of the above expression, which can be evaluated
either exactly (29) or approximately (46) using the formulas provided in the preceding section.

We also introduce a displacement-based Galerkin approximation that consists of seeking the unknown displacement
field such that

Πh (uh) = min
vh∈Kh

Πh (vh) , (53)

where

Πh (vh) =


E


E

Ψ(F (vh))dX +


E

|E | U (JE (vh)) −


E


E

f · vhdX −


Γ t

h

t · vhdS. (54)

By realizing that


E

|E |U (JE (vh)) = maxqh∈Qh


E

|E |

qh |E


JE (vh) − 1


− U∗ (qh |E )


(55)

as a consequence of (8), we note that the displacement-based approximation is equivalent to the two-field mixed one
except for the case of purely incompressible materials, where the displacement approximation fails because of (2). In
the finite element method (FEM) literature, this equivalence is also explored in [45]. Moreover, since d2U/(d J )2

→

+∞ as the material approaches incompressibility, employing the above displacement-based approximation for nearly
incompressible materials will lead to finite element systems with high condition numbers in the stiffness matrices,
possibly resulting in poor convergence performance of the Newton–Raphson method. By contrast, the two-field
mixed approximation is free of the above shortcomings and is valid for materials with any level of incompressibility,
including those that are purely incompressible.

This work also considers the standard displacement-based and two-field mixed FEM approximations on polygonal
meshes [12]. The Mean Value coordinates are used to construct the displacement spaces [46] and the gradient
correction scheme [23] is also adopted to ensure the polynomial consistency of the finite element approximations.

5.2. Displacement-based and two-field mixed VEM approximations

This subsection proceeds to propose the displacement-based and two-field mixed VEM approximations. Following
the original idea of the VEM, we decompose the exact integrals associated with Ψ in (52) and (54) into “consistency”
and “stability” terms [25].
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The displacement-based VEM approximation then consists of seeking the unknown displacement field uh such that
it satisfies Eq. (53) with

Π V E M
h (vh) =


E

|E |Ψ


I + Π 0
E∇vh


+

1
2


E

αE (sh) Sh,E


vh − Π ∇

E vh, vh − Π ∇

E vh


+


E

|E | U (JE (vh)) − ⟨f, vh⟩h − ⟨t, vh⟩h . (56)

In the above expression, ⟨f, vh⟩h and ⟨t, vh⟩h stand for the approximated loading terms associated with body force
and surface traction respectively, whose forms will be discussed in the next subsection. Moreover, notice that the
first term on the right hand side of (56) is first-order consistent, and is thus called the “consistency” term, meaning
that if vh is a first order polynomial function, this term recovers the first term in (54). However, unless E is a
linear triangular/tetrahedral element, the consistency term contains non-physical kernel that may lead to spurious
modes in the displacement solution. A stabilization term (the second term on the right hand size of (56)) is thus
needed to penalize those non-physical kernels. The stabilization term is made up of two components, αE (sh) and
Sh,E (vh − Π ∇

E vh, vh − Π ∇

E vh). In fact, Sh,E (·, ·) is a bilinear form given by [35]

Sh,E (vh, wh) = hd−2
E


v∈E

vh (Xv) · wh (Xv) ∀vh, wh ∈ Kh ∀E ∈ Ωh (57)

with hE = |E |
1/d measuring the size of E , whereas αE (sh) is a scalar valued function of sh ∈ Kh , a detailed

discussion of which will be provided in the next subsection.
In the same manner, we also state the final form of the two-field mixed VEM approximation, which consists of

finding the unknown displacement field uh and pressure field ph such that it satisfies Eq. (50) with

Π V E M
h (vh,qh) =


E

|E |Ψ


I + Π 0
E∇vh


+

1
2


E

αE (sh) Sh,E


vh − Π ∇

E vh, vh − Π ∇

E vh


+


E

|E |

qh |E


JE (vh) − 1


− U∗ (qh |E )


− ⟨f, vh⟩h − ⟨t, vh⟩h . (58)

While the focus of this paper is on developing lower order VEM approximations, a few remarks are worthwhile
making on their possible extension to the higher-order VEM approximations. For higher order VEM approximations,
the local VEM spaces are well-defined and the associated projections are computable [43]. A possible extension using
the “Simple” approach can follow the same methodology presented in this section: one can decompose the stored
energy function into a consistency part which utilizes higher-order projections and then stabilize the remaining part.
On the other hand, the extension to higher order VEM considering the “Robust” approach is a more challenging part,
which deserves further theoretical developments.

5.3. Discussion on the stabilization parameter αE (sh)

In the sequel, we review and discuss the stabilization parameter αE proposed in [35] for small deformation
nonlinear elastic and inelastic problems. Motivated by the discussions, we hereby propose a new expression for the
stabilization parameter αE , which is based on the trace of the Hessian of Ψ .

Norm-based stabilization. In the work by Beirão da Veiga et al. [35], the stabilization parameter αE is given by the
following expression:

αE (sh) =

 ∂2Ψ
∂F∂F


I + Π 0

E∇sh

 , ∀sh ∈ Kh (59)

where ||| · ||| denotes any norm of a fourth order tensor. In the remainder of the paper, we refer this choice as the
norm-based stabilization. As a common choice, the norm induced by the Euclidean vector norm is considered in this
work. In this case, the stabilization parameter αE equals the absolute value of the largest eigenvalue of the Hessian
of Ψ . Intuitively, this amounts to assigning the moduli of a material in its stiffest direction to all its directions. As a
result, as will be shown in the filled elastomer example, the VEM approximations adopting this stabilization parameter
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typically yield over stiff responses in large deformation analysis. Notice that in this norm-based stabilization, unlike
the original form of αE used in [35], which essentially uses the Hessian of the entire stored-energy function W , we
only use that of the first component of the stored-energy function Ψ (similar to the selective integration concept in the
FEM literature).

The choice of sh ∈ Kh can be any kinematically admissible displacement. Two choices of sh are discussed
in [35], which are sh = 0 and sh = un−1

h , where un−1
h is the equilibrium displacement field obtained in the last

Newton–Raphson step. The former choice amounts to evaluating αE in the undeformed configuration. For this
choice, αE is a constant scalar that is independent of the deformation state and, as shown in [35], can easily lead
to unsatisfactory results also in small deformation regimes. By contrast, the latter choice evaluates αE in the last
deformed configuration that is solved by the Newton–Raphson method, implying that αE keeps updating according to
the deformation states. The motivation for the choice sh = un−1

h in [35] (instead of the more natural sh = uh with uh
the displacement field that we are seeking for) is to simplify the Newton–Raphson iterations by avoiding to compute
the derivatives of αE in the associated tangent matrix. On the other hand, when applied to finite elasticity problems,
especially to those involving heterogeneous and large localized deformations, also this second choice has its own
shortcomings. As will be demonstrated by the filled elastomer example in Section 6, the choice of sh = 0 in αE tends
to under stabilize some elements at high deformation levels (which leads to noticeable hourglass-type deformations in
those elements), while choosing sh = un−1

h renders the approximations dependent on the loading histories, possibly
making it unsuited for problems involving very large and heterogeneous deformation fields. It is worthwhile noting
that, although sh = uh is a more intuitive choice, it is also more computationally demanding than sh = un−1

h for the
reason mentioned above.

Trace-based stabilization. The expression (59) was introduced in [35] in order to obtain a (strictly) positive stabi-
lization factor, that is a reasonable condition for small deformation regimes. On the other hand, this may become an
unreliable choice in large deformation analysis, where issues related to the physical stability of the material appear.
Motivated by the above discussion, we propose a new stabilization parameter αE which is based on the trace of the
Hessian of Ψ given by

αE (sh) =
1

d2 tr


∂2Ψ
∂F∂F


I + Π 0

E∇sh


, ∀sh ∈ Kh, (60)

where d is the dimension (d = 2, 3). We refer to it as the trace-based stabilization. Instead of taking into account
only the largest eigenvalue of the Hessian of Ψ as in the norm-based stabilization using the Euclidean induced norm,
αE in the trace-based stabilization takes into account all the eigenvalues of the Hessian of Ψ (αE equals the alge-
braic average of all the eigenvalues of the Hessian of Ψ ). In addition, whereas the norm-based stabilization is always
positive, the trace-based stabilization may take negative values, for instance, when the eigenvalues of the Hessian are
dominantly negative. This issue is closely related to the physical stability of the material, a detailed analysis of which
is beyond the scope of this paper and is subjected to future work [47].

When specialized to isotropic materials, explicit expressions can be obtained for αE in the trace-based stabilization.
For isotropic material, Ψ(F) is a function Φ(I1, I2, J ) which solely depends on the three invariants I1, I2 and J of the
right Cauchy deformation tensor C = FT F, where I1 = trC and I2 = 1/2[(trC)2

− tr(C2)]. Under this condition, the
proposed stabilization parameter αE is given by:

αE (sh) =
1

d2 tr


∂2Φ
∂F∂F


I1


I + Π 0

E∇sh


, I2


I + Π 0

E∇sh


, J


I + Π 0
E∇sh


. (61)

As will be shown in detail in Appendix A, making use of the Cayley–Hamilton theorem, the above expression can be
further simplified as
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Table 2
Summary of stabilization schemes and choices of sh . A symbol “×” means that such choice has not been tested
numerically—the reason can be found in the corresponding footnote.

sh = 0 sh = un−1
h sh = uh

Norm-based stabilization a

Trace-based stabilization b

a This choice in the norm-based stabilization is significantly more computationally demanding than other choices
and is therefore not considered in this paper.

b Although this choice can be easily considered, we prefer to disregard it because it shares the same drawback as
choosing sh = 0 in the norm-based stabilization.

αE (sh) =
1
4


4I1

∂2Φ
∂ I1∂ I1

+


8I1 I2 − 4J 2 I1

 ∂2Φ
∂ I2∂ I2

+ I1
∂2Φ
∂ J∂ J

+ 16I2
∂2Φ

∂ I1∂ I2
+ 8J

∂2Φ
∂ I1∂ J

+ 2J I1
∂2Φ

∂ I2∂ J
+ 8

∂Φ
∂ I1

+ 2I1
∂Φ
∂ I2


(62)

in 2D and

αE (sh) =
1
9


4I1

∂2Φ
∂ I1∂ I1

+


4I1 I2 + 12J 2

 ∂2Φ
∂ I2∂ I2

+ I2
∂2Φ
∂ J∂ J

+ 16I2
∂2Φ

∂ I1∂ I2
+ 12J

∂2Φ
∂ I1∂ J

+ 4J I1
∂2Φ

∂ I2∂ J
+ 18

∂Φ
∂ I1

+ 8I1
∂Φ
∂ I2


(63)

in 3D, where implicit dependences of I1, I2 and J on Π 0
E∇sh are assumed. The above explicit expressions are

helpful to enable the more intuitive choice of sh = uh in the implementation, which is found to render the VEM
approximations independent of the loading history, as well as more tolerant to heterogeneous and large localized
deformations than the choice of sh = un−1

h . On the other hand, unlike choosing sh = 0 and un−1
h , αE (uh) becomes

a nonlinear function of uh , resulting additional terms in the weak forms of the VEM approximations in practice. A
summary of the above stabilization choices can be found in Table 2. In this paper, we test most of the choices in our
numerical studies.

5.4. Construction of the loading terms

We present the constructions of first order accurate loading terms which, according to [27], guarantee the optimal
convergence of the displacement and its gradient in the L2 error.

To construct the loading term associated with surface traction ⟨t, vh⟩h , a first order Gauss–Lobatto quadrature rule
is used in 2D with the quadrature points being the vertices v on Γ t

h ,

⟨t, vh⟩h =


v∈Γ t

h

wvt (Xv) · vh (Xv) , ∀vh ∈ Kh, (64)

where Xv is the position vector associated with vertex v and wv is the weight associated with v defined by a first
order Gauss–Lobatto rule. On the other hand, the vertex-based quadrature defined by (25) over f with m f vertices is
adopted in 3D as follows:

⟨t, vh⟩h =


f ∈Γ t

h

m f
j=1

w
f
j t


X f
j


· vh


X f

j


, ∀vh ∈ Kh . (65)

Notice that in both 2D and 3D cases, the loading term ⟨t, vh⟩h yields exact integral when t is constant on each edge or
face of Γ t

h , i.e.

⟨t, vh⟩h =


Γ t

h

t · vhdS, ∀vh ∈ Kh . (66)
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Regarding the loading term associated with the body force ⟨f, vh⟩h , various approaches can be utilized. We consider
two approaches in this work, neither of which needs explicit knowledge of vh in the interior of each element E . The
first approach utilizes a (first order) vertex-based quadrature over each element in 2D and 3D,

Approach #1: ⟨f, vh⟩h =


E


v∈E

wE
v f (Xv) · vh (Xv) , ∀vh ∈ Kh, (67)

where Xv denotes the location of vertex v of E and wE
v is the associated weight defined in [27,30]. Notice that the

first order accuracy of the nodal quadrature rule in [27,30] is only valid for convex elements and certain concave
elements in 2D and 3D. For instance, with the presence of non star-convex elements, certain weights in the nodal
become negative and moreover the first order accuracy may be no longer satisfied.

We also propose another approach for the construction of the loading term ⟨f, vh⟩h , which is of the form

Approach #2: ⟨f, vh⟩h =


E

f


XE
C


·


Π ∇

E vh

 
XE

C


, ∀vh ∈ Kh, (68)

where XE
C

.
=


E XdX/|E | stands for the centroid of element E , which can be calculated for any given elements with
arbitrary shapes in 2D and 3D. Although the centroid XE

C may not lie in the interior of E , we can show that this
construction of the body force term is first order accurate for elements with arbitrary shapes, such as non star-shaped
elements, in both 2D and 3D as long as Π ∇

E is well defined. In fact, a two dimensional example will be presented in a
subsequent section which confirms that VEM with the second load construction produces optimally convergent results
also for non star-shaped elements. The only limitation of this second choice is that, whenever XE

C ∉ E , loadings that
are discontinuous across mesh edges may yield less accurate results.

5.5. Weak forms of the VEM approximations

With the proposed stabilization parameter and loading terms, the weak form for the displacement-based VEM
approximation (53) and (56) is given by (assuming the trace-based stabilization scheme in which sh is taken as the
current displacement)

Gh (vh, δvh) =


E


|E |

∂Ψ
∂F


I + Π 0

E∇vh


+

1
2

Sh,E


vh − Π ∇

E vh, vh − Π ∇

E vh

 ∂αE

∂F
(vh)


: Π 0

E∇(δvh)

+


E

αE (vh) Sh,E


vh − Π ∇

E vh, δvh − Π ∇

E (δvh)


+


E

|E |
dU

dJ
(JE (vh)) D JE (vh) · δvh |E

− ⟨f, δvh⟩h − ⟨t, δvh⟩h = 0 ∀δvh ∈ K0
h . (69)

On the other hand, the weak forms of the first variation of the two-field mixed VEM approximation (50) and (58)
take the following form:

Gv
h (vh,qh, δvh) =


E


|E |

∂Ψ
∂F


I + Π 0

E∇vh


+

1
2

Sh,E


vh − Π ∇

E vh, vh − Π ∇

E vh

 ∂αE

∂F
(vh)


: Π 0

E∇(δvh)

+


E

αE (vh) Sh,E


vh − Π ∇

E vh, δvh − Π ∇

E (δvh)


+


E

|E |qh |E (D JE (vh) · δvh |E )

− ⟨f, δvh⟩h − ⟨t, δvh⟩h = 0 ∀δvh ∈ K0
h, (70)

and

Gq
h (vh,qh, δqh) =


E

|E |

qh |E [JE (vh) − 1] −
dU∗

dq (qh |E ) δqh |E


= 0 ∀δqh ∈ Qh . (71)

We underline that, whenever sh is taken as the displacement at the previous load increment iteration step un−1
h (see

Section 5.3), the addendum involving ∂αE/∂F in both the right hand sides of (69) and (70) vanishes, and αE (vh)

becomes αE (un−1
h ).
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5.6. On the VEM patch test

We provide a brief discussion on the performance of VEM approximations in the patch test. In the discussion that
follows, we restrict our attention to cases where the geometry and boundary conditions are exactly represented by the
mesh, namely, no error arises from the approximation of geometry in the following discussion.

In the patch test, the unknown displacement field is taken to be a linear vector field, i.e., u = p1 ∈ [P1(Ω)]d .
Accordingly, the first Piola–Kirchhoff stress P is a constant tensor given by P = ∂Ψ(F(p1))/∂F + ∂U (J (p1))/∂F.
The body force f is 0 everywhere and the boundary traction t is given by t = Pn on ΓX where n is the outward unit
normal vector on the boundary. Additionally, the known pressure field p0 is a constant field taking value ∂U

∂ J (J (p1))

unless in the presence of a purely incompressible solid, in which case p0 is determined by the applied traction t.
Furthermore, for any linear function p1 ∈ [P1(Ω)]d , ∇p1 and F(p1) are constant tensors. It follows that for any
E ∈ Ωh ,

Π 0
E (∇p1|E ) = ∇p1 (72)

Π ∇

E (p1|E ) = p1|E and (73)

JE (p1) = J (p1) = det (F(p1)) . (74)

We proceed to verify the exact satisfaction of the patch test with the proposed displacement-based and two-field mixed
VEM approximations by demonstrating that vh = p1 andqh = p0 are solutions to Eqs. (69)–(71). Let us first consider
the displacement-based VEM approximation. Realizing that exact integration is recovered in the following two terms
as a result of (72)–(74)

|E |
∂Ψ
∂F

(F(p1)) : Π 0
E (∇(δvh)) =


E

∂Ψ
∂F

(F(p1)) : ∇(δvh)dX (75)

and

|E |
dU

dJ
(JE (p1)) D JE (p1) · δvh |E =


E

dU

dJ
(J (p1))

∂ J

∂F
(F (p1)) : ∇(δvh)dX, (76)

we have that for any trial field δvh ∈ K0
h

Gh (p1, δvh) =


E


E


∂Ψ
∂F

(F(p1)) +
dU

dJ
(J (p1))

∂ J

∂F
(F(p1))


: ∇(δvh)dX − ⟨t, δvh⟩h

=


Ω


∂Ψ
∂F

(F(p1)) +
dU

dJ
(J (p1))

∂ J

∂F
(F(p1))


: ∇(δvh)dX −


Γ t

h

t · δvhdS = 0, (77)

where the second equality in the above relation follows from the fact that t is constant on each edge/face together with
relation (66).

For the two-field mixed VEM approximation, we are able to show in a similar manner that for any δvh ∈ K0
h ,

Gv
h (p1,p0, δvh) =


E


E


∂Ψ
∂F

(F(p1)) + p0
∂ J

∂F
(F(p1))


: ∇(δvh)dX − ⟨t, δvh⟩h = 0, (78)

and for any δqh ∈ Qh

Gq
h (p1,p0, δqh) =


E

|E |


[JE (p1) − 1] δqh |E −

dU∗

dq (p0) δqh |E



=


E


E


J (p1) − 1 −

dU∗

dq (p0)


δqhdX = 0. (79)

According to the above analysis, both displacement-based and two-field mixed VEM approximations pass the patch
test exactly in 2D and 3D. In fact, although not presented in this paper, our numerical studies confirm that the patch
tests are passed with errors up to machine precisions for both displacement-based and mixed VEM approximations.
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5.7. A note on the performance of polyhedral elements with non star-convex faces in patch tests

The discussion in the last subsection is applicable to meshes consisting of polyhedral elements with faces that
are star-convex with respect to X f

s . In the case where the element E contains any face f that is not star-convex
with respect to X f

s , the local displacement VEM space V(E) is not well defined according to its formal definition
(21) because certain regions of the triangulated subdomains may lie outside of f . However, our numerical studies
demonstrate that convergence (in terms of DOFs) is still achieved with the VEM formulations even for meshes with
elements containing non star-convex faces. While a more rigorous theoretical analysis is beyond the scope of this
paper, we demonstrate that the patch test is strictly passed with our mixed VEM formulation even when the meshes
contain elements with non star-convex faces. A similar analysis can also be applied to the displacement-based VEM
formulation.

To begin with, although the element space V(E) is not well defined when E contains non star-convex faces, we
remark that the projection Π 0

E∇v, is still computable numerically using the nodal values of v and the vertex based
quadrature rule defined in (25):

Π 0
E∇v =

1
|E |


f ∈∂ E

m f
j=1


w

f
j v


X f
j


⊗ n f


, (80)

where the weights w
f
j may take negative values. The same also applies to the other projection Π ∇

E v.
As we will show in detail in Appendix B, with the definition of the vertex-based rule on f in (25) and (80), the

following expression holds

Π 0
E∇p1 =

1
|E |


f ∈∂ E

m f
j=1


w

f
j p1


X f

j


⊗ n f


=

1
|E |


E

∇p1dX, ∀p1 ∈ [P1(E)]3 (81)

even if E contains non star-convex faces.
Furthermore, if E contains non star-convex faces, we are able to show that both the “Robust” and “Simple”

approaches of Table 1 give exact JE for any linear displacement field u = p1 ∈ [P1(E)]3, namely,

1
6|E |


f

m f
j=1

X f
s ·X f

j ∧X f
j+1


= JE (p1) . (82)

Analogous calculations for the first variation of JE show that expressions (42) (the “Robust” approach) and (47) (the
“Simple” approach) are also valid for the non star-convex case, i.e.,

D JE (p1) · δv = |E |
∂ J

∂F
(F(p1)) : Π 0

E (∇(δv)) . (83)

Based on (80)–(83) and realizing that relations (72)–(74) still hold when E contains non star-convex faces, we are
able to show that for any trial fields δvh ∈ K0

h and δqh ∈ Qh , both the “Robust” and “Simple” approaches give

Gv
h(p1,p0, δvh) = 0 and Gq

h(p1,p0, δqh) = 0, (84)

indicating that the patch test is strictly passed for mixed VEM even when E contains non star-convex faces. Thorough
derivations of expressions (81)–(84) are provided in Appendix B.

6. Numerical assessment

This section presents a series of numerical studies to assess the performance of the displacement-based and mixed
VEM approximations in two- and three-dimensional finite elasticity problems. In particular, studies on families of
subsequently refined meshes are conducted, through which we demonstrate the performance of VEM formulations on
convergence and accuracy.
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Unless otherwise stated, the VEM approximations adopt the trace-based stabilization with the choice of sh = uh

throughout this section. For any polyhedral element E , a uniform β
f

i on each face f with m f vertices is assumed

for the remainder of the paper, namely, β
f

i = 1/m f , i = 1, . . . , m f . For any given convex polyhedron this choice
leads to well-defined local VEM space V(E) because every face f is guaranteed to be star-shaped with respect to
the resulting X f

s . To solve the nonlinear system of equations, the standard Newton–Raphson method is utilized; as a
stopping criterion, we check at each iteration if the Euclidean norm of the residual vector reduces below 10−8 times
that of the initial residual. To generate 2D polygonal meshes, the general purpose mesh generator “PolyMesher” [48]
is used, while for generating 3D polyhedral meshes, the methodology and algorithm provided in [49] are adopted.

To evaluate the accuracy of the numerical solutions, two global error measures of the displacement field are used,
the L2-norm and H1-seminorm of the displacement error, which are defined as2

ϵ0,u = ∥u − Π ∇

E uh∥ and ϵ1,u = ∥∇u − Π 0
E (∇uh) ∥ (86)

where the ∥ · ∥ (when applied to functions) stands for the L2 norm over Ω that is evaluated using a fifth order
triangulation quadrature scheme. For the meshes with non star-shaped elements, the above defined displacement error
measures become difficult to evaluate due to the failure of the triangulation quadrature scheme. Instead, we adopt the
following L2-type and H1-type displacement error measures, which utilize only the displacement errors at the vertices
of the mesh,3

ϵv
0,u =


E

|E |

m


v∈E

e (Xv) · e (Xv)

1/2

, (88)

ϵv
1,u =


E

hE


e∈E


e


Xve
1


− e


Xve

2


·


e


Xve
1


− e


Xve

2


/|e|

1/2

in 2D (89)

and

ϵv
1,u =


E

hE


f ∈E

h f


e∈ f


e


Xve
1


− e


Xve

2


·


e


Xve
1


− e


Xve

2


/|e|

1/2

in 3D (90)

where e = u − uh is the displacement error, m is the number of vertices in E , hE and h f denote the diameters of
E and face f , and ve

1 and ve
2 are the two endpoints of edge e. We remark that expressions (89) and (90) mimic the

H1-seminorms of the displacement in the following sense: they take differences of the displacement on the skeleton
of the mesh, and those differences are then scaled in order to achieve the same behavior (with respect to element
contractions/expansions) as the L2-norm of the displacement gradient.

For the mixed formulations in addition to the error measures for displacements defined in (86)–(90), we consider
the L2 pressure errors4

ϵ0,p = ∥p − ph∥, (92)

2 Alternatively, the norms could be scaled as

ϵ0,u → ϵ0,u/∥u∥, ϵ1,u → ϵ1,u/∥∇u∥. (85)

3 Alternatively, the norms could be scaled as

ϵv
0,u → ϵv

0,u/∥u∥, ϵv
1,u → ϵv

1,u/∥∇u∥. (87)

4 Alternatively, the norms could be scaled as

ϵ0,p → ϵ0,p/∥p∥, ϵv
0,p → ϵv

0,p/∥p∥ (91)

For the displacement-based formulation, the exact displacement field is given by Eq. (95) and ∥u∥ = 3.2953, ∥∇u∥ = 3.5816. For the mixed
formulation, the exact displacement and pressure fields are given by Eqs. (99) and (101), and ∥u∥ = 3.4425, ∥∇u∥ = 3.6736, ∥p∥ = 2.7572,
where the norms are computed exactly.
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Fig. 3. (a) Illustration of the 3D boundary value problems where a rectangular block is bent into semicircular shapes. (b) Illustration of the
simplified 2D plane strain problems. In the problem for the displacement-based VEM, the initial bulk modulus is set as κ = 10 and, in the one for
the mixed VEM, κ is taken to be κ → ∞. In all cases, µ = 1.

where the norms are evaluated using a fifth order triangulation quadrature rule. For meshes with non star-shaped
elements, a L2-type pressure error is defined as

ϵv
0,p =


E

|E |


v∈E

[p(Xv) − ph(Xv)]2 /m

1/2

, (93)

which utilizes the pressure errors at the vertices of the mesh.

6.1. Displacement-based VEM

This subsection considers the numerical assessments on the performance of both two- and three-dimensional
displacement-based VEM. Throughout this subsection, material behavior is considered to be neo-Hookean with the
following stored-energy function [38]:

W (F) =
µ

2
(I1(F) − 3) − µ (det F − 1) +

3κ + µ

6
(det F − 1)2 , (94)

where µ and κ are the initial shear and bulk moduli, which are taken to be µ = 1 and κ = 10 in the remainder of
this subsection. Realizing that Ψ(F) = µ/2(F : F − 3) in the above stored energy function, we obtain the trace-
based stabilization term αE = µ for both 2D and 3D cases according to (62) and (63), which is independent of the
deformation state u. Additionally, JE is computed exactly using the “Robust” approach (Table 1) leading to (33) and
(41) for 2D and 3D cases respectively. In general, we have found that computing JE using the “Simple” approach also
produces results with similar accuracy for the meshes with regular elements, e.g., convex elements.

This subsection considers a boundary value problem where a rectangular block of dimensions 1×1×π is bent into a
semi-circular shape, as illustrated in Fig. 3(a). The rectangular block is defined by −0.5 < X1 < 0.5, 0.5 < X2 < 0.5
and 0 < X3 < π in a Cartesian coordinate system (X1, X2, X3), and the analytical displacement describing the
deformation is given by

ux (X) = −1 + (1 + X1) cos (X3) − X1, u y (X) = 0, uz (X) = (1 + X1) sin (X3) − X3. (95)

Accordingly, the body force f = { fx , fy, fz}
T is computed as

fx (X) = −
(1 + X1) cos (X3) (3κ − 2µ)

3
, fy (X) = 0, fz (X) = −

(1 + X1) sin (X3) (3κ − 2µ)

3
. (96)

Since no deformation occurs in the X2 direction, this problem simplifies into a plane strain problem in the X1 − X3
plane, as shown in Fig. 3(b). In the following studies, displacement boundary conditions are applied everywhere on
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Fig. 4. Examples of (a) a CVT mesh consisting of 100 2D elements; (b) a structured hexagonal mesh consisting of 60 2D elements; (c) a pegasus
mesh containing 48 non star-shaped 2D elements; (d) a bird mesh with 64 non star-shaped 2D elements; (e) a fish mesh consisting of 132 non
star-shaped 2D elements; (f) a “zoo” mesh containing a total number of 64 non star-shape 2D elements, including 16 pegasus elements, 20 bird
elements and 28 fish elements; (g) a CVT mesh consisting of 100 3D elements; and (h) a distorted hexahedral mesh consisting of 96 3D elements.

the boundary in both the original 3D problem and its 2D simplification. Both 2D and 3D problems have identical
L2 norms for the exact displacement and its gradient, which are obtained as ∥u∥ = 3.2953 and ∥∇u∥ = 3.5816
analytically.

2D displacement-based VEM. We first consider the VEM in 2D and study its performance in the boundary value
problems under plane strain conditions. To that end, we consider the simplified plane strain problem setup illustrated
in Fig. 3(b). Two sets of convex meshes are considered, the structured hexagonal meshes and the CVT meshes,
examples of which are provided in Fig. 4(a) and (b) respectively. The VEM results include both Approaches #1 and
#2 for treating the body force term, i.e. expressions (67) and (68). For comparison purpose, we also conduct analysis
using the standard displacement-based FEM with the gradient correction scheme [23,13] on the same sets of polygonal
meshes. Fig. 5 plots the displacement errors as functions of the average mesh size h. Each data point for the CVT
mesh represents an average of the results from five meshes. It is observed that VEM with both Approaches #1 and #2
for treating the body force term delivers optimal convergence rates (2 for the L2-norm of the displacement error and
1 for the H1-seminorm of the displacement errors), whose results have almost identical accuracy. When compared to
the FEM, the VEM also gives displacement fields with similar accuracy (although the VEM results are slightly less
accurate in terms of the H1-seminorm than the FEM results). However, the VEM is more efficient than the FEM in
the sense that the VEM uses only one integration point per element whereas the FEM uses n integration points for
n-sided elements.

One major advantage of the VEM is its ability to deal with more general meshes in an efficient way. To demonstrate
this advantage, we consider three sets of Escher-based meshes [50]: the pegasus mesh as shown in Fig. 4(c), the bird
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Fig. 5. The convergence plots of the error norms as functions of the average mesh size h for the (a) the CVT meshes and (b) the structured
hexagonal meshes.

Fig. 6. The convergence plots of the displacement error norms against average mesh size h for both the bird and pegasus meshes: (a) the L2-type
displacement error and (b) the H1-type displacement error.

mesh as shown in Fig. 4(d), and the fish mesh as shown in Fig. 4(e). Following the discussion of Section 4, because
the Approach #1 in (67) fails with the non star-shaped elements, the body force term here is constructed using the
Approach #2 given by (68). Fig. 6(a) and (b) show the two error measures (88) and (89) as functions of the average
mesh size h. In addition, examples of the deformed shapes of all sets of meshes are shown in Figs. 7–9. Our numerical
results confirm that optimal convergences are obtained in both the L2-type and H1-type norms of the displacement
error. As an additional remark, we point out that the VEM using the “Simple” approach (see Table 1) to compute JE in
this case is found to lead to non-convergent results due to the failure of convergence in the Newton–Raphson method.

3D displacement-based VEM. We proceed to perform numerical assessments of the displacement-based VEM in 3D.
In this case, we consider original 3D problem illustrated in Fig. 3(a) with the CVT and the distorted hexahedral meshes,
examples of which are shown in Fig. 4(g) and (h), respectively. We also consider both approaches of treating the body
force term given by (67) and (68), and the displacement error measures defined in (86) are used here. Fig. 10(a) and
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Fig. 7. The final deformed configuration is shown for the pegasus mesh with 972 elements. This deformed shape is obtained by the displacement-
based VEM.

Fig. 8. The final deformed configuration is shown for the bird mesh with 735 elements. This deformed shape is obtained by the displacement-based
VEM.

(b) show plots of the displacement error norms as functions of the average mesh sizes h. Each data point in the plots
for the CVT mesh is obtained by averaging the results from five meshes. Again, VEM using both Approaches #1 and
#2 of treating the body force term yields an optimally convergent displacement field with similar accuracy.



H. Chi et al. / Comput. Methods Appl. Mech. Engrg. 318 (2017) 148–192 171

Fig. 9. The final deformed configuration is shown for the fish mesh with 644 elements. This deformed shape is obtained by the displacement-based
VEM.

Fig. 10. The convergence plots of the error norms as functions of the average mesh size are shown in (a) for the CVT meshes and (b) for the
distorted hexahedral meshes.

6.2. Mixed VEM

In this subsection, the performance of the mixed VEM is numerically evaluated. Throughout the subsection, the
material is considered to be purely incompressible which is characterized by the following stored energy function [51]:

W (F) =


31−α

2α
µ

(I1(F))α − 3α


if det F = 1

+∞ otherwise,
(97)
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with the initial shear modulus µ being 1 and the material parameter α being 3. For this material model, the trace-based
stabilization gives

αE =
31−α (α + 1) µ

2
I α−1
1 in 2D and αE =

(2α + 7) µ

3α+1 I α−1
1 in 3D, (98)

both of which are nonlinear functions in u.
We consider a similar boundary value problem in which an incompressible rectangular block of dimension 1×1×π

is bent in to semi-circle shape. As depicted in Fig. 3(a), the rectangular block is defined by −0.5 < X1 < 0.5,
−0.5 < X2 < 0.5 and 0 < X3 < π in a Cartesian coordinate system (X1, X2, X3), with both surfaces X1 = ±0.5
being traction free. It is possible to obtain a closed-form solution for this problem [38]. In particular, the analytical
displacement field takes the form [38]

ux (X) = −r (−0.5) + r (X1) cos (X3) − 0.5 − X1, u y (X) = 0, uz (X) = r (X1) sin (X3) − X3, (99)

where the function r(X1) is given by

r (X1) =


2X1 +

√
2. (100)

Additionally, one can obtain the analytical pressure field p as

p =


22

√
2 + 25


µ

54
−

µ


r2 (X1) +
1

r2(X1)
+ 1

3

54
+

µ


r2 (X1) +
1

r2(X1)
+ 1

2

9r2 (X1)
. (101)

Unlike the problem in the preceding subsection, the body force f for this problem is 0. Again, this 3D problem can be
simplified into a 2D plane strain problem, as illustrated in Fig. 3(b). In our following studies of both the 3D problem
and its 2D simplification, in order to avoid the potential development of free surface instability (the performance of
VEM on capturing the physical instability is beyond the scope of this paper and is a subject for future investigation),
displacement is applied to all the surfaces except the surface X1 = 0.5. Again, both 2D and 3D problems have identical
L2 norms for the exact displacement, displacement gradient and pressure fields, which are obtained respectively as
∥u∥ = 3.4425, ∥∇u∥ = 3.6736 and ∥p∥ = 2.7572 analytically.

2D mixed VEM. We first consider the 2D mixed VEM and study its performance on the accuracy and convergence.
We remind that the proposed approximation has been shown to lead to numerically stable schemes (in the linear
regime) on several polygonal meshes in 2D, such as the CVT and structured hexagonal meshes [44,9,12]. The 2D
plane strain problem shown in Fig. 3(b) is considered with the following sets of meshes: structured hexagonal, CVT,
and non star-shaped “zoo” meshes made up of pegasus, bird and fish elements, as depicted in Fig. 4(a), (b) and (f)
respectively. In Fig. 11 we plot the displacement and pressure error norms as functions of the average mesh sizes h for
the VEM results using both “Robust” and “Simple” approaches to compute JE . The results obtained form the mixed
FEM with the gradient correction scheme for the CVT meshes and the structured hexagonal meshes are also included
for comparison purposes. In addition, an example of the deformed shape of the “zoo” mesh is shown in Fig. 12. We
remark that since the “zoo” meshes contain non star-shaped elements, it is difficult to perform mixed FEM analysis on
them, however, the VEM analysis can be naturally conducted. Again, each data point in the plots for the CVT mesh
is an average from five results. It is observed from the figures that mixed VEM using both “Robust” and “Simple”
approaches to compute JE delivers results that are optimally convergent in terms of both displacement and pressure
errors. While the level of accuracy for the results obtained using the “Robust” and “Simple” approaches are almost
identical with the CVT and structure hexagonal meshes, the results obtained using the former approach are slightly
more accurate than the ones obtained by the latter approach with the non star-shaped “zoo” meshes, especially in
terms of the H1-type norm of the displacement errors. This demonstrates the advantage of the “Robust” approach
with respect to the “Simple” approach when dealing with highly irregular and non-convex meshes. Moreover, the
comparison between the VEM and FEM results suggests that they have a similar level of accuracy. Again, the mixed
VEM use only one integration point per element and thus is more computationally efficient than the mixed FEM.

3D mixed VEM. Our next step consists of performing numerical studies of the 3D mixed VEM with the original 3D
problem shown in Fig. 3(a). We note that, differently from the 2D case [44], the inf–sup condition in the 3D case has
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Fig. 11. The convergence plots of the error norms as functions of the average mesh size for (a) displacement errors and (b) the pressure error in the
CVT meshes, (c) the displacement errors and (d) the pressure error in the structured hexagonal meshes, and (e) the displacement errors and (f) the
pressure error in the non star-shaped “zoo” meshes.
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Fig. 12. The final deformed configuration is shown for the “zoo” mesh. The “zoo” mesh contains 224 elements with 64 pegasus, 72 bird, and 88
fish elements. This deformed shape is obtained by the mixed VEM.

not been proven, but it can be numerical investigated as has been done in the 2D (polygonal) FEM context [9,12].
Similarly to the displacement-based VEM case, CVT and distorted hexahedral meshes are considered, as shown in
Fig. 2(e) and (f), respectively. Notice that both types of meshes only contain convex elements, hence it is possible to
treat them using the standard FEM with the Wachspress shape functions [14]. On the other hand, we also consider
two sets of concave meshes, the extruded octagonal meshes and the extruded version of the non star-shaped “zoo”
meshes consist of pegasus, bird and fish elements, as shown in Fig. 13(a) and (b) respectively. We note that while
all the elements in the extruded octagonal meshes satisfy the assumption in the definition of the 3D local VEM

space, i.e., all the faces of each element are star convex with respect to X f
s = 1/m f m f

j=1 X f
j , all the elements in

the extruded “zoo” meshes contain non star-shaped faces, which violates this assumption. Figs. 14 and 15 show
the displacement and pressure errors of the results obtained by the VEM with both the “Robust” and “Simple”
approaches to compute JE , together with illustrations of the deformed shapes and the fringe plots of the pressure fieldph . For the hexahedral meshes, VEM with both “Robust” and “Simple” approaches to compute JE offers optimal
convergence in the displacement errors. Yet, a slight degeneracy in the convergence of the pressure error occurs and
their pressure fringe plots exhibit checkerboard modes. These indicate the occurrence of a mild numerical instability.
For all the other meshes, optimal convergence in both displacement and pressure errors are observed for VEM with
both approaches and the pressure fields are more smoothly distributed, suggesting numerical stability for those meshes.
In particular, through the convergence observed in the results of the extruded “zoo” meshes, we highlight that our VEM
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Fig. 13. Examples for (a) an extruded octagonal meshes with 81 elements and (b) a non star-shaped “zoo” meshes with 128 elements. This “zoo”
mesh is made up of 32 extruded pegasus elements, 48 extruded bird elements, and 48 extruded fish elements.

formulation ensures convergence even though the meshes contain elements with non star-shaped faces (which violates
our assumption in defining the local VEM space). Moreover, by comparing the results obtained from the “Robust” and
“Simple” approaches to compute JE , we remark that although both approaches appear to provide similarly accurate
results for regular meshes (the hexahedral and CVT meshes), the “Robust” approach seems to produce more accurate
results when the meshes become more irregular, e.g. the extruded “zoo” meshes.

7. Application example: Elastomer filled with rigid inclusions

In this section, we deploy the proposed VEM framework to the study of the nonlinear elastic response of an
elastomer filled with an isotropic distribution of rigid circular particles in 2D. Through this application example, we
aim to demonstrate the performance of the proposed displacement-based and mixed VEM formulations in problems
which involve heterogeneous and large localized deformation fields. In the meantime, the influences of various choices
of stabilization techniques and different approaches to compute JE on the performance of the VEM in such problems
are investigated.

We consider the filled elastomer to be a periodic repetition of a unit cell that contains a random distribution of a
large number of particles constructed by means of a random sequential adsorption algorithm [52,53]. Motivated by
the polydispersity in size of typical fillers, we consider a particular case with three families of particles with radii


r (1), r (2), r3


= {r, 0.75r, 0.5r} with r =


c(1)

N (1)π

(1/2)

, and (102)

concentrations
c(1), c(2), c(3)


= {0.5c, 0.3c, 0, 2c} , (103)

where N (1) is the number of particles with the largest radius r (1), and c stands for the total are fraction of particles. In
the present example, we take N (1)

= 20 and c = 0.35. A realization of such a unit cell containing a total number of
75 particles at area fraction c = 35% is shown in Fig. 16(a). Displacement periodic boundary conditions are applied,
which implies

uk (1, X2) − uk (0, X2) = ⟨F⟩k1 − δk,1
uk (X1, 1) − uk (X1, 0) = ⟨F⟩k2 − δk,2 ∀k = 1, 2,

(104)

where ⟨F⟩ and δk,l are the macroscopic deformation gradient and Kronecker delta, respectively. The symbol uk and
Xk (k = 1, 2) denote the components of the displacement field and initial position vector in a Cartesian frame of
reference with its origin placed at the left lower corner of the unit cell.
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Fig. 14. The convergence plots of the error norms as functions of the average mesh size for (a) the displacement errors and (b) the pressure error
in the CVT meshes, (c) the displacement errors and (d) the pressure error in the hexahedral meshes.

Throughout this section, we make use of a CVT mesh as depicted in Fig. 16, which is generated by “Poly-
Mesher” [48]. The discretization contains a total of 20,000 elements and 40,196 nodes. To apply periodic displacement
boundary conditions to this CVT mesh, we adopt the concept introduced in [12] of locally inserting additional nodes
to achieve periodic nodal distributions on opposite boundaries of the mesh (a procedure that can be easily applied
thanks to the flexibility of polygonal meshes). On the other hand, each particle in the CVT mesh is considered to be
infinitely rigid by adopting the variational formulation proposed by Chi et al. [54], in which its presence is treated as
a set of kinematic constraints on the displacement DOFs.

In the subsequent VEM and polygonal FEM simulations on the CVT mesh, the macroscopic deformation gradient
is evaluated as

⟨F⟩
.
=


E

|E |

I + Π 0

E∇uh


|Ωh |
. (105)
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Fig. 15. The convergence plots of the error norms as functions of the average mesh size for (a) the displacement errors and (b) the pressure error
in the extruded octagonal meshes, (c) the displacement errors and (d) the pressure error in the extruded “zoo” meshes.

Fig. 16. Illustrations of the unit cell, which consists of 75 polydispersed particles at a total area fraction of c = 35%, and the details of the CVT
mesh, which consists of 20,000 elements and 40,196 nodes.
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Table 3
VEM stability parameter αE (sh).

Operator Norm: Eq. (59) Trace: Eq. (60)

sh 0 un−1
h un−1

h uh

In addition, to quantitatively evaluate the performance of those simulations, we define the macroscopic energy of the
filled elastomer in the following manner

⟨W ⟩
.
=

1
|Ωh |


E

|E |


Ψ


I + Π 0
E∇uh


+ U (JE (uh))


, (106)

where JE is evaluated using the “Robust” approach with expression (33). When the matrix is purely incompressible,
the second term in the above expression is simply zero for all the elements in the mesh. We also monitor the relation
between the macroscopic deformation gradient ⟨F⟩ and macroscopic first Piola–Kirchoff stress ⟨P⟩ in the VEM
and polygonal FEM simulations by equivalently monitoring the displacement–traction relationship at the lower-right
corner of the unit cell (the location where we apply displacement in our simulations).

7.1. Filled elastomers with neo-Hookean matrix

In this subsection, the matrix is assumed to be compressible neo-Hookean material, which is described by the
stored-energy function

W (F) =
µ

2


F : F − 3


+

κ

2
(det F − 1)2 , (107)

where µ and κ are the initial shear and bulk moduli. Throughout this subsection, the initial shear modulus is taken to
be µ = 1, and the filled elastomer is assumed to be subjected to uniaxial tension, whose macroscopic deformation
⟨F⟩ gradient has the form ⟨F⟩ = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 where λ1 and λ2 are the macroscopic stretches with λ1 in the
tensile direction.

We first study the influence of various choices of the stability parameter αE (sh) on the performance of the
displacement-based VEM. More specifically, we investigate the four choices of αE (sh) as shown in Table 3. We
assume two values of the initial bulk moduli, κ = 10 and κ = 1000, which represent compressible and nearly
incompressible materials respectively. For all the cases, the target macroscopic stretch λ1 is set as 2.

As a qualitative comparison, Fig. 17(a)–(b) depict the detailed views of the unit cell at the same applied
macroscopic stretches using different choices of αE (sh) in Table 3. These detailed views are taken from the deformed
configurations at λ1 = 1.74 for κ = 10 and from those at λ1 = 1.42 for κ = 1000. As a reference, the detailed
views obtained from the standard displacement-based and mixed FEM are also included. Additionally, Fig. 18(a)–(d)
show the comparison of macroscopic responses (energy and relevant component of stress) as functions of the applied
stretch λ1 between the various choices of αE (sh), with the ones obtained by the displacement-based FEM represented
by the dashed lines.

Several immediate observations can be made. First, the displacement-based FEM apparently suffers from volu-
metric locking when the matrix becomes nearly incompressible, i.e. κ = 1000, as it produces over stiff macroscopic
energy and stress. On the other hand, the proposed displacement-based VEM formulation appears free of volumetric
locking and produces more reasonable macroscopic energy and stress. The displacement-based VEM with all the sta-
bilization choices predicts almost identical macroscopic energies, although we note that the norm-based stabilization
with sh = un−1

h and trace-based stabilization with sh = uh produce a slightly stiffer macroscopic stress than the
other two. Moreover, the detailed views in Fig. 17 indicate that the norm-based stabilization with sh = 0 leads to
hourglass modes in the element at high deformation levels (the elements that are plotted in red). As we have discussed
in Section 4, this is a consequence of the under-stabilizations of αE (0) in those elements. The detailed views of other
choices, on the other hand, do not contain hourglass modes in those elements and all are qualitatively similar to the
one obtained with the mixed FEM.
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Fig. 17. Detailed views of the unit cell at the same applied macroscopic stretches obtained using the displacement-based and mixed FEM, and
the displacement-based VEM using different choices of αE (sh) in Table 3: (a) the case of κ = 10 at λ1 = 1.74 and (b) the case of κ = 1000 at
λ1 = 1.42. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Another major interest is the ability of the VEM to model large localized and heterogeneous deformations. To that
end, we quantify the maximum global stretch λ1 that the displacement-based VEM (with each stabilization choice)
can achieve before non-converge occurs in the Newton–Raphson process; in general, the larger global stretch the unit
cell reaches, the larger localized deformation it induces. Based on this measure, it is apparent that the norm-based
stabilization with sh = 0 is the worst choice for both cases of κ = 10 and κ = 1000. With this choice, the unit cell
reaches significantly less maximum global stretch than the other choices. The same happens with the displacement-
based FEM due to the volumetric locking. On the other hand, as the incompressibility level of the matrix increases
from κ = 10 to κ = 1000, we notice the advantage of using the trace-based stabilization for VEM, as well as
choosing sh = uh over sh = un−1

h , in achieving larger global stretches. We note that since the displacement-based
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Fig. 18. Comparison of the macroscopic responses obtained by the displacement-based VEM with various stabilization techniques: (a) Macroscopic
energy as a function of the applied stretch λ1 for the case of κ = 10. (b) Macroscopic energy as a function of the applied stretch λ1 for the case of
κ = 1000. (c) Macroscopic stress as a function of the applied stretch λ1 for the case of κ = 10. (d) Macroscopic stress as a function of the applied
stretch λ1 for the case of κ = 1000.

VEM is equivalent to the mixed VEM as discussed in Section 4, the above observations and discussions also apply to
the mixed VEM formulation.

Our second study investigates the performance of the mixed VEM using different approaches to compute JE .
Both the “Robust” approach (i.e. Eqs. (36) and (38)) and the “Simple” approach (i.e. Eqs. (46)–(48)) are considered.
Similarly to the preceding study, we choose two values of initial bulk moduli, κ = 10 and κ = ∞, representing
compressible and purely incompressible matrices. In this study, we utilize the trace-based stabilization with sh = uh
and the target global stretch is set as λ1 = 2.

We plot in Fig. 19(a)–(d) the macroscopic responses (macroscopic energy and relevant component of stress) as
functions of the applied stretch λ1 for the cases of κ = 10 and κ = ∞. It is noted from those figures that although the
two approaches yield similar macroscopic responses, using the exact expression for JE (the “Robust” approach) helps
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Fig. 19. Comparison of the macroscopic responses obtained by the mixed VEM with the two approaches to compute JE : (a) Macroscopic energy
as a function of the applied stretch λ1 for the case of κ = 10. (b) Macroscopic energy as a function of the applied stretch λ1 for the case of κ = ∞.
(c) Macroscopic stress as a function of the applied stretch λ1 for the case of κ = 10. (d) Macroscopic stress as a function of the applied stretch λ1
for the case of κ = ∞.

the unit cell to reach a significantly larger global stretch than using the approximation of JE (the “Simple” approach)
when the material is nearly or purely incompressible.

We conclude from the above studies that the trace-based stabilizations generally yield more accurate macroscopic
responses than the norm-based ones (when compared with the results obtained from the mixed FEM). Moreover,
choosing sh = uh instead of sh = un−1

h (although it seems to produce slightly stiffer macroscopic stress), as well
as using the “Robust” approach to compute JE , is more computationally demanding but typically helps the unit cell
reach larger global stretches, especially as the matrix is approaching the incompressible limit. Consequently, for the
remainder of this Section, the trace-based stabilization with sh = uh and the “Robust” approach to compute JE are
adopted. We finally remark that, for such problems, linear and quadratic triangular and quadrilateral (conforming)
elements are found to lead to a loss of convergence at much smaller global stretches when compared to the polygonal
methods studied above, especially when the matrix phase is nearly or purely incompressible (see, e.g., Section 5.1
of [13]).
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7.2. Filled elastomer with matrix described by other constitutive models

In the sequel, we adopt the mixed VEM formulation to study the nonlinear elastic responses of the filled elastomer
when its matrix is characterized by other material models. The main purpose of this study is to thoroughly compare
the performance of the mixed VEM with the mixed FEM for various material models. In particular, we consider the
incompressible Mooney–Rivlin model

W (F) =


C1 [I1(F) − 3] + C2 [I2(F) − 3] if det F = 1
+∞ otherwise,

(108)

and the incompressible model utilized in [53,55] to describe a typical silicone rubber

W (F) =


31−α1

2α1
µ1

(I1(F))α1 − 3α1


+

31−α2

2α2
µ2

(I1(F))α2 − 3α2


if det F = 1

+∞ otherwise.
(109)

In the Mooney–Rivlin model, we choose the material parameters to be C1 = 0.3 and C2 = 0.2, resulting in an
initial shear modulus µ = 2(C1 + C2) = 1. The material parameters for the typical silicone rubber are taken to be
α1 = 3.837, α2 = 0.559, µ1 = 0.032 and µ2 = 0.3 with the initial shear modulus being µ = µ1 + µ2 = 0.332.
Two loading conditions are considered: (i) uniaxial tension whose macroscopic deformation gradient ⟨F⟩ is of the
form ⟨F⟩ = λe1 ⊗ e1 + λ−1e2 ⊗ e2 and (ii) simple shear whose macroscopic deformation gradient ⟨F⟩ is of the form
⟨F⟩ = I + γ e1 ⊗ e2, where λ and γ are the applied global stretch and shear.

Under both loading conditions, Fig. 20 depicts the final deformed configurations of the unit cells with
Mooney–Rivlin matrix obtained by the mixed VEM and mixed FEM at their respective maximum global deformation
states. Similarly, Fig. 21 shows the deformed configurations of the unit cell with typical silicone rubber matrix obtained
by the mixed VEM and mixed FEM at their respective maximum global deformation states. The color scale in each
configuration corresponds to the maximum principal stretch of each element, with those having a value of 5 and
above plotted red. Additionally, the macroscopic responses predicted by the VEM and FEM (macroscopic energies
and relevant components of macroscopic stress) as functions of the applied stretch λ or shear γ are shown in Figs. 22
and 23, respectively for unit cells with Mooney–Rivlin matrix and typical silicone rubber matrix. In the plots, we also
show the deformed configurations of the unit cell at the same levels of global deformations obtained by VEM and
FEM, with the elements whose maximum principal stretches greater than 5 plotted read.

Several observations can be made from Figs. 20–23. First, for both material models considered, the results obtained
from the mixed VEM and mixed FEM are in good qualitative and quantitative agreements. As shown in Figs. 22 and
23, the deformed configurations obtained by the VEM and FEM share similar patterns at the same global deformations
levels. The macroscopic responses predicted by the VEM and FEM also match reasonably well, especially for the
macroscopic energy. However, it is worthwhile noting that, similarly to the case of neo-Hookean matrix presented in
the previous subsection, we also observe stiffer responses in the macroscopic stresses obtained by VEM than the ones
by FEM for the unit cell with Mooney–Rivlin matrix. Furthermore, by comparing the maximum deformation levels
reached by the unit cells modeled respectively by the VEM and FEM, it appears that the VEM and FEM have similar
capabilities of modeling large localized deformations. As further investigation, we summarize in Table 4 the maximum
global stretch/shear reached by the VEM and FEM for both material models and the corresponding maximum local
principal stretches. It is interesting to note that for the unit cell with Mooney–Rivlin matrix, although the VEM yields
a larger global stretch in uniaxial tension, the corresponding maximum local principal stretches in the FEM mesh are
higher. We again underline that, on this same test, standard triangular and quadrilateral FEM would reach a much
smaller global stretch when compared to the polygonal methods under study [12,13].

8. Concluding remarks

This paper introduces a VEM framework for two and three dimensional finite elasticity problems. Two VEM for-
mulations are presented, which adopt a displacement-based and a two-field mixed variational principles respectively.
The displacement-based VEM formulation appears to be free of volumetric locking as the material becomes nearly
incompressible, at least for the proposed set of meshes. By construction, the proposed VEM formulations are able to
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Fig. 20. The maximum deformed configurations of the unit cell obtained by the mixed VEM and mixed FEM for the Mooney–Rivlin matrix under
(a) uniaxial tension and (b) simple shear.

Table 4
Summary of maximum principal stretches among all the elements in the mesh for the unit cell considering different
material models and loading conditions.

Mooney–Rivlin matrix Typical silicone rubber matrix
Uniaxial tension Simple shear Uniaxial tension Simple shear

Max. global stretch/shear
VEM 2 1.124 1.660 1.073
FEM 1.870 1.345 1.716 1.077

Max. principal stretch
VEM 6.559 4.650 3.943 3.737
FEM 7.015 8.022 4.384 3.903

efficiently handle a more general class of polygonal and polyhedral meshes than the standard FEM, including the ones
with non-convex elements. Several numerical studies are presented, which confirm the convergence and accuracy of
the VEM formulations. In particular, for three-dimensional problems, our numerical studies have further shown that
the VEM formulations appear to produce convergent results even for meshes containing non-star shaped elements,
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Fig. 21. The maximum deformed configurations of the unit cell obtained by the mixed VEM and mixed FEM for the typical silicone rubber matrix
under (a) uniaxial tension and (b) simple shear. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

which makes the VEM formulation even more forgiving with respect to the quality of the mesh. We also show that,
according to the definition of VEM spaces, closed-form expressions for the exact average volume changes over each
polygonal/polyhedral elements can be derived. Those closed-form expressions render the VEM more accurate and
robust, especially for irregular meshes, such as those containing elements with non star-shaped faces and in prob-
lems that involve large heterogeneous and localized deformations. Furthermore, different constructions of the loading
terms are discussed and various stabilization strategies are studied, which are shown to have significant influence on
the performance of the VEM formulations in finite elasticity problems, especially those involving large localized and
heterogeneous deformations fields. A stabilization scheme is further proposed in this work for isotropic materials,
which is based on the trace of the material tangent modulus tensor. We deploy the proposed VEM formulations to
the study of nonlinear elastic response of a filled elastomer in 2D and demonstrate that they are able to capture large
localized deformation fields in such problems.

The aforementioned work indicates that the VEM offers room for novel developments in nonlinear mechanics. We
remark that several extensions are of interest, for instance, studies of the performance of VEM in capturing physical
instabilities and development of more advanced stabilization schemes for finite elasticity problems.
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Fig. 22. Comparison of the macroscopic responses obtained by the mixed VEM and mixed FEM for Mooney–Rivlin matrix: (a) macroscopic
energy as a function of the applied stretch λ under uniaxial tension; (b) macroscopic energy as a function of the applied shear γ under simple shear;
(c) macroscopic stress as a function of the applied stretch λ under uniaxial tension; (d) macroscopic stress as a function of the applied shear γ under
simple shear.
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Appendix A. Trace-based stabilization parameter αE for isotropic solids

We present a detailed derivation of the trace-based stabilization parameter αE in (62) and (63). Considering a
general function Φ(I1, I2, J ), we have αE be expanded as
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Fig. 23. Comparison of the macroscopic responses obtained by the mixed VEM and mixed FEM for typical silicone rubber matrix: (a) macroscopic
energy as a function of the applied stretch λ under uniaxial tension; (b) macroscopic energy as a function of the applied shear γ under simple shear;
(c) macroscopic stress as a function of the applied stretch λ under uniaxial tension; (d) macroscopic stress as a function of the applied shear γ under
simple shear.
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where the dependences of αE , Φ and its derivatives on I1, I2 and J are assumed. In the above equation, each
component can be explicitly expressed as
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In the steps that follow, the Cayley–Hamilton theorem (see, for example, [56]) is adopted to further simplify the
following two terms
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∂F
= 4


2I1 I2 − I1tr
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+ tr


C3


, and
∂ J

∂F
:

∂ J

∂F
= J 2tr


C−1


. (112)

In 2D, the Cayley–Hamilton theorem [56] states that C ∈ R2×2 satisfies the following characteristic equation

C2
− I1C + det(C)I = 0. (113)

The following relation can be extracted from the above characteristic equation:

tr


C3


− I1tr
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= I1, (114)
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Combining (110), (111) and (115), we obtain the final expression for αE in the 2D case
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Similarly, the Cayley–Hamilton [56] in the 3D case states that C ∈ R3×3 satisfies the following characteristic
equation

C3
− I1C2

+ I2C − det(C)I = 0. (117)

As a result, the following expressions can be obtained
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and, thus,
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By combining (110), (111) and (119), we arrive at the final expression for αE for the 3D case
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Appendix B. On polyhedra with non star-convex faces

We provide detailed derivations of relations (81)–(84) in Section 4.7 when the polyhedral element E contains non
star-convex faces. First, we are able to show that the utilized vertex-based quadrature rule on each face f can integrate
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any linear functions exactly on f , even if f is not star-convex. Given any linear functions p1 in [P1(E)]3, we can
express it as p1 = a + BX, where a and B are an arbitrary constant vector and a second order tensor, respectively. The
exact face integral


f p1 ⊗ n f dS is obtained as

f
p1 ⊗ n f dS =


f
(a + BX) ⊗ n f dS = | f |


a + BX f

C


⊗ n f , (121)

where X f
C is the centroid of face f . Applying the vertex based rule defined in (23) and (25) to the function v = p1,

we obtain

m f
j=1

|T f
j |

3


p1


X f

j


+ p1


X f

j+1


+ p1


X f

s


⊗ n f

=

m f
j=1

|T f
j |

3


3a + B


X f

j + X f
j+1 + X f

s


⊗ n f

=

 m f
j=1

|T f
j |a + B

 m f
j=1

|T f
j |

X f
j + X f

j+1 + X f
s

3

⊗ n f . (122)

Moreover, if we recall the definition of the signed area |T f
j | defined in (24), then we observe that for non star-convex

faces

m f
j=1

|T f
j | = | f |,

m f
j=1

|T f
j |

X f
j + X f

j+1 + X f
s

3
= | f |X f

C , (123)

and thus m f
j=1

|T f
j |a + B

 m f
j=1

|T f
j |

X f
j + X f

j+1 + X f
s

3

⊗ n f
= | f |


a + BX f

C


⊗ n f

=


f

p1 ⊗ n f dS. (124)

Notice that the above analysis also holds if f is not star-convex, implying that the vertex based quadrature rule is
able to integrate any linear functions exactly even in those cases. This implies that (81) holds even if E contains non
star-shaped faces.

Second, if the displacement field is linear, i.e. u = p1, each deformed face f remains planar and the outward
normal vectorn f in the deformed configuration stays constant over each f . Since the proofs of (82) and (83) for the
“Simple” approach are more straightforward, we hereby prove the two expressions for the “Robust” approach. By
applying u = p1 to (41) and using (123), we obtain

1
6|E |


f

m f
j=1

X f
s ·X f

j ∧X f
j+1


=

1
3|E |


f

m f
j=1

|T f
j |

X f
j +X f

j+1 +X f
s

3

 ·n f

=
1

3|E |


f

m f
j=1

|f |X f
C ·n f

=
1

3|E |


f

f X ·n f dS = JE (p1) , (125)

where |f | is the (absolute) area of deformed face f , and X f
C stands for the centroid of the deformed face f . Again,

no assumption is made whether f is star-convex with respect to X f
s , which proves relation (82) in Section 4.7.

Additionally, the first variation of JE (p1) with respect to any δv obtained in (42) can be recast as

D JE (u) · δv =
1

6|E |

m
i=1

δv (Xi ) ·

f ∈F i


β

f
i

m f
j=1

X f
j−1 ∧X f

j +X f
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X f
G f (i)−1 −X f

G f (i)+1
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1
6|E |
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m f
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X f
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·

β f
m f
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i−1 −X f
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=
1

3|E |


f ∈∂ E

m f
i=1

δv


X f
i


·


β f

|f | + |T f
j | + |T f

j−1|

n f . (126)

Pushing back the above expression to the undeformed configuration using the Nanson’s formula [38] yields

D JE (u) · δv =
1

3|E |


f ∈∂ E

m f
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δv


X f
i


·


β f

|f | + |T f
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n f

=
1

3|E |
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m f
i=1

δv


X f
i


·


β f
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m f
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w
f

i δv


X f
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⊗ n f

= |E |
∂ J

∂F
(F(p1)) : Π 0

E (∇(δv)) , (127)

and therefore we prove (83).
Finally relation (84) in Section 4.7 can be derived as follows:
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h . (128)

Appendix C. Nomenclature

P First Piola–Kirchhoff stress tensor
F Deformation gradient tensor
X Position vector in the reference configuration
Ω Undeformed configuration
ΓX Part of the domain boundary where displacement u0 is prescribed
Γ t Part of the domain boundary where traction t is prescribed
f Body force per unit undeformed volume
t Applied boundary traction per unit undeformed area
W (X, F) Stored-energy function
U (X, J ) Volumetric part of the stored-energy function that depends only on J = det FU∗ (X,q) Legendre transformed function of U (X, J ) in J

(continued on next page)
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Ψ (X, F) The remainder part of the stored-energy function
Π (v) Potential energy in the displacement-based formulation
Π V E M

h (vh) VEM approximation of the potential energy in the displacement-based formulationΠ (v,q) Potential energy in the mixed F-formulationΠ V E M
h (vh,qh) VEM approximation of the potential energy in the mixed F-formulation

K Space of kinematically admissible displacements
Q Space consists of square integrable functions
Ωh A discretization of the domain Ω
Γ t

h The boundary of the mesh where traction is applied
ΓX

h The boundary of the mesh where displacement is applied
Kh Discrete global VEM displacement space
Qh Discrete global VEM pressure space
E A generic element of the mesh Ωh in the undeformed configuration
f A generic face of element E in the undeformed configuration
e A generic edge of element E in the undeformed configuration
Xi The i th vertex of element E in the undeformed configuration
X f

j The j th vertex on face f of element E with local numbering

X f
s The triangulation point on face f of element E

T f
j The triangulated subfaces of f

Fi The set of faces that connect to Xi in E
G f A map utilized to denote the relation between the global numbering and local numbering on f of

element E
β

f
j The weight associated with X f

j in defining X f
s

ne The outward normal of edge e in 2D in the undeformed configuration
∇ Gradient operator with respect to the undeformed configuration
∆ Laplacian operator with respect to the undeformed configuration
n f The outward normal of face f in 3D
w

f
j The weight associated with X f

j defined in a vertex-based quadrature rule to integration functions on f

that is first order accurate
wE

v The weight associated with vertex v to integration functions over E that is first order accurate
V(E) Local VEM displacement space on element E
Pk(E) Polynomial space of order k on element E
Π 0

E A tensor-valued L2 projection which projects second order tensors onto its average over E
Π ∇

E A vector-valued projection which projects vectors from V(E) onto [P1(E)]dXi The i th vertex of element E in the deformed configurationX f
j The j th vertex on face f of element E with local numbering

XE
C The centroid of EE A generic element of the mesh Ωh in the deformed configurationf A generic face of element E in the deformed configuratione A generic edge of element E in the deformed configurationX f
s The triangulation point on face f of element EFi The set of faces that connect to Xi in Ene The outward normal of edgee in 2D∇ Gradient operator with respect to the deformed configurationn f The outward normal of face f in 3DT f
j The triangulated subfaces of f

JE The area/volume average of J = det F over E
Sh,E (·, ·) Bilinear form in the stabilization term associated with E

(continued on next page)
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αE Stabilization parameter associated with E
d Dimension
uh Equilibrium displacement field
un−1

h Equilibrium displacement field obtained in the previous Newton–Raphson step
C Right Cauchy deformation tensor C = FT F
I1 First invariant of the right Cauchy deformation tensor C
I2 Second invariant of the right Cauchy deformation tensor C
J Determinant of deformation gradient J = det F
φ(I1, I2, J ) Another form of Ψ(F) that depends solely on the invariants I1 I2 and J for isotropic solids
ϵ0,u The L2-norm of the displacement error
ϵ1,u The H1-seminorm of the displacement error
ϵ0,p The L2-norm of the pressure error
ϵv

0,u The L2-type displacement error using only vertex values
ϵv

1,u The H1-type displacement error using only vertex values
ϵv

0,p The L2-type pressure error
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[34] M.F. Benedetto, S. Berrone, S. Pieraccini, S. Scialò, The virtual element method for discrete fracture network simulations, Comput. Methods

Appl. Mech. Engrg. 280 (2014) 135–156.
[35] L. Beirão da Veiga, C. Lovadina, D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods

Appl. Mech. Engrg. 295 (2015) 327–346.
[36] P.F. Antonietti, L. Beirao da Veiga, S. Scacchi, M. Verani, A C1 Virtual element method for the Cahn–Hilliard equation with polygonal

meshes, SIAM J. Numer. Anal. 54 (1) (2016) 34–56.
[37] P. Wriggers, W.T. Rust, B.D. Reddy, A virtual element method for contact, Comput. Mech. 58 (6) (2016) 1039–1050.
[38] R.W. Ogden, Nonlinear Elastic Deformations, Courier Dover Publications, 1997.
[39] R.W. Ogden, Volume changes associated with the deformation of rubber-like solids, J. Mech. Phys. Solids 24 (6) (1976) 323–338.
[40] R.W. Ogden, Nearly isochoric elastic deformations: application to rubberlike solids, J. Mech. Phys. Solids 26 (1) (1978) 37–57.
[41] J.C. Simo, R.L. Taylor, K.S. Pister, Variational and projection methods for the volume constraint in finite deformation elasto-plasticity,

Computer Methods in Applied Mechanics and Engineering 51 (1) (1985) 177–208.
[42] U. Brink, E. Stein, On some mixed finite element methods for incompressible and nearly incompressible finite elasticity, Comput. Mech. 19

(1) (1996) 105–119.
[43] B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini, A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (3)

(2013) 376–391.
[44] L. Beirão da Veiga, K. Lipnikov, A mimetic discretization of the Stokes problem with selected edge bubbles, SIAM J. Sci. Comput. 32 (2)

(2010) 875–893.
[45] D.S. Malkus, T.J.R. Hughes, Mixed finite element methods–reduced and selective integration techniques: a unification of concepts, Computer

Methods in Applied Mechanics and Engineering 15 (1) (1978) 63–81.
[46] M.S. Floater, Mean value coordinates, Comput. Aided Geom. Design 20 (1) (2003) 19–27.
[47] M.A. Crisfield, Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics, John Wiley & Sons, Inc., 1997.
[48] C. Talischi, G.H. Paulino, A. Pereira, I.F.M. Menezes, PolyMesher: A general-purpose mesh generator for polygonal elements written in

Matlab, Struct. Multidiscip. Optim. 45 (3) (2012) 309–328.
[49] R.S. Thedin, A. Pereira, I.F. Menezes, G.H. Paulino, Polyhedral mesh generation and optimization for finite element computations,

in: Proceedings of the XXXV Ibero-Latin American Congress on Computational Methods in Engineering, 2014.
[50] G.H. Paulino, A.L. Gain, Bridging art and engineering using Escher-based virtual elements, Struct. Multidiscip. Optim. 51 (4) (2015) 867–883.
[51] O Lopez-Pamies, A new I1-based hyperelastic model for rubber elastic materials, C. R. Mecanique 338 (1) (2010) 3–11.
[52] J. Segurado, J. Llorca, A numerical approximation to the elastic properties of sphere-reinforced composites, J. Mech. Phys. Solids 50 (10)

(2002) 2107–2121.
[53] O. Lopez-Pamies, T. Goudarzi, K. Danas, The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—A simple explicit

approximation for finite-concentration suspensions, J. Mech. Phys. Solids 61 (2013) 19–37.
[54] H. Chi, O. Lopez-Pamies, G.H. Paulino, A variational formulation with rigid-body constraints for finite elasticity: Theory, finite element

implementation, and applications, Comput. Mech. 57 (2016) 325–338.
[55] T. Goudarzi, D.W. Spring, G.H. Paulino, O. Lopez-Pamies, Filled elastomers: A theory of filler reinforcement based on hydrodynamic and

interphasial effects, J. Mech. Phys. Solids 80 (2015) 37–67.
[56] M.E. Gurtin, An Introduction to Continuum Mechanics, vol. 158, Academic press, 1982.

http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref21
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref22
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref23
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref24
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref25
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref26
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref27
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref28
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref29
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref30
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref31
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref32
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref33
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref34
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref35
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref36
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref37
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref38
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref39
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref40
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref41
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref42
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref43
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref44
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref45
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref46
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref47
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref48
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref49
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref50
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref51
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref52
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref53
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref54
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref55
http://refhub.elsevier.com/S0045-7825(16)30909-4/sbref56

	Some basic formulations of the virtual element method (VEM) for finite deformations
	Introduction
	Motivation and related work
	Theoretical background
	Displacement-based variational principle
	A general two-field mixed variational principle

	Virtual element spaces and projection operators
	Displacement VEM space and projection operators
	Area/volume average of  J  on general polygonal and polyhedral elements
	Pressure VEM spaces

	Variational approximations
	Two-field mixed and equivalent displacement-based Galerkin approximations with exact integration
	Displacement-based and two-field mixed VEM approximations
	Discussion on the stabilization parameter  αE (sh) 
	Construction of the loading terms
	Weak forms of the VEM approximations
	On the VEM patch test
	A note on the performance of polyhedral elements with non star-convex faces in patch tests

	Numerical assessment
	Displacement-based VEM
	Mixed VEM

	Application example: Elastomer filled with rigid inclusions
	Filled elastomers with neo-Hookean matrix
	Filled elastomer with matrix described by other constitutive models

	Concluding remarks
	Acknowledgments
	Trace-based stabilization parameter  αE  for isotropic solids
	On polyhedra with non star-convex faces
	Nomenclature
	References


